MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cnextfvval Structured version   Visualization version   GIF version

Theorem cnextfvval 23416
Description: The value of the continuous extension of a given function 𝐹 at a point 𝑋. (Contributed by Thierry Arnoux, 21-Dec-2017.)
Hypotheses
Ref Expression
cnextf.1 𝐶 = 𝐽
cnextf.2 𝐵 = 𝐾
cnextf.3 (𝜑𝐽 ∈ Top)
cnextf.4 (𝜑𝐾 ∈ Haus)
cnextf.5 (𝜑𝐹:𝐴𝐵)
cnextf.a (𝜑𝐴𝐶)
cnextf.6 (𝜑 → ((cls‘𝐽)‘𝐴) = 𝐶)
cnextf.7 ((𝜑𝑥𝐶) → ((𝐾 fLimf (((nei‘𝐽)‘{𝑥}) ↾t 𝐴))‘𝐹) ≠ ∅)
Assertion
Ref Expression
cnextfvval ((𝜑𝑋𝐶) → (((𝐽CnExt𝐾)‘𝐹)‘𝑋) = ((𝐾 fLimf (((nei‘𝐽)‘{𝑋}) ↾t 𝐴))‘𝐹))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝑥,𝐶   𝑥,𝐹   𝑥,𝐽   𝑥,𝐾   𝑥,𝑋   𝜑,𝑥

Proof of Theorem cnextfvval
StepHypRef Expression
1 cnextf.3 . . . 4 (𝜑𝐽 ∈ Top)
21adantr 481 . . 3 ((𝜑𝑋𝐶) → 𝐽 ∈ Top)
3 cnextf.4 . . . 4 (𝜑𝐾 ∈ Haus)
43adantr 481 . . 3 ((𝜑𝑋𝐶) → 𝐾 ∈ Haus)
5 cnextf.5 . . . 4 (𝜑𝐹:𝐴𝐵)
65adantr 481 . . 3 ((𝜑𝑋𝐶) → 𝐹:𝐴𝐵)
7 cnextf.a . . . 4 (𝜑𝐴𝐶)
87adantr 481 . . 3 ((𝜑𝑋𝐶) → 𝐴𝐶)
9 cnextf.1 . . . 4 𝐶 = 𝐽
10 cnextf.2 . . . 4 𝐵 = 𝐾
119, 10cnextfun 23415 . . 3 (((𝐽 ∈ Top ∧ 𝐾 ∈ Haus) ∧ (𝐹:𝐴𝐵𝐴𝐶)) → Fun ((𝐽CnExt𝐾)‘𝐹))
122, 4, 6, 8, 11syl22anc 837 . 2 ((𝜑𝑋𝐶) → Fun ((𝐽CnExt𝐾)‘𝐹))
13 cnextf.6 . . . . . 6 (𝜑 → ((cls‘𝐽)‘𝐴) = 𝐶)
1413eleq2d 2823 . . . . 5 (𝜑 → (𝑋 ∈ ((cls‘𝐽)‘𝐴) ↔ 𝑋𝐶))
1514biimpar 478 . . . 4 ((𝜑𝑋𝐶) → 𝑋 ∈ ((cls‘𝐽)‘𝐴))
16 fvex 6855 . . . . . . 7 ((𝐾 fLimf (((nei‘𝐽)‘{𝑋}) ↾t 𝐴))‘𝐹) ∈ V
1716uniex 7678 . . . . . 6 ((𝐾 fLimf (((nei‘𝐽)‘{𝑋}) ↾t 𝐴))‘𝐹) ∈ V
