![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > uhgrunop | Structured version Visualization version GIF version |
Description: The union of two (undirected) hypergraphs (with the same vertex set) represented as ordered pair: If 〈𝑉, 𝐸〉 and 〈𝑉, 𝐹〉 are hypergraphs, then 〈𝑉, 𝐸 ∪ 𝐹〉 is a hypergraph (the vertex set stays the same, but the edges from both graphs are kept, possibly resulting in two edges between two vertices). (Contributed by Alexander van der Vekens, 27-Dec-2017.) (Revised by AV, 11-Oct-2020.) (Revised by AV, 24-Oct-2021.) |
Ref | Expression |
---|---|
uhgrun.g | ⊢ (𝜑 → 𝐺 ∈ UHGraph) |
uhgrun.h | ⊢ (𝜑 → 𝐻 ∈ UHGraph) |
uhgrun.e | ⊢ 𝐸 = (iEdg‘𝐺) |
uhgrun.f | ⊢ 𝐹 = (iEdg‘𝐻) |
uhgrun.vg | ⊢ 𝑉 = (Vtx‘𝐺) |
uhgrun.vh | ⊢ (𝜑 → (Vtx‘𝐻) = 𝑉) |
uhgrun.i | ⊢ (𝜑 → (dom 𝐸 ∩ dom 𝐹) = ∅) |
Ref | Expression |
---|---|
uhgrunop | ⊢ (𝜑 → 〈𝑉, (𝐸 ∪ 𝐹)〉 ∈ UHGraph) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | uhgrun.g | . 2 ⊢ (𝜑 → 𝐺 ∈ UHGraph) | |
2 | uhgrun.h | . 2 ⊢ (𝜑 → 𝐻 ∈ UHGraph) | |
3 | uhgrun.e | . 2 ⊢ 𝐸 = (iEdg‘𝐺) | |
4 | uhgrun.f | . 2 ⊢ 𝐹 = (iEdg‘𝐻) | |
5 | uhgrun.vg | . 2 ⊢ 𝑉 = (Vtx‘𝐺) | |
6 | uhgrun.vh | . 2 ⊢ (𝜑 → (Vtx‘𝐻) = 𝑉) | |
7 | uhgrun.i | . 2 ⊢ (𝜑 → (dom 𝐸 ∩ dom 𝐹) = ∅) | |
8 | opex 5457 | . . 3 ⊢ 〈𝑉, (𝐸 ∪ 𝐹)〉 ∈ V | |
9 | 8 | a1i 11 | . 2 ⊢ (𝜑 → 〈𝑉, (𝐸 ∪ 𝐹)〉 ∈ V) |
10 | 5 | fvexi 6892 | . . . 4 ⊢ 𝑉 ∈ V |
11 | 3 | fvexi 6892 | . . . . 5 ⊢ 𝐸 ∈ V |
12 | 4 | fvexi 6892 | . . . . 5 ⊢ 𝐹 ∈ V |
13 | 11, 12 | unex 7716 | . . . 4 ⊢ (𝐸 ∪ 𝐹) ∈ V |
14 | 10, 13 | pm3.2i 471 | . . 3 ⊢ (𝑉 ∈ V ∧ (𝐸 ∪ 𝐹) ∈ V) |
15 | opvtxfv 28129 | . . 3 ⊢ ((𝑉 ∈ V ∧ (𝐸 ∪ 𝐹) ∈ V) → (Vtx‘〈𝑉, (𝐸 ∪ 𝐹)〉) = 𝑉) | |
16 | 14, 15 | mp1i 13 | . 2 ⊢ (𝜑 → (Vtx‘〈𝑉, (𝐸 ∪ 𝐹)〉) = 𝑉) |
17 | opiedgfv 28132 | . . 3 ⊢ ((𝑉 ∈ V ∧ (𝐸 ∪ 𝐹) ∈ V) → (iEdg‘〈𝑉, (𝐸 ∪ 𝐹)〉) = (𝐸 ∪ 𝐹)) | |
18 | 14, 17 | mp1i 13 | . 2 ⊢ (𝜑 → (iEdg‘〈𝑉, (𝐸 ∪ 𝐹)〉) = (𝐸 ∪ 𝐹)) |
19 | 1, 2, 3, 4, 5, 6, 7, 9, 16, 18 | uhgrun 28199 | 1 ⊢ (𝜑 → 〈𝑉, (𝐸 ∪ 𝐹)〉 ∈ UHGraph) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 = wceq 1541 ∈ wcel 2106 Vcvv 3473 ∪ cun 3942 ∩ cin 3943 ∅c0 4318 〈cop 4628 dom cdm 5669 ‘cfv 6532 Vtxcvtx 28121 iEdgciedg 28122 UHGraphcuhgr 28181 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2702 ax-sep 5292 ax-nul 5299 ax-pr 5420 ax-un 7708 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2533 df-eu 2562 df-clab 2709 df-cleq 2723 df-clel 2809 df-nfc 2884 df-ne 2940 df-ral 3061 df-rex 3070 df-rab 3432 df-v 3475 df-sbc 3774 df-dif 3947 df-un 3949 df-in 3951 df-ss 3961 df-nul 4319 df-if 4523 df-pw 4598 df-sn 4623 df-pr 4625 df-op 4629 df-uni 4902 df-br 5142 df-opab 5204 df-mpt 5225 df-id 5567 df-xp 5675 df-rel 5676 df-cnv 5677 df-co 5678 df-dm 5679 df-rn 5680 df-iota 6484 df-fun 6534 df-fn 6535 df-f 6536 df-fv 6540 df-1st 7957 df-2nd 7958 df-vtx 28123 df-iedg 28124 df-uhgr 28183 |
This theorem is referenced by: ushgrunop 28202 |
Copyright terms: Public domain | W3C validator |