![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > uhgrunop | Structured version Visualization version GIF version |
Description: The union of two (undirected) hypergraphs (with the same vertex set) represented as ordered pair: If 〈𝑉, 𝐸〉 and 〈𝑉, 𝐹〉 are hypergraphs, then 〈𝑉, 𝐸 ∪ 𝐹〉 is a hypergraph (the vertex set stays the same, but the edges from both graphs are kept, possibly resulting in two edges between two vertices). (Contributed by Alexander van der Vekens, 27-Dec-2017.) (Revised by AV, 11-Oct-2020.) (Revised by AV, 24-Oct-2021.) |
Ref | Expression |
---|---|
uhgrun.g | ⊢ (𝜑 → 𝐺 ∈ UHGraph) |
uhgrun.h | ⊢ (𝜑 → 𝐻 ∈ UHGraph) |
uhgrun.e | ⊢ 𝐸 = (iEdg‘𝐺) |
uhgrun.f | ⊢ 𝐹 = (iEdg‘𝐻) |
uhgrun.vg | ⊢ 𝑉 = (Vtx‘𝐺) |
uhgrun.vh | ⊢ (𝜑 → (Vtx‘𝐻) = 𝑉) |
uhgrun.i | ⊢ (𝜑 → (dom 𝐸 ∩ dom 𝐹) = ∅) |
Ref | Expression |
---|---|
uhgrunop | ⊢ (𝜑 → 〈𝑉, (𝐸 ∪ 𝐹)〉 ∈ UHGraph) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | uhgrun.g | . 2 ⊢ (𝜑 → 𝐺 ∈ UHGraph) | |
2 | uhgrun.h | . 2 ⊢ (𝜑 → 𝐻 ∈ UHGraph) | |
3 | uhgrun.e | . 2 ⊢ 𝐸 = (iEdg‘𝐺) | |
4 | uhgrun.f | . 2 ⊢ 𝐹 = (iEdg‘𝐻) | |
5 | uhgrun.vg | . 2 ⊢ 𝑉 = (Vtx‘𝐺) | |
6 | uhgrun.vh | . 2 ⊢ (𝜑 → (Vtx‘𝐻) = 𝑉) | |
7 | uhgrun.i | . 2 ⊢ (𝜑 → (dom 𝐸 ∩ dom 𝐹) = ∅) | |
8 | opex 5478 | . . 3 ⊢ 〈𝑉, (𝐸 ∪ 𝐹)〉 ∈ V | |
9 | 8 | a1i 11 | . 2 ⊢ (𝜑 → 〈𝑉, (𝐸 ∪ 𝐹)〉 ∈ V) |
10 | 5 | fvexi 6928 | . . . 4 ⊢ 𝑉 ∈ V |
11 | 3 | fvexi 6928 | . . . . 5 ⊢ 𝐸 ∈ V |
12 | 4 | fvexi 6928 | . . . . 5 ⊢ 𝐹 ∈ V |
13 | 11, 12 | unex 7770 | . . . 4 ⊢ (𝐸 ∪ 𝐹) ∈ V |
14 | 10, 13 | pm3.2i 470 | . . 3 ⊢ (𝑉 ∈ V ∧ (𝐸 ∪ 𝐹) ∈ V) |
15 | opvtxfv 29047 | . . 3 ⊢ ((𝑉 ∈ V ∧ (𝐸 ∪ 𝐹) ∈ V) → (Vtx‘〈𝑉, (𝐸 ∪ 𝐹)〉) = 𝑉) | |
16 | 14, 15 | mp1i 13 | . 2 ⊢ (𝜑 → (Vtx‘〈𝑉, (𝐸 ∪ 𝐹)〉) = 𝑉) |
17 | opiedgfv 29050 | . . 3 ⊢ ((𝑉 ∈ V ∧ (𝐸 ∪ 𝐹) ∈ V) → (iEdg‘〈𝑉, (𝐸 ∪ 𝐹)〉) = (𝐸 ∪ 𝐹)) | |
18 | 14, 17 | mp1i 13 | . 2 ⊢ (𝜑 → (iEdg‘〈𝑉, (𝐸 ∪ 𝐹)〉) = (𝐸 ∪ 𝐹)) |
19 | 1, 2, 3, 4, 5, 6, 7, 9, 16, 18 | uhgrun 29117 | 1 ⊢ (𝜑 → 〈𝑉, (𝐸 ∪ 𝐹)〉 ∈ UHGraph) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1539 ∈ wcel 2108 Vcvv 3481 ∪ cun 3964 ∩ cin 3965 ∅c0 4342 〈cop 4640 dom cdm 5693 ‘cfv 6569 Vtxcvtx 29039 iEdgciedg 29040 UHGraphcuhgr 29099 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2708 ax-sep 5305 ax-nul 5315 ax-pr 5441 ax-un 7761 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3an 1089 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2065 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2892 df-ne 2941 df-ral 3062 df-rex 3071 df-rab 3437 df-v 3483 df-sbc 3795 df-dif 3969 df-un 3971 df-in 3973 df-ss 3983 df-nul 4343 df-if 4535 df-pw 4610 df-sn 4635 df-pr 4637 df-op 4641 df-uni 4916 df-br 5152 df-opab 5214 df-mpt 5235 df-id 5587 df-xp 5699 df-rel 5700 df-cnv 5701 df-co 5702 df-dm 5703 df-rn 5704 df-iota 6522 df-fun 6571 df-fn 6572 df-f 6573 df-fv 6577 df-1st 8022 df-2nd 8023 df-vtx 29041 df-iedg 29042 df-uhgr 29101 |
This theorem is referenced by: ushgrunop 29120 |
Copyright terms: Public domain | W3C validator |