1817snid 4622 . . . . 5 ((𝐾 fLimf (((nei‘𝐽)‘{𝑋}) ↾t 𝐴))‘𝐹) ∈ { ((𝐾 fLimf (((nei‘𝐽)‘{𝑋}) ↾t 𝐴))‘𝐹)}
19 sneq 4596 . . . . . . . . . . . . . 14 (𝑥 = 𝑋 → {𝑥} = {𝑋})
2019fveq2d 6846 . . . . . . . . . . . . 13 (𝑥 = 𝑋 → ((nei‘𝐽)‘{𝑥}) = ((nei‘𝐽)‘{𝑋}))
2120oveq1d 7372 . . . . . . . . . . . 12 (𝑥 = 𝑋 → (((nei‘𝐽)‘{𝑥}) ↾t 𝐴) = (((nei‘𝐽)‘{𝑋}) ↾t 𝐴))
2221oveq2d 7373 . . . . . . . . . . 11 (𝑥 = 𝑋 → (𝐾 fLimf (((nei‘𝐽)‘{𝑥}) ↾t 𝐴)) = (𝐾 fLimf (((nei‘𝐽)‘{𝑋}) ↾t 𝐴)))
2322fveq1d 6844 . . . . . . . . . 10 (𝑥 = 𝑋 → ((𝐾 fLimf (((nei‘𝐽)‘{𝑥}) ↾t 𝐴))‘𝐹) = ((𝐾 fLimf (((nei‘𝐽)‘{𝑋}) ↾t 𝐴))‘𝐹))
2423breq1d 5115 . . . . . . . . 9 (𝑥 = 𝑋 → (((𝐾 fLimf (((nei‘𝐽)‘{𝑥}) ↾t 𝐴))‘𝐹) ≈ 1o ↔ ((𝐾 fLimf (((nei‘𝐽)‘{𝑋}) ↾t 𝐴))‘𝐹) ≈ 1o))
2524imbi2d 340 . . . . . . . 8 (𝑥 = 𝑋 → ((𝜑 → ((𝐾 fLimf (((nei‘𝐽)‘{𝑥}) ↾t 𝐴))‘𝐹) ≈ 1o) ↔ (𝜑 → ((𝐾 fLimf (((nei‘𝐽)‘{𝑋}) ↾t 𝐴))‘𝐹) ≈ 1o)))
263adantr 481 . . . . . . . . . 10 ((𝜑𝑥𝐶) → 𝐾 ∈ Haus)
271adantr 481 . . . . . . . . . . . 12 ((𝜑𝑥𝐶) → 𝐽 ∈ Top)
289toptopon 22266 . . . . . . . . . . . 12 (𝐽 ∈ Top ↔ 𝐽 ∈ (TopOn‘𝐶))
2927, 28sylib 217 . . . . . . . . . . 11 ((𝜑𝑥𝐶) → 𝐽 ∈ (TopOn‘𝐶))
307adantr 481 . . . . . . . . . . 11 ((𝜑𝑥𝐶) → 𝐴𝐶)
31 simpr 485 . . . . . . . . . . 11 ((𝜑𝑥𝐶) → 𝑥𝐶)
3213eleq2d 2823 . . . . . . . . . . . 12 (𝜑 → (𝑥 ∈ ((cls‘𝐽)‘𝐴) ↔ 𝑥𝐶))
3332biimpar 478 . . . . . . . . . . 11 ((𝜑𝑥𝐶) → 𝑥 ∈ ((cls‘𝐽)‘𝐴))
34 trnei 23243 . . . . . . . . . . . 12 ((𝐽 ∈ (TopOn‘𝐶) ∧ 𝐴𝐶𝑥𝐶) → (𝑥 ∈ ((cls‘𝐽)‘𝐴) ↔ (((nei‘𝐽)‘{𝑥}) ↾t 𝐴) ∈ (Fil‘𝐴)))
