| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > vtxnbuvtx | Structured version Visualization version GIF version | ||
| Description: A universal vertex has all other vertices as neighbors. (Contributed by Alexander van der Vekens, 14-Oct-2017.) (Revised by AV, 30-Oct-2020.) (Proof shortened by AV, 14-Feb-2022.) |
| Ref | Expression |
|---|---|
| uvtxel.v | ⊢ 𝑉 = (Vtx‘𝐺) |
| Ref | Expression |
|---|---|
| vtxnbuvtx | ⊢ (𝑁 ∈ (UnivVtx‘𝐺) → ∀𝑛 ∈ (𝑉 ∖ {𝑁})𝑛 ∈ (𝐺 NeighbVtx 𝑁)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | uvtxel.v | . . 3 ⊢ 𝑉 = (Vtx‘𝐺) | |
| 2 | 1 | uvtxel 29359 | . 2 ⊢ (𝑁 ∈ (UnivVtx‘𝐺) ↔ (𝑁 ∈ 𝑉 ∧ ∀𝑛 ∈ (𝑉 ∖ {𝑁})𝑛 ∈ (𝐺 NeighbVtx 𝑁))) |
| 3 | 2 | simprbi 496 | 1 ⊢ (𝑁 ∈ (UnivVtx‘𝐺) → ∀𝑛 ∈ (𝑉 ∖ {𝑁})𝑛 ∈ (𝐺 NeighbVtx 𝑁)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1541 ∈ wcel 2110 ∀wral 3045 ∖ cdif 3897 {csn 4574 ‘cfv 6477 (class class class)co 7341 Vtxcvtx 28967 NeighbVtx cnbgr 29303 UnivVtxcuvtx 29356 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2112 ax-9 2120 ax-10 2143 ax-11 2159 ax-12 2179 ax-ext 2702 ax-sep 5232 ax-nul 5242 ax-pr 5368 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-ral 3046 df-rex 3055 df-rab 3394 df-v 3436 df-dif 3903 df-un 3905 df-in 3907 df-ss 3917 df-nul 4282 df-if 4474 df-pw 4550 df-sn 4575 df-pr 4577 df-op 4581 df-uni 4858 df-br 5090 df-opab 5152 df-mpt 5171 df-id 5509 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-iota 6433 df-fun 6479 df-fv 6485 df-ov 7344 df-uvtx 29357 |
| This theorem is referenced by: uvtxnbgrss 29363 uvtxnbgrvtx 29364 |
| Copyright terms: Public domain | W3C validator |