MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  orderseqlem Structured version   Visualization version   GIF version

Theorem orderseqlem 8154
Description: Lemma for poseq 8155 and soseq 8156. The function value of a sequence is either in 𝐴 or null. (Contributed by Scott Fenton, 8-Jun-2011.)
Hypothesis
Ref Expression
orderseqlem.1 𝐹 = {𝑓 ∣ ∃𝑥 ∈ On 𝑓:𝑥𝐴}
Assertion
Ref Expression
orderseqlem (𝐺𝐹 → (𝐺𝑋) ∈ (𝐴 ∪ {∅}))
Distinct variable groups:   𝐴,𝑓,𝑥   𝑓,𝐺,𝑥   𝑥,𝑋
Allowed substitution hints:   𝐹(𝑥,𝑓)   𝑋(𝑓)

Proof of Theorem orderseqlem
StepHypRef Expression
1 feq1 6697 . . . . 5 (𝑓 = 𝐺 → (𝑓:𝑥𝐴𝐺:𝑥𝐴))
21rexbidv 3173 . . . 4 (𝑓 = 𝐺 → (∃𝑥 ∈ On 𝑓:𝑥𝐴 ↔ ∃𝑥 ∈ On 𝐺:𝑥𝐴))
3 orderseqlem.1 . . . 4 𝐹 = {𝑓 ∣ ∃𝑥 ∈ On 𝑓:𝑥𝐴}
42, 3elab2g 3667 . . 3 (𝐺𝐹 → (𝐺𝐹 ↔ ∃𝑥 ∈ On 𝐺:𝑥𝐴))
54ibi 267 . 2 (𝐺𝐹 → ∃𝑥 ∈ On 𝐺:𝑥𝐴)
6 frn 6723 . . . . 5 (𝐺:𝑥𝐴 → ran 𝐺𝐴)
7 unss1 4175 . . . . 5 (ran 𝐺𝐴 → (ran 𝐺 ∪ {∅}) ⊆ (𝐴 ∪ {∅}))
86, 7syl 17 . . . 4 (𝐺:𝑥𝐴 → (ran 𝐺 ∪ {∅}) ⊆ (𝐴 ∪ {∅}))
9 fvrn0 6921 . . . 4 (𝐺𝑋) ∈ (ran 𝐺 ∪ {∅})
10 ssel 3971 . . . 4 ((ran 𝐺 ∪ {∅}) ⊆ (𝐴 ∪ {∅}) → ((𝐺𝑋) ∈ (ran 𝐺 ∪ {∅}) → (𝐺𝑋) ∈ (𝐴 ∪ {∅})))
118, 9, 10mpisyl 21 . . 3 (𝐺:𝑥𝐴 → (𝐺𝑋) ∈ (𝐴 ∪ {∅}))
1211rexlimivw 3146 . 2 (∃𝑥 ∈ On 𝐺:𝑥𝐴 → (𝐺𝑋) ∈ (𝐴 ∪ {∅}))
135, 12syl 17 1 (𝐺𝐹 → (𝐺𝑋) ∈ (𝐴 ∪ {∅}))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1534  wcel 2099  {cab 2704  wrex 3065  cun 3942  wss 3944  c0 4318  {csn 4624  ran crn 5673  Oncon0 6363  wf 6538  cfv 6542
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2164  ax-ext 2698  ax-sep 5293  ax-nul 5300  ax-pr 5423
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 847  df-3an 1087  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2529  df-eu 2558  df-clab 2705  df-cleq 2719  df-clel 2805  df-ne 2936  df-ral 3057  df-rex 3066  df-rab 3428  df-v 3471  df-dif 3947  df-un 3949  df-in 3951  df-ss 3961  df-nul 4319  df-if 4525  df-sn 4625  df-pr 4627  df-op 4631  df-uni 4904  df-br 5143  df-opab 5205  df-rel 5679  df-cnv 5680  df-co 5681  df-dm 5682  df-rn 5683  df-iota 6494  df-fun 6544  df-fn 6545  df-f 6546  df-fv 6550
This theorem is referenced by:  poseq  8155  soseq  8156
  Copyright terms: Public domain W3C validator