MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  orderseqlem Structured version   Visualization version   GIF version

Theorem orderseqlem 8183
Description: Lemma for poseq 8184 and soseq 8185. The function value of a sequence is either in 𝐴 or null. (Contributed by Scott Fenton, 8-Jun-2011.)
Hypothesis
Ref Expression
orderseqlem.1 𝐹 = {𝑓 ∣ ∃𝑥 ∈ On 𝑓:𝑥𝐴}
Assertion
Ref Expression
orderseqlem (𝐺𝐹 → (𝐺𝑋) ∈ (𝐴 ∪ {∅}))
Distinct variable groups:   𝐴,𝑓,𝑥   𝑓,𝐺,𝑥   𝑥,𝑋
Allowed substitution hints:   𝐹(𝑥,𝑓)   𝑋(𝑓)

Proof of Theorem orderseqlem
StepHypRef Expression
1 feq1 6715 . . . . 5 (𝑓 = 𝐺 → (𝑓:𝑥𝐴𝐺:𝑥𝐴))
21rexbidv 3178 . . . 4 (𝑓 = 𝐺 → (∃𝑥 ∈ On 𝑓:𝑥𝐴 ↔ ∃𝑥 ∈ On 𝐺:𝑥𝐴))
3 orderseqlem.1 . . . 4 𝐹 = {𝑓 ∣ ∃𝑥 ∈ On 𝑓:𝑥𝐴}
42, 3elab2g 3679 . . 3 (𝐺𝐹 → (𝐺𝐹 ↔ ∃𝑥 ∈ On 𝐺:𝑥𝐴))
54ibi 267 . 2 (𝐺𝐹 → ∃𝑥 ∈ On 𝐺:𝑥𝐴)
6 frn 6742 . . . . 5 (𝐺:𝑥𝐴 → ran 𝐺𝐴)
7 unss1 4184 . . . . 5 (ran 𝐺𝐴 → (ran 𝐺 ∪ {∅}) ⊆ (𝐴 ∪ {∅}))
86, 7syl 17 . . . 4 (𝐺:𝑥𝐴 → (ran 𝐺 ∪ {∅}) ⊆ (𝐴 ∪ {∅}))
9 fvrn0 6935 . . . 4 (𝐺𝑋) ∈ (ran 𝐺 ∪ {∅})
10 ssel 3976 . . . 4 ((ran 𝐺 ∪ {∅}) ⊆ (𝐴 ∪ {∅}) → ((𝐺𝑋) ∈ (ran 𝐺 ∪ {∅}) → (𝐺𝑋) ∈ (𝐴 ∪ {∅})))
118, 9, 10mpisyl 21 . . 3 (𝐺:𝑥𝐴 → (𝐺𝑋) ∈ (𝐴 ∪ {∅}))
1211rexlimivw 3150 . 2 (∃𝑥 ∈ On 𝐺:𝑥𝐴 → (𝐺𝑋) ∈ (𝐴 ∪ {∅}))
135, 12syl 17 1 (𝐺𝐹 → (𝐺𝑋) ∈ (𝐴 ∪ {∅}))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1539  wcel 2107  {cab 2713  wrex 3069  cun 3948  wss 3950  c0 4332  {csn 4625  ran crn 5685  Oncon0 6383  wf 6556  cfv 6560
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2707  ax-sep 5295  ax-nul 5305  ax-pr 5431
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2728  df-clel 2815  df-ne 2940  df-ral 3061  df-rex 3070  df-rab 3436  df-v 3481  df-dif 3953  df-un 3955  df-ss 3967  df-nul 4333  df-if 4525  df-sn 4626  df-pr 4628  df-op 4632  df-uni 4907  df-br 5143  df-opab 5205  df-rel 5691  df-cnv 5692  df-co 5693  df-dm 5694  df-rn 5695  df-iota 6513  df-fun 6562  df-fn 6563  df-f 6564  df-fv 6568
This theorem is referenced by:  poseq  8184  soseq  8185
  Copyright terms: Public domain W3C validator