3534biimpa 477 . . . . . . . . . . 11 (((𝐽 ∈ (TopOn‘𝐶) ∧ 𝐴𝐶𝑥𝐶) ∧ 𝑥 ∈ ((cls‘𝐽)‘𝐴)) → (((nei‘𝐽)‘{𝑥}) ↾t 𝐴) ∈ (Fil‘𝐴))
3629, 30, 31, 33, 35syl31anc 1373 . . . . . . . . . 10 ((𝜑𝑥𝐶) → (((nei‘𝐽)‘{𝑥}) ↾t 𝐴) ∈ (Fil‘𝐴))
375adantr 481 . . . . . . . . . 10 ((𝜑𝑥𝐶) → 𝐹:𝐴𝐵)
38 cnextf.7 . . . . . . . . . 10 ((𝜑𝑥𝐶) → ((𝐾 fLimf (((nei‘𝐽)‘{𝑥}) ↾t 𝐴))‘𝐹) ≠ ∅)
3910hausflf2 23349 . . . . . . . . . 10 (((𝐾 ∈ Haus ∧ (((nei‘𝐽)‘{𝑥}) ↾t 𝐴) ∈ (Fil‘𝐴) ∧ 𝐹:𝐴𝐵) ∧ ((𝐾 fLimf (((nei‘𝐽)‘{𝑥}) ↾t 𝐴))‘𝐹) ≠ ∅) → ((𝐾 fLimf (((nei‘𝐽)‘{𝑥}) ↾t 𝐴))‘𝐹) ≈ 1o)
4026, 36, 37, 38, 39syl31anc 1373 . . . . . . . . 9 ((𝜑𝑥𝐶) → ((𝐾 fLimf (((nei‘𝐽)‘{𝑥}) ↾t 𝐴))‘𝐹) ≈ 1o)
4140expcom 414 . . . . . . . 8 (𝑥𝐶 → (𝜑 → ((𝐾 fLimf (((nei‘𝐽)‘{𝑥}) ↾t 𝐴))‘𝐹) ≈ 1o))
4225, 41vtoclga 3534 . . . . . . 7 (𝑋𝐶 → (𝜑 → ((𝐾 fLimf (((nei‘𝐽)‘{𝑋}) ↾t 𝐴))‘𝐹) ≈ 1o))
4342impcom 408 . . . . . 6 ((𝜑𝑋𝐶) → ((𝐾 fLimf (((nei‘𝐽)‘{𝑋}) ↾t 𝐴))‘𝐹) ≈ 1o)
44 en1b 8967 . . . . . 6 (((𝐾 fLimf (((nei‘𝐽)‘{𝑋}) ↾t 𝐴))‘𝐹) ≈ 1o ↔ ((𝐾 fLimf (((nei‘𝐽)‘{𝑋}) ↾t 𝐴))‘𝐹) = { ((𝐾 fLimf (((nei‘𝐽)‘{𝑋}) ↾t 𝐴))‘𝐹)})
4543, 44sylib 217 . . . . 5 ((𝜑𝑋𝐶) → ((𝐾 fLimf (((nei‘𝐽)‘{𝑋}) ↾t 𝐴))‘𝐹) = { ((𝐾 fLimf (((nei‘𝐽)‘{𝑋}) ↾t 𝐴))‘𝐹)})
4618, 45eleqtrrid 2845 . . . 4 ((𝜑𝑋𝐶) → ((𝐾 fLimf (((nei‘𝐽)‘{𝑋}) ↾t 𝐴))‘𝐹) ∈ ((𝐾 fLimf (((nei‘𝐽)‘{𝑋}) ↾t 𝐴))‘𝐹))
47 nfiu1 4988 . . . . . . . 8 𝑥 𝑥 ∈ ((cls‘𝐽)‘𝐴)({𝑥} × ((𝐾 fLimf (((nei‘𝐽)‘{𝑥}) ↾t 𝐴))‘𝐹))
4847nfel2 2925 . . . . . . 7 𝑥𝑋, ((𝐾 fLimf (((nei‘𝐽)‘{𝑋}) ↾t 𝐴))‘𝐹)⟩ ∈ 𝑥 ∈ ((cls‘𝐽)‘𝐴)({𝑥} × ((𝐾 fLimf (((nei‘𝐽)‘{𝑥}) ↾t 𝐴))‘𝐹))
49 nfv 1917 . . . . . . 7 𝑥(𝑋 ∈ ((cls‘𝐽)‘𝐴) ∧ ((𝐾 fLimf (((nei‘𝐽)‘{𝑋}) ↾t 𝐴))‘𝐹) ∈ ((𝐾 fLimf (((nei‘𝐽)‘{𝑋}) ↾t 𝐴))‘𝐹))
5048, 49nfbi 1906 . . . . . 6 𝑥(⟨𝑋, ((𝐾 fLimf (((nei‘𝐽)‘{𝑋}) ↾t 𝐴))‘𝐹)⟩ ∈ 𝑥 ∈ ((cls‘𝐽)‘𝐴)({𝑥} × ((𝐾 fLimf (((nei‘𝐽)‘{𝑥}) ↾t 𝐴))‘𝐹)) ↔ (𝑋 ∈ ((cls‘𝐽)‘𝐴) ∧ ((𝐾 fLimf (((nei‘𝐽)‘{𝑋}) ↾t 𝐴))‘𝐹) ∈ ((𝐾 fLimf (((nei‘𝐽)‘{𝑋}) ↾t 𝐴))‘𝐹)))
51 opeq1 4830 . . . . . . . 8 (𝑥 = 𝑋 → ⟨𝑥, ((𝐾 fLimf (((nei‘𝐽)‘{𝑋}) ↾t 𝐴))‘𝐹)⟩ = ⟨𝑋, ((𝐾 fLimf (((nei‘𝐽)‘{𝑋}) ↾t 𝐴))‘𝐹)⟩)
5251eleq1d 2822 . . . . . . 7 (𝑥 = 𝑋 → (⟨𝑥, ((𝐾 fLimf (((nei‘𝐽)‘{𝑋}) ↾t 𝐴))‘𝐹)⟩ ∈ 𝑥 ∈ ((cls‘𝐽)‘𝐴)({𝑥} × ((𝐾 fLimf (((nei‘𝐽)‘{𝑥}) ↾t 𝐴))‘𝐹)) ↔ ⟨𝑋, ((𝐾 fLimf (((nei‘𝐽)‘{𝑋}) ↾t 𝐴))‘𝐹)⟩ ∈ 𝑥 ∈ ((cls‘𝐽)‘𝐴)({𝑥} × ((𝐾 fLimf (((nei‘𝐽)‘{𝑥}) ↾t 𝐴))‘𝐹))))
53 eleq1 2825 . . . . . . . 8 (𝑥 = 𝑋 → (𝑥 ∈ ((cls‘𝐽)‘𝐴) ↔ 𝑋 ∈ ((cls‘𝐽)‘𝐴)))
5423eleq2d 2823 . . . . . . . 8 (𝑥 = 𝑋 → ( ((𝐾 fLimf (((nei‘𝐽)‘{𝑋}) ↾t 𝐴))‘𝐹) ∈ ((𝐾 fLimf (((nei‘𝐽)‘{𝑥}) ↾t 𝐴))‘𝐹) ↔ ((𝐾 fLimf (((nei‘𝐽)‘{𝑋}) ↾t 𝐴))‘𝐹) ∈ ((𝐾 fLimf (((nei‘𝐽)‘{𝑋}) ↾t 𝐴))‘𝐹)))
5553, 54anbi12d 631 . . . . . . 7 (𝑥 = 𝑋 → ((𝑥 ∈ ((cls‘𝐽)‘𝐴) ∧ ((𝐾 fLimf (((nei‘𝐽)‘{𝑋}) ↾t 𝐴))‘𝐹) ∈ ((𝐾 fLimf (((nei‘𝐽)‘{𝑥}) ↾t 𝐴))‘𝐹)) ↔ (𝑋 ∈ ((cls‘𝐽)‘𝐴) ∧ ((𝐾 fLimf (((nei‘𝐽)‘{𝑋}) ↾t 𝐴))‘𝐹) ∈ ((𝐾 fLimf (((nei‘𝐽)‘{𝑋}) ↾t 𝐴))‘𝐹))))
5652, 55bibi12d 345 . . . . . 6 (𝑥 = 𝑋 → ((⟨𝑥, ((𝐾 fLimf (((nei‘𝐽)‘{𝑋}) ↾t 𝐴))‘𝐹)⟩ ∈ 𝑥 ∈ ((cls‘𝐽)‘𝐴)({𝑥} × ((𝐾 fLimf (((nei‘𝐽)‘{𝑥}) ↾t 𝐴))‘𝐹)) ↔ (𝑥 ∈ ((cls‘𝐽)‘𝐴) ∧ ((𝐾 fLimf (((nei‘𝐽)‘{𝑋}) ↾t 𝐴))‘𝐹) ∈ ((𝐾 fLimf (((nei‘𝐽)‘{𝑥}) ↾t 𝐴))‘𝐹))) ↔ (⟨𝑋, ((𝐾 fLimf (((nei‘𝐽)‘{𝑋}) ↾t 𝐴))‘𝐹)⟩ ∈ 𝑥 ∈ ((cls‘𝐽)‘𝐴)({𝑥} × ((𝐾 fLimf (((nei‘𝐽)‘{𝑥}) ↾