| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > uhgrunop | Structured version Visualization version GIF version | ||
| Description: The union of two (undirected) hypergraphs (with the same vertex set) represented as ordered pair: If 〈𝑉, 𝐸〉 and 〈𝑉, 𝐹〉 are hypergraphs, then 〈𝑉, 𝐸 ∪ 𝐹〉 is a hypergraph (the vertex set stays the same, but the edges from both graphs are kept, possibly resulting in two edges between two vertices). (Contributed by Alexander van der Vekens, 27-Dec-2017.) (Revised by AV, 11-Oct-2020.) (Revised by AV, 24-Oct-2021.) |
| Ref | Expression |
|---|---|
| uhgrun.g | ⊢ (𝜑 → 𝐺 ∈ UHGraph) |
| uhgrun.h | ⊢ (𝜑 → 𝐻 ∈ UHGraph) |
| uhgrun.e | ⊢ 𝐸 = (iEdg‘𝐺) |
| uhgrun.f | ⊢ 𝐹 = (iEdg‘𝐻) |
| uhgrun.vg | ⊢ 𝑉 = (Vtx‘𝐺) |
| uhgrun.vh | ⊢ (𝜑 → (Vtx‘𝐻) = 𝑉) |
| uhgrun.i | ⊢ (𝜑 → (dom 𝐸 ∩ dom 𝐹) = ∅) |
| Ref | Expression |
|---|---|
| uhgrunop | ⊢ (𝜑 → 〈𝑉, (𝐸 ∪ 𝐹)〉 ∈ UHGraph) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | uhgrun.g | . 2 ⊢ (𝜑 → 𝐺 ∈ UHGraph) | |
| 2 | uhgrun.h | . 2 ⊢ (𝜑 → 𝐻 ∈ UHGraph) | |
| 3 | uhgrun.e | . 2 ⊢ 𝐸 = (iEdg‘𝐺) | |
| 4 | uhgrun.f | . 2 ⊢ 𝐹 = (iEdg‘𝐻) | |
| 5 | uhgrun.vg | . 2 ⊢ 𝑉 = (Vtx‘𝐺) | |
| 6 | uhgrun.vh | . 2 ⊢ (𝜑 → (Vtx‘𝐻) = 𝑉) | |
| 7 | uhgrun.i | . 2 ⊢ (𝜑 → (dom 𝐸 ∩ dom 𝐹) = ∅) | |
| 8 | opex 5432 | . . 3 ⊢ 〈𝑉, (𝐸 ∪ 𝐹)〉 ∈ V | |
| 9 | 8 | a1i 11 | . 2 ⊢ (𝜑 → 〈𝑉, (𝐸 ∪ 𝐹)〉 ∈ V) |
| 10 | 5 | fvexi 6879 | . . . 4 ⊢ 𝑉 ∈ V |
| 11 | 3 | fvexi 6879 | . . . . 5 ⊢ 𝐸 ∈ V |
| 12 | 4 | fvexi 6879 | . . . . 5 ⊢ 𝐹 ∈ V |
| 13 | 11, 12 | unex 7727 | . . . 4 ⊢ (𝐸 ∪ 𝐹) ∈ V |
| 14 | 10, 13 | pm3.2i 470 | . . 3 ⊢ (𝑉 ∈ V ∧ (𝐸 ∪ 𝐹) ∈ V) |
| 15 | opvtxfv 28938 | . . 3 ⊢ ((𝑉 ∈ V ∧ (𝐸 ∪ 𝐹) ∈ V) → (Vtx‘〈𝑉, (𝐸 ∪ 𝐹)〉) = 𝑉) | |
| 16 | 14, 15 | mp1i 13 | . 2 ⊢ (𝜑 → (Vtx‘〈𝑉, (𝐸 ∪ 𝐹)〉) = 𝑉) |
| 17 | opiedgfv 28941 | . . 3 ⊢ ((𝑉 ∈ V ∧ (𝐸 ∪ 𝐹) ∈ V) → (iEdg‘〈𝑉, (𝐸 ∪ 𝐹)〉) = (𝐸 ∪ 𝐹)) | |
| 18 | 14, 17 | mp1i 13 | . 2 ⊢ (𝜑 → (iEdg‘〈𝑉, (𝐸 ∪ 𝐹)〉) = (𝐸 ∪ 𝐹)) |
| 19 | 1, 2, 3, 4, 5, 6, 7, 9, 16, 18 | uhgrun 29008 | 1 ⊢ (𝜑 → 〈𝑉, (𝐸 ∪ 𝐹)〉 ∈ UHGraph) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 Vcvv 3455 ∪ cun 3920 ∩ cin 3921 ∅c0 4304 〈cop 4603 dom cdm 5646 ‘cfv 6519 Vtxcvtx 28930 iEdgciedg 28931 UHGraphcuhgr 28990 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5259 ax-nul 5269 ax-pr 5395 ax-un 7718 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2880 df-ne 2928 df-ral 3047 df-rex 3056 df-rab 3412 df-v 3457 df-sbc 3762 df-dif 3925 df-un 3927 df-in 3929 df-ss 3939 df-nul 4305 df-if 4497 df-pw 4573 df-sn 4598 df-pr 4600 df-op 4604 df-uni 4880 df-br 5116 df-opab 5178 df-mpt 5197 df-id 5541 df-xp 5652 df-rel 5653 df-cnv 5654 df-co 5655 df-dm 5656 df-rn 5657 df-iota 6472 df-fun 6521 df-fn 6522 df-f 6523 df-fv 6527 df-1st 7977 df-2nd 7978 df-vtx 28932 df-iedg 28933 df-uhgr 28992 |
| This theorem is referenced by: ushgrunop 29011 |
| Copyright terms: Public domain | W3C validator |