![]() |
Mathbox for Scott Fenton |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > orderseqlem | Structured version Visualization version GIF version |
Description: Lemma for poseq 32704 and soseq 32705. The function value of a sequene is either in 𝐴 or null. (Contributed by Scott Fenton, 8-Jun-2011.) |
Ref | Expression |
---|---|
orderseqlem.1 | ⊢ 𝐹 = {𝑓 ∣ ∃𝑥 ∈ On 𝑓:𝑥⟶𝐴} |
Ref | Expression |
---|---|
orderseqlem | ⊢ (𝐺 ∈ 𝐹 → (𝐺‘𝑋) ∈ (𝐴 ∪ {∅})) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | feq1 6363 | . . . . 5 ⊢ (𝑓 = 𝐺 → (𝑓:𝑥⟶𝐴 ↔ 𝐺:𝑥⟶𝐴)) | |
2 | 1 | rexbidv 3260 | . . . 4 ⊢ (𝑓 = 𝐺 → (∃𝑥 ∈ On 𝑓:𝑥⟶𝐴 ↔ ∃𝑥 ∈ On 𝐺:𝑥⟶𝐴)) |
3 | orderseqlem.1 | . . . 4 ⊢ 𝐹 = {𝑓 ∣ ∃𝑥 ∈ On 𝑓:𝑥⟶𝐴} | |
4 | 2, 3 | elab2g 3607 | . . 3 ⊢ (𝐺 ∈ 𝐹 → (𝐺 ∈ 𝐹 ↔ ∃𝑥 ∈ On 𝐺:𝑥⟶𝐴)) |
5 | 4 | ibi 268 | . 2 ⊢ (𝐺 ∈ 𝐹 → ∃𝑥 ∈ On 𝐺:𝑥⟶𝐴) |
6 | frn 6388 | . . . . 5 ⊢ (𝐺:𝑥⟶𝐴 → ran 𝐺 ⊆ 𝐴) | |
7 | unss1 4076 | . . . . 5 ⊢ (ran 𝐺 ⊆ 𝐴 → (ran 𝐺 ∪ {∅}) ⊆ (𝐴 ∪ {∅})) | |
8 | 6, 7 | syl 17 | . . . 4 ⊢ (𝐺:𝑥⟶𝐴 → (ran 𝐺 ∪ {∅}) ⊆ (𝐴 ∪ {∅})) |
9 | fvrn0 6566 | . . . 4 ⊢ (𝐺‘𝑋) ∈ (ran 𝐺 ∪ {∅}) | |
10 | ssel 3883 | . . . 4 ⊢ ((ran 𝐺 ∪ {∅}) ⊆ (𝐴 ∪ {∅}) → ((𝐺‘𝑋) ∈ (ran 𝐺 ∪ {∅}) → (𝐺‘𝑋) ∈ (𝐴 ∪ {∅}))) | |
11 | 8, 9, 10 | mpisyl 21 | . . 3 ⊢ (𝐺:𝑥⟶𝐴 → (𝐺‘𝑋) ∈ (𝐴 ∪ {∅})) |
12 | 11 | rexlimivw 3245 | . 2 ⊢ (∃𝑥 ∈ On 𝐺:𝑥⟶𝐴 → (𝐺‘𝑋) ∈ (𝐴 ∪ {∅})) |
13 | 5, 12 | syl 17 | 1 ⊢ (𝐺 ∈ 𝐹 → (𝐺‘𝑋) ∈ (𝐴 ∪ {∅})) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1522 ∈ wcel 2081 {cab 2775 ∃wrex 3106 ∪ cun 3857 ⊆ wss 3859 ∅c0 4211 {csn 4472 ran crn 5444 Oncon0 6066 ⟶wf 6221 ‘cfv 6225 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1777 ax-4 1791 ax-5 1888 ax-6 1947 ax-7 1992 ax-8 2083 ax-9 2091 ax-10 2112 ax-11 2126 ax-12 2141 ax-13 2344 ax-ext 2769 ax-sep 5094 ax-nul 5101 ax-pow 5157 ax-pr 5221 |
This theorem depends on definitions: df-bi 208 df-an 397 df-or 843 df-3an 1082 df-tru 1525 df-ex 1762 df-nf 1766 df-sb 2043 df-mo 2576 df-eu 2612 df-clab 2776 df-cleq 2788 df-clel 2863 df-nfc 2935 df-ne 2985 df-ral 3110 df-rex 3111 df-rab 3114 df-v 3439 df-sbc 3707 df-dif 3862 df-un 3864 df-in 3866 df-ss 3874 df-nul 4212 df-if 4382 df-sn 4473 df-pr 4475 df-op 4479 df-uni 4746 df-br 4963 df-opab 5025 df-rel 5450 df-cnv 5451 df-co 5452 df-dm 5453 df-rn 5454 df-iota 6189 df-fun 6227 df-fn 6228 df-f 6229 df-fv 6233 |
This theorem is referenced by: poseq 32704 soseq 32705 |
Copyright terms: Public domain | W3C validator |