|   | Metamath Proof Explorer | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > orderseqlem | Structured version Visualization version GIF version | ||
| Description: Lemma for poseq 8184 and soseq 8185. The function value of a sequence is either in 𝐴 or null. (Contributed by Scott Fenton, 8-Jun-2011.) | 
| Ref | Expression | 
|---|---|
| orderseqlem.1 | ⊢ 𝐹 = {𝑓 ∣ ∃𝑥 ∈ On 𝑓:𝑥⟶𝐴} | 
| Ref | Expression | 
|---|---|
| orderseqlem | ⊢ (𝐺 ∈ 𝐹 → (𝐺‘𝑋) ∈ (𝐴 ∪ {∅})) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | feq1 6715 | . . . . 5 ⊢ (𝑓 = 𝐺 → (𝑓:𝑥⟶𝐴 ↔ 𝐺:𝑥⟶𝐴)) | |
| 2 | 1 | rexbidv 3178 | . . . 4 ⊢ (𝑓 = 𝐺 → (∃𝑥 ∈ On 𝑓:𝑥⟶𝐴 ↔ ∃𝑥 ∈ On 𝐺:𝑥⟶𝐴)) | 
| 3 | orderseqlem.1 | . . . 4 ⊢ 𝐹 = {𝑓 ∣ ∃𝑥 ∈ On 𝑓:𝑥⟶𝐴} | |
| 4 | 2, 3 | elab2g 3679 | . . 3 ⊢ (𝐺 ∈ 𝐹 → (𝐺 ∈ 𝐹 ↔ ∃𝑥 ∈ On 𝐺:𝑥⟶𝐴)) | 
| 5 | 4 | ibi 267 | . 2 ⊢ (𝐺 ∈ 𝐹 → ∃𝑥 ∈ On 𝐺:𝑥⟶𝐴) | 
| 6 | frn 6742 | . . . . 5 ⊢ (𝐺:𝑥⟶𝐴 → ran 𝐺 ⊆ 𝐴) | |
| 7 | unss1 4184 | . . . . 5 ⊢ (ran 𝐺 ⊆ 𝐴 → (ran 𝐺 ∪ {∅}) ⊆ (𝐴 ∪ {∅})) | |
| 8 | 6, 7 | syl 17 | . . . 4 ⊢ (𝐺:𝑥⟶𝐴 → (ran 𝐺 ∪ {∅}) ⊆ (𝐴 ∪ {∅})) | 
| 9 | fvrn0 6935 | . . . 4 ⊢ (𝐺‘𝑋) ∈ (ran 𝐺 ∪ {∅}) | |
| 10 | ssel 3976 | . . . 4 ⊢ ((ran 𝐺 ∪ {∅}) ⊆ (𝐴 ∪ {∅}) → ((𝐺‘𝑋) ∈ (ran 𝐺 ∪ {∅}) → (𝐺‘𝑋) ∈ (𝐴 ∪ {∅}))) | |
| 11 | 8, 9, 10 | mpisyl 21 | . . 3 ⊢ (𝐺:𝑥⟶𝐴 → (𝐺‘𝑋) ∈ (𝐴 ∪ {∅})) | 
| 12 | 11 | rexlimivw 3150 | . 2 ⊢ (∃𝑥 ∈ On 𝐺:𝑥⟶𝐴 → (𝐺‘𝑋) ∈ (𝐴 ∪ {∅})) | 
| 13 | 5, 12 | syl 17 | 1 ⊢ (𝐺 ∈ 𝐹 → (𝐺‘𝑋) ∈ (𝐴 ∪ {∅})) | 
| Colors of variables: wff setvar class | 
| Syntax hints: → wi 4 = wceq 1539 ∈ wcel 2107 {cab 2713 ∃wrex 3069 ∪ cun 3948 ⊆ wss 3950 ∅c0 4332 {csn 4625 ran crn 5685 Oncon0 6383 ⟶wf 6556 ‘cfv 6560 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2707 ax-sep 5295 ax-nul 5305 ax-pr 5431 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2728 df-clel 2815 df-ne 2940 df-ral 3061 df-rex 3070 df-rab 3436 df-v 3481 df-dif 3953 df-un 3955 df-ss 3967 df-nul 4333 df-if 4525 df-sn 4626 df-pr 4628 df-op 4632 df-uni 4907 df-br 5143 df-opab 5205 df-rel 5691 df-cnv 5692 df-co 5693 df-dm 5694 df-rn 5695 df-iota 6513 df-fun 6562 df-fn 6563 df-f 6564 df-fv 6568 | 
| This theorem is referenced by: poseq 8184 soseq 8185 | 
| Copyright terms: Public domain | W3C validator |