| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > orderseqlem | Structured version Visualization version GIF version | ||
| Description: Lemma for poseq 8137 and soseq 8138. The function value of a sequence is either in 𝐴 or null. (Contributed by Scott Fenton, 8-Jun-2011.) |
| Ref | Expression |
|---|---|
| orderseqlem.1 | ⊢ 𝐹 = {𝑓 ∣ ∃𝑥 ∈ On 𝑓:𝑥⟶𝐴} |
| Ref | Expression |
|---|---|
| orderseqlem | ⊢ (𝐺 ∈ 𝐹 → (𝐺‘𝑋) ∈ (𝐴 ∪ {∅})) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | feq1 6666 | . . . . 5 ⊢ (𝑓 = 𝐺 → (𝑓:𝑥⟶𝐴 ↔ 𝐺:𝑥⟶𝐴)) | |
| 2 | 1 | rexbidv 3157 | . . . 4 ⊢ (𝑓 = 𝐺 → (∃𝑥 ∈ On 𝑓:𝑥⟶𝐴 ↔ ∃𝑥 ∈ On 𝐺:𝑥⟶𝐴)) |
| 3 | orderseqlem.1 | . . . 4 ⊢ 𝐹 = {𝑓 ∣ ∃𝑥 ∈ On 𝑓:𝑥⟶𝐴} | |
| 4 | 2, 3 | elab2g 3647 | . . 3 ⊢ (𝐺 ∈ 𝐹 → (𝐺 ∈ 𝐹 ↔ ∃𝑥 ∈ On 𝐺:𝑥⟶𝐴)) |
| 5 | 4 | ibi 267 | . 2 ⊢ (𝐺 ∈ 𝐹 → ∃𝑥 ∈ On 𝐺:𝑥⟶𝐴) |
| 6 | frn 6695 | . . . . 5 ⊢ (𝐺:𝑥⟶𝐴 → ran 𝐺 ⊆ 𝐴) | |
| 7 | unss1 4148 | . . . . 5 ⊢ (ran 𝐺 ⊆ 𝐴 → (ran 𝐺 ∪ {∅}) ⊆ (𝐴 ∪ {∅})) | |
| 8 | 6, 7 | syl 17 | . . . 4 ⊢ (𝐺:𝑥⟶𝐴 → (ran 𝐺 ∪ {∅}) ⊆ (𝐴 ∪ {∅})) |
| 9 | fvrn0 6888 | . . . 4 ⊢ (𝐺‘𝑋) ∈ (ran 𝐺 ∪ {∅}) | |
| 10 | ssel 3940 | . . . 4 ⊢ ((ran 𝐺 ∪ {∅}) ⊆ (𝐴 ∪ {∅}) → ((𝐺‘𝑋) ∈ (ran 𝐺 ∪ {∅}) → (𝐺‘𝑋) ∈ (𝐴 ∪ {∅}))) | |
| 11 | 8, 9, 10 | mpisyl 21 | . . 3 ⊢ (𝐺:𝑥⟶𝐴 → (𝐺‘𝑋) ∈ (𝐴 ∪ {∅})) |
| 12 | 11 | rexlimivw 3130 | . 2 ⊢ (∃𝑥 ∈ On 𝐺:𝑥⟶𝐴 → (𝐺‘𝑋) ∈ (𝐴 ∪ {∅})) |
| 13 | 5, 12 | syl 17 | 1 ⊢ (𝐺 ∈ 𝐹 → (𝐺‘𝑋) ∈ (𝐴 ∪ {∅})) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 {cab 2707 ∃wrex 3053 ∪ cun 3912 ⊆ wss 3914 ∅c0 4296 {csn 4589 ran crn 5639 Oncon0 6332 ⟶wf 6507 ‘cfv 6511 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pr 5387 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3406 df-v 3449 df-dif 3917 df-un 3919 df-ss 3931 df-nul 4297 df-if 4489 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-br 5108 df-opab 5170 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-fv 6519 |
| This theorem is referenced by: poseq 8137 soseq 8138 |
| Copyright terms: Public domain | W3C validator |