![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > uvtxisvtx | Structured version Visualization version GIF version |
Description: A universal vertex is a vertex. (Contributed by Alexander van der Vekens, 12-Oct-2017.) (Revised by AV, 30-Oct-2020.) (Proof shortened by AV, 14-Feb-2022.) |
Ref | Expression |
---|---|
uvtxel.v | ⊢ 𝑉 = (Vtx‘𝐺) |
Ref | Expression |
---|---|
uvtxisvtx | ⊢ (𝑁 ∈ (UnivVtx‘𝐺) → 𝑁 ∈ 𝑉) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | uvtxel.v | . . 3 ⊢ 𝑉 = (Vtx‘𝐺) | |
2 | 1 | uvtxel 29245 | . 2 ⊢ (𝑁 ∈ (UnivVtx‘𝐺) ↔ (𝑁 ∈ 𝑉 ∧ ∀𝑛 ∈ (𝑉 ∖ {𝑁})𝑛 ∈ (𝐺 NeighbVtx 𝑁))) |
3 | 2 | simplbi 496 | 1 ⊢ (𝑁 ∈ (UnivVtx‘𝐺) → 𝑁 ∈ 𝑉) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1533 ∈ wcel 2098 ∀wral 3051 ∖ cdif 3936 {csn 4624 ‘cfv 6543 (class class class)co 7416 Vtxcvtx 28853 NeighbVtx cnbgr 29189 UnivVtxcuvtx 29242 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2696 ax-sep 5294 ax-nul 5301 ax-pr 5423 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2703 df-cleq 2717 df-clel 2802 df-nfc 2877 df-ne 2931 df-ral 3052 df-rex 3061 df-rab 3420 df-v 3465 df-dif 3942 df-un 3944 df-in 3946 df-ss 3956 df-nul 4319 df-if 4525 df-sn 4625 df-pr 4627 df-op 4631 df-uni 4904 df-br 5144 df-opab 5206 df-mpt 5227 df-id 5570 df-xp 5678 df-rel 5679 df-cnv 5680 df-co 5681 df-dm 5682 df-iota 6495 df-fun 6545 df-fv 6551 df-ov 7419 df-uvtx 29243 |
This theorem is referenced by: uvtxssvtx 29247 uvtxnm1nbgr 29261 vdiscusgr 29389 |
Copyright terms: Public domain | W3C validator |