Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  orderseqlem Structured version   Visualization version   GIF version

Theorem orderseqlem 33168
Description: Lemma for poseq 33169 and soseq 33170. The function value of a sequene is either in 𝐴 or null. (Contributed by Scott Fenton, 8-Jun-2011.)
Hypothesis
Ref Expression
orderseqlem.1 𝐹 = {𝑓 ∣ ∃𝑥 ∈ On 𝑓:𝑥𝐴}
Assertion
Ref Expression
orderseqlem (𝐺𝐹 → (𝐺𝑋) ∈ (𝐴 ∪ {∅}))
Distinct variable groups:   𝐴,𝑓,𝑥   𝑓,𝐺,𝑥   𝑥,𝑋
Allowed substitution hints:   𝐹(𝑥,𝑓)   𝑋(𝑓)

Proof of Theorem orderseqlem
StepHypRef Expression
1 feq1 6475 . . . . 5 (𝑓 = 𝐺 → (𝑓:𝑥𝐴𝐺:𝑥𝐴))
21rexbidv 3283 . . . 4 (𝑓 = 𝐺 → (∃𝑥 ∈ On 𝑓:𝑥𝐴 ↔ ∃𝑥 ∈ On 𝐺:𝑥𝐴))
3 orderseqlem.1 . . . 4 𝐹 = {𝑓 ∣ ∃𝑥 ∈ On 𝑓:𝑥𝐴}
42, 3elab2g 3643 . . 3 (𝐺𝐹 → (𝐺𝐹 ↔ ∃𝑥 ∈ On 𝐺:𝑥𝐴))
54ibi 270 . 2 (𝐺𝐹 → ∃𝑥 ∈ On 𝐺:𝑥𝐴)
6 frn 6500 . . . . 5 (𝐺:𝑥𝐴 → ran 𝐺𝐴)
7 unss1 4130 . . . . 5 (ran 𝐺𝐴 → (ran 𝐺 ∪ {∅}) ⊆ (𝐴 ∪ {∅}))
86, 7syl 17 . . . 4 (𝐺:𝑥𝐴 → (ran 𝐺 ∪ {∅}) ⊆ (𝐴 ∪ {∅}))
9 fvrn0 6680 . . . 4 (𝐺𝑋) ∈ (ran 𝐺 ∪ {∅})
10 ssel 3935 . . . 4 ((ran 𝐺 ∪ {∅}) ⊆ (𝐴 ∪ {∅}) → ((𝐺𝑋) ∈ (ran 𝐺 ∪ {∅}) → (𝐺𝑋) ∈ (𝐴 ∪ {∅})))
118, 9, 10mpisyl 21 . . 3 (𝐺:𝑥𝐴 → (𝐺𝑋) ∈ (𝐴 ∪ {∅}))
1211rexlimivw 3268 . 2 (∃𝑥 ∈ On 𝐺:𝑥𝐴 → (𝐺𝑋) ∈ (𝐴 ∪ {∅}))
135, 12syl 17 1 (𝐺𝐹 → (𝐺𝑋) ∈ (𝐴 ∪ {∅}))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1538  wcel 2114  {cab 2800  wrex 3131  cun 3906  wss 3908  c0 4265  {csn 4539  ran crn 5533  Oncon0 6169  wf 6330  cfv 6334
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2178  ax-ext 2794  ax-sep 5179  ax-nul 5186  ax-pow 5243  ax-pr 5307
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2622  df-eu 2653  df-clab 2801  df-cleq 2815  df-clel 2894  df-nfc 2962  df-ne 3012  df-ral 3135  df-rex 3136  df-v 3471  df-sbc 3748  df-dif 3911  df-un 3913  df-in 3915  df-ss 3925  df-nul 4266  df-if 4440  df-sn 4540  df-pr 4542  df-op 4546  df-uni 4814  df-br 5043  df-opab 5105  df-rel 5539  df-cnv 5540  df-co 5541  df-dm 5542  df-rn 5543  df-iota 6293  df-fun 6336  df-fn 6337  df-f 6338  df-fv 6342
This theorem is referenced by:  poseq  33169  soseq  33170
  Copyright terms: Public domain W3C validator