MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  uhgrunop Structured version   Visualization version   GIF version

Theorem uhgrunop 26847
Description: The union of two (undirected) hypergraphs (with the same vertex set) represented as ordered pair: If 𝑉, 𝐸 and 𝑉, 𝐹 are hypergraphs, then 𝑉, 𝐸𝐹 is a hypergraph (the vertex set stays the same, but the edges from both graphs are kept, possibly resulting in two edges between two vertices). (Contributed by Alexander van der Vekens, 27-Dec-2017.) (Revised by AV, 11-Oct-2020.) (Revised by AV, 24-Oct-2021.)
Hypotheses
Ref Expression
uhgrun.g (𝜑𝐺 ∈ UHGraph)
uhgrun.h (𝜑𝐻 ∈ UHGraph)
uhgrun.e 𝐸 = (iEdg‘𝐺)
uhgrun.f 𝐹 = (iEdg‘𝐻)
uhgrun.vg 𝑉 = (Vtx‘𝐺)
uhgrun.vh (𝜑 → (Vtx‘𝐻) = 𝑉)
uhgrun.i (𝜑 → (dom 𝐸 ∩ dom 𝐹) = ∅)
Assertion
Ref Expression
uhgrunop (𝜑 → ⟨𝑉, (𝐸𝐹)⟩ ∈ UHGraph)

Proof of Theorem uhgrunop
StepHypRef Expression
1 uhgrun.g . 2 (𝜑𝐺 ∈ UHGraph)
2 uhgrun.h . 2 (𝜑𝐻 ∈ UHGraph)
3 uhgrun.e . 2 𝐸 = (iEdg‘𝐺)
4 uhgrun.f . 2 𝐹 = (iEdg‘𝐻)
5 uhgrun.vg . 2 𝑉 = (Vtx‘𝐺)
6 uhgrun.vh . 2 (𝜑 → (Vtx‘𝐻) = 𝑉)
7 uhgrun.i . 2 (𝜑 → (dom 𝐸 ∩ dom 𝐹) = ∅)
8 opex 5329 . . 3 𝑉, (𝐸𝐹)⟩ ∈ V
98a1i 11 . 2 (𝜑 → ⟨𝑉, (𝐸𝐹)⟩ ∈ V)
105fvexi 6657 . . . 4 𝑉 ∈ V
113fvexi 6657 . . . . 5 𝐸 ∈ V
124fvexi 6657 . . . . 5 𝐹 ∈ V
1311, 12unex 7444 . . . 4 (𝐸𝐹) ∈ V
1410, 13pm3.2i 474 . . 3 (𝑉 ∈ V ∧ (𝐸𝐹) ∈ V)
15 opvtxfv 26776 . . 3 ((𝑉 ∈ V ∧ (𝐸𝐹) ∈ V) → (Vtx‘⟨𝑉, (𝐸𝐹)⟩) = 𝑉)
1614, 15mp1i 13 . 2 (𝜑 → (Vtx‘⟨𝑉, (𝐸𝐹)⟩) = 𝑉)
17 opiedgfv 26779 . . 3 ((𝑉 ∈ V ∧ (𝐸𝐹) ∈ V) → (iEdg‘⟨𝑉, (𝐸𝐹)⟩) = (𝐸𝐹))
1814, 17mp1i 13 . 2 (𝜑 → (iEdg‘⟨𝑉, (𝐸𝐹)⟩) = (𝐸𝐹))
191, 2, 3, 4, 5, 6, 7, 9, 16, 18uhgrun 26846 1 (𝜑 → ⟨𝑉, (𝐸𝐹)⟩ ∈ UHGraph)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399   = wceq 1538  wcel 2115  Vcvv 3471  cun 3908  cin 3909  c0 4266  cop 4546  dom cdm 5528  cfv 6328  Vtxcvtx 26768  iEdgciedg 26769  UHGraphcuhgr 26828
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1912  ax-6 1971  ax-7 2016  ax-8 2117  ax-9 2125  ax-10 2146  ax-11 2162  ax-12 2178  ax-ext 2793  ax-sep 5176  ax-nul 5183  ax-pow 5239  ax-pr 5303  ax-un 7436
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2071  df-mo 2623  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2892  df-nfc 2960  df-ral 3131  df-rex 3132  df-rab 3135  df-v 3473  df-sbc 3750  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-nul 4267  df-if 4441  df-pw 4514  df-sn 4541  df-pr 4543  df-op 4547  df-uni 4812  df-br 5040  df-opab 5102  df-mpt 5120  df-id 5433  df-xp 5534  df-rel 5535  df-cnv 5536  df-co 5537  df-dm 5538  df-rn 5539  df-iota 6287  df-fun 6330  df-fn 6331  df-f 6332  df-fv 6336  df-1st 7664  df-2nd 7665  df-vtx 26770  df-iedg 26771  df-uhgr 26830
This theorem is referenced by:  ushgrunop  26849
  Copyright terms: Public domain W3C validator