![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > orderseqlem | Structured version Visualization version GIF version |
Description: Lemma for poseq 8155 and soseq 8156. The function value of a sequence is either in 𝐴 or null. (Contributed by Scott Fenton, 8-Jun-2011.) |
Ref | Expression |
---|---|
orderseqlem.1 | ⊢ 𝐹 = {𝑓 ∣ ∃𝑥 ∈ On 𝑓:𝑥⟶𝐴} |
Ref | Expression |
---|---|
orderseqlem | ⊢ (𝐺 ∈ 𝐹 → (𝐺‘𝑋) ∈ (𝐴 ∪ {∅})) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | feq1 6697 | . . . . 5 ⊢ (𝑓 = 𝐺 → (𝑓:𝑥⟶𝐴 ↔ 𝐺:𝑥⟶𝐴)) | |
2 | 1 | rexbidv 3173 | . . . 4 ⊢ (𝑓 = 𝐺 → (∃𝑥 ∈ On 𝑓:𝑥⟶𝐴 ↔ ∃𝑥 ∈ On 𝐺:𝑥⟶𝐴)) |
3 | orderseqlem.1 | . . . 4 ⊢ 𝐹 = {𝑓 ∣ ∃𝑥 ∈ On 𝑓:𝑥⟶𝐴} | |
4 | 2, 3 | elab2g 3667 | . . 3 ⊢ (𝐺 ∈ 𝐹 → (𝐺 ∈ 𝐹 ↔ ∃𝑥 ∈ On 𝐺:𝑥⟶𝐴)) |
5 | 4 | ibi 267 | . 2 ⊢ (𝐺 ∈ 𝐹 → ∃𝑥 ∈ On 𝐺:𝑥⟶𝐴) |
6 | frn 6723 | . . . . 5 ⊢ (𝐺:𝑥⟶𝐴 → ran 𝐺 ⊆ 𝐴) | |
7 | unss1 4175 | . . . . 5 ⊢ (ran 𝐺 ⊆ 𝐴 → (ran 𝐺 ∪ {∅}) ⊆ (𝐴 ∪ {∅})) | |
8 | 6, 7 | syl 17 | . . . 4 ⊢ (𝐺:𝑥⟶𝐴 → (ran 𝐺 ∪ {∅}) ⊆ (𝐴 ∪ {∅})) |
9 | fvrn0 6921 | . . . 4 ⊢ (𝐺‘𝑋) ∈ (ran 𝐺 ∪ {∅}) | |
10 | ssel 3971 | . . . 4 ⊢ ((ran 𝐺 ∪ {∅}) ⊆ (𝐴 ∪ {∅}) → ((𝐺‘𝑋) ∈ (ran 𝐺 ∪ {∅}) → (𝐺‘𝑋) ∈ (𝐴 ∪ {∅}))) | |
11 | 8, 9, 10 | mpisyl 21 | . . 3 ⊢ (𝐺:𝑥⟶𝐴 → (𝐺‘𝑋) ∈ (𝐴 ∪ {∅})) |
12 | 11 | rexlimivw 3146 | . 2 ⊢ (∃𝑥 ∈ On 𝐺:𝑥⟶𝐴 → (𝐺‘𝑋) ∈ (𝐴 ∪ {∅})) |
13 | 5, 12 | syl 17 | 1 ⊢ (𝐺 ∈ 𝐹 → (𝐺‘𝑋) ∈ (𝐴 ∪ {∅})) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1534 ∈ wcel 2099 {cab 2704 ∃wrex 3065 ∪ cun 3942 ⊆ wss 3944 ∅c0 4318 {csn 4624 ran crn 5673 Oncon0 6363 ⟶wf 6538 ‘cfv 6542 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2164 ax-ext 2698 ax-sep 5293 ax-nul 5300 ax-pr 5423 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2529 df-eu 2558 df-clab 2705 df-cleq 2719 df-clel 2805 df-ne 2936 df-ral 3057 df-rex 3066 df-rab 3428 df-v 3471 df-dif 3947 df-un 3949 df-in 3951 df-ss 3961 df-nul 4319 df-if 4525 df-sn 4625 df-pr 4627 df-op 4631 df-uni 4904 df-br 5143 df-opab 5205 df-rel 5679 df-cnv 5680 df-co 5681 df-dm 5682 df-rn 5683 df-iota 6494 df-fun 6544 df-fn 6545 df-f 6546 df-fv 6550 |
This theorem is referenced by: poseq 8155 soseq 8156 |
Copyright terms: Public domain | W3C validator |