MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  uhgrunop Structured version   Visualization version   GIF version

Theorem uhgrunop 28908
Description: The union of two (undirected) hypergraphs (with the same vertex set) represented as ordered pair: If 𝑉, 𝐸 and 𝑉, 𝐹 are hypergraphs, then 𝑉, 𝐸𝐹 is a hypergraph (the vertex set stays the same, but the edges from both graphs are kept, possibly resulting in two edges between two vertices). (Contributed by Alexander van der Vekens, 27-Dec-2017.) (Revised by AV, 11-Oct-2020.) (Revised by AV, 24-Oct-2021.)
Hypotheses
Ref Expression
uhgrun.g (𝜑𝐺 ∈ UHGraph)
uhgrun.h (𝜑𝐻 ∈ UHGraph)
uhgrun.e 𝐸 = (iEdg‘𝐺)
uhgrun.f 𝐹 = (iEdg‘𝐻)
uhgrun.vg 𝑉 = (Vtx‘𝐺)
uhgrun.vh (𝜑 → (Vtx‘𝐻) = 𝑉)
uhgrun.i (𝜑 → (dom 𝐸 ∩ dom 𝐹) = ∅)
Assertion
Ref Expression
uhgrunop (𝜑 → ⟨𝑉, (𝐸𝐹)⟩ ∈ UHGraph)

Proof of Theorem uhgrunop
StepHypRef Expression
1 uhgrun.g . 2 (𝜑𝐺 ∈ UHGraph)
2 uhgrun.h . 2 (𝜑𝐻 ∈ UHGraph)
3 uhgrun.e . 2 𝐸 = (iEdg‘𝐺)
4 uhgrun.f . 2 𝐹 = (iEdg‘𝐻)
5 uhgrun.vg . 2 𝑉 = (Vtx‘𝐺)
6 uhgrun.vh . 2 (𝜑 → (Vtx‘𝐻) = 𝑉)
7 uhgrun.i . 2 (𝜑 → (dom 𝐸 ∩ dom 𝐹) = ∅)
8 opex 5470 . . 3 𝑉, (𝐸𝐹)⟩ ∈ V
98a1i 11 . 2 (𝜑 → ⟨𝑉, (𝐸𝐹)⟩ ∈ V)
105fvexi 6916 . . . 4 𝑉 ∈ V
113fvexi 6916 . . . . 5 𝐸 ∈ V
124fvexi 6916 . . . . 5 𝐹 ∈ V
1311, 12unex 7754 . . . 4 (𝐸𝐹) ∈ V
1410, 13pm3.2i 469 . . 3 (𝑉 ∈ V ∧ (𝐸𝐹) ∈ V)
15 opvtxfv 28837 . . 3 ((𝑉 ∈ V ∧ (𝐸𝐹) ∈ V) → (Vtx‘⟨𝑉, (𝐸𝐹)⟩) = 𝑉)
1614, 15mp1i 13 . 2 (𝜑 → (Vtx‘⟨𝑉, (𝐸𝐹)⟩) = 𝑉)
17 opiedgfv 28840 . . 3 ((𝑉 ∈ V ∧ (𝐸𝐹) ∈ V) → (iEdg‘⟨𝑉, (𝐸𝐹)⟩) = (𝐸𝐹))
1814, 17mp1i 13 . 2 (𝜑 → (iEdg‘⟨𝑉, (𝐸𝐹)⟩) = (𝐸𝐹))
191, 2, 3, 4, 5, 6, 7, 9, 16, 18uhgrun 28907 1 (𝜑 → ⟨𝑉, (𝐸𝐹)⟩ ∈ UHGraph)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 394   = wceq 1533  wcel 2098  Vcvv 3473  cun 3947  cin 3948  c0 4326  cop 4638  dom cdm 5682  cfv 6553  Vtxcvtx 28829  iEdgciedg 28830  UHGraphcuhgr 28889
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2699  ax-sep 5303  ax-nul 5310  ax-pr 5433  ax-un 7746
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2529  df-eu 2558  df-clab 2706  df-cleq 2720  df-clel 2806  df-nfc 2881  df-ne 2938  df-ral 3059  df-rex 3068  df-rab 3431  df-v 3475  df-sbc 3779  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-nul 4327  df-if 4533  df-pw 4608  df-sn 4633  df-pr 4635  df-op 4639  df-uni 4913  df-br 5153  df-opab 5215  df-mpt 5236  df-id 5580  df-xp 5688  df-rel 5689  df-cnv 5690  df-co 5691  df-dm 5692  df-rn 5693  df-iota 6505  df-fun 6555  df-fn 6556  df-f 6557  df-fv 6561  df-1st 7999  df-2nd 8000  df-vtx 28831  df-iedg 28832  df-uhgr 28891
This theorem is referenced by:  ushgrunop  28910
  Copyright terms: Public domain W3C validator