MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  uhgrunop Structured version   Visualization version   GIF version

Theorem uhgrunop 29002
Description: The union of two (undirected) hypergraphs (with the same vertex set) represented as ordered pair: If 𝑉, 𝐸 and 𝑉, 𝐹 are hypergraphs, then 𝑉, 𝐸𝐹 is a hypergraph (the vertex set stays the same, but the edges from both graphs are kept, possibly resulting in two edges between two vertices). (Contributed by Alexander van der Vekens, 27-Dec-2017.) (Revised by AV, 11-Oct-2020.) (Revised by AV, 24-Oct-2021.)
Hypotheses
Ref Expression
uhgrun.g (𝜑𝐺 ∈ UHGraph)
uhgrun.h (𝜑𝐻 ∈ UHGraph)
uhgrun.e 𝐸 = (iEdg‘𝐺)
uhgrun.f 𝐹 = (iEdg‘𝐻)
uhgrun.vg 𝑉 = (Vtx‘𝐺)
uhgrun.vh (𝜑 → (Vtx‘𝐻) = 𝑉)
uhgrun.i (𝜑 → (dom 𝐸 ∩ dom 𝐹) = ∅)
Assertion
Ref Expression
uhgrunop (𝜑 → ⟨𝑉, (𝐸𝐹)⟩ ∈ UHGraph)

Proof of Theorem uhgrunop
StepHypRef Expression
1 uhgrun.g . 2 (𝜑𝐺 ∈ UHGraph)
2 uhgrun.h . 2 (𝜑𝐻 ∈ UHGraph)
3 uhgrun.e . 2 𝐸 = (iEdg‘𝐺)
4 uhgrun.f . 2 𝐹 = (iEdg‘𝐻)
5 uhgrun.vg . 2 𝑉 = (Vtx‘𝐺)
6 uhgrun.vh . 2 (𝜑 → (Vtx‘𝐻) = 𝑉)
7 uhgrun.i . 2 (𝜑 → (dom 𝐸 ∩ dom 𝐹) = ∅)
8 opex 5424 . . 3 𝑉, (𝐸𝐹)⟩ ∈ V
98a1i 11 . 2 (𝜑 → ⟨𝑉, (𝐸𝐹)⟩ ∈ V)
105fvexi 6872 . . . 4 𝑉 ∈ V
113fvexi 6872 . . . . 5 𝐸 ∈ V
124fvexi 6872 . . . . 5 𝐹 ∈ V
1311, 12unex 7720 . . . 4 (𝐸𝐹) ∈ V
1410, 13pm3.2i 470 . . 3 (𝑉 ∈ V ∧ (𝐸𝐹) ∈ V)
15 opvtxfv 28931 . . 3 ((𝑉 ∈ V ∧ (𝐸𝐹) ∈ V) → (Vtx‘⟨𝑉, (𝐸𝐹)⟩) = 𝑉)
1614, 15mp1i 13 . 2 (𝜑 → (Vtx‘⟨𝑉, (𝐸𝐹)⟩) = 𝑉)
17 opiedgfv 28934 . . 3 ((𝑉 ∈ V ∧ (𝐸𝐹) ∈ V) → (iEdg‘⟨𝑉, (𝐸𝐹)⟩) = (𝐸𝐹))
1814, 17mp1i 13 . 2 (𝜑 → (iEdg‘⟨𝑉, (𝐸𝐹)⟩) = (𝐸𝐹))
191, 2, 3, 4, 5, 6, 7, 9, 16, 18uhgrun 29001 1 (𝜑 → ⟨𝑉, (𝐸𝐹)⟩ ∈ UHGraph)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  Vcvv 3447  cun 3912  cin 3913  c0 4296  cop 4595  dom cdm 5638  cfv 6511  Vtxcvtx 28923  iEdgciedg 28924  UHGraphcuhgr 28983
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pr 5387  ax-un 7711
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3406  df-v 3449  df-sbc 3754  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-br 5108  df-opab 5170  df-mpt 5189  df-id 5533  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-fv 6519  df-1st 7968  df-2nd 7969  df-vtx 28925  df-iedg 28926  df-uhgr 28985
This theorem is referenced by:  ushgrunop  29004
  Copyright terms: Public domain W3C validator