MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  orderseqlem Structured version   Visualization version   GIF version

Theorem orderseqlem 8155
Description: Lemma for poseq 8156 and soseq 8157. The function value of a sequence is either in 𝐴 or null. (Contributed by Scott Fenton, 8-Jun-2011.)
Hypothesis
Ref Expression
orderseqlem.1 𝐹 = {𝑓 ∣ ∃𝑥 ∈ On 𝑓:𝑥𝐴}
Assertion
Ref Expression
orderseqlem (𝐺𝐹 → (𝐺𝑋) ∈ (𝐴 ∪ {∅}))
Distinct variable groups:   𝐴,𝑓,𝑥   𝑓,𝐺,𝑥   𝑥,𝑋
Allowed substitution hints:   𝐹(𝑥,𝑓)   𝑋(𝑓)

Proof of Theorem orderseqlem
StepHypRef Expression
1 feq1 6698 . . . . 5 (𝑓 = 𝐺 → (𝑓:𝑥𝐴𝐺:𝑥𝐴))
21rexbidv 3169 . . . 4 (𝑓 = 𝐺 → (∃𝑥 ∈ On 𝑓:𝑥𝐴 ↔ ∃𝑥 ∈ On 𝐺:𝑥𝐴))
3 orderseqlem.1 . . . 4 𝐹 = {𝑓 ∣ ∃𝑥 ∈ On 𝑓:𝑥𝐴}
42, 3elab2g 3663 . . 3 (𝐺𝐹 → (𝐺𝐹 ↔ ∃𝑥 ∈ On 𝐺:𝑥𝐴))
54ibi 266 . 2 (𝐺𝐹 → ∃𝑥 ∈ On 𝐺:𝑥𝐴)
6 frn 6724 . . . . 5 (𝐺:𝑥𝐴 → ran 𝐺𝐴)
7 unss1 4174 . . . . 5 (ran 𝐺𝐴 → (ran 𝐺 ∪ {∅}) ⊆ (𝐴 ∪ {∅}))
86, 7syl 17 . . . 4 (𝐺:𝑥𝐴 → (ran 𝐺 ∪ {∅}) ⊆ (𝐴 ∪ {∅}))
9 fvrn0 6920 . . . 4 (𝐺𝑋) ∈ (ran 𝐺 ∪ {∅})
10 ssel 3967 . . . 4 ((ran 𝐺 ∪ {∅}) ⊆ (𝐴 ∪ {∅}) → ((𝐺𝑋) ∈ (ran 𝐺 ∪ {∅}) → (𝐺𝑋) ∈ (𝐴 ∪ {∅})))
118, 9, 10mpisyl 21 . . 3 (𝐺:𝑥𝐴 → (𝐺𝑋) ∈ (𝐴 ∪ {∅}))
1211rexlimivw 3141 . 2 (∃𝑥 ∈ On 𝐺:𝑥𝐴 → (𝐺𝑋) ∈ (𝐴 ∪ {∅}))
135, 12syl 17 1 (𝐺𝐹 → (𝐺𝑋) ∈ (𝐴 ∪ {∅}))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1533  wcel 2098  {cab 2702  wrex 3060  cun 3939  wss 3941  c0 4319  {csn 4625  ran crn 5674  Oncon0 6365  wf 6539  cfv 6543
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2696  ax-sep 5295  ax-nul 5302  ax-pr 5424
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2703  df-cleq 2717  df-clel 2802  df-ne 2931  df-ral 3052  df-rex 3061  df-rab 3420  df-v 3465  df-dif 3944  df-un 3946  df-ss 3958  df-nul 4320  df-if 4526  df-sn 4626  df-pr 4628  df-op 4632  df-uni 4905  df-br 5145  df-opab 5207  df-rel 5680  df-cnv 5681  df-co 5682  df-dm 5683  df-rn 5684  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-fv 6551
This theorem is referenced by:  poseq  8156  soseq  8157
  Copyright terms: Public domain W3C validator