MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  uvtxssvtx Structured version   Visualization version   GIF version

Theorem uvtxssvtx 27478
Description: The set of the universal vertices is a subset of the set of all vertices. (Contributed by AV, 23-Dec-2020.)
Hypothesis
Ref Expression
uvtxel.v 𝑉 = (Vtx‘𝐺)
Assertion
Ref Expression
uvtxssvtx (UnivVtx‘𝐺) ⊆ 𝑉

Proof of Theorem uvtxssvtx
Dummy variable 𝑛 is distinct from all other variables.
StepHypRef Expression
1 uvtxel.v . . 3 𝑉 = (Vtx‘𝐺)
21uvtxisvtx 27477 . 2 (𝑛 ∈ (UnivVtx‘𝐺) → 𝑛𝑉)
32ssriv 3905 1 (UnivVtx‘𝐺) ⊆ 𝑉
Colors of variables: wff setvar class
Syntax hints:   = wceq 1543  wss 3866  cfv 6380  Vtxcvtx 27087  UnivVtxcuvtx 27473
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2708  ax-sep 5192  ax-nul 5199  ax-pr 5322
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2071  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2886  df-ne 2941  df-ral 3066  df-rex 3067  df-rab 3070  df-v 3410  df-dif 3869  df-un 3871  df-in 3873  df-ss 3883  df-nul 4238  df-if 4440  df-sn 4542  df-pr 4544  df-op 4548  df-uni 4820  df-br 5054  df-opab 5116  df-mpt 5136  df-id 5455  df-xp 5557  df-rel 5558  df-cnv 5559  df-co 5560  df-dm 5561  df-iota 6338  df-fun 6382  df-fv 6388  df-ov 7216  df-uvtx 27474
This theorem is referenced by:  iscplgr  27503  vdiscusgrb  27618
  Copyright terms: Public domain W3C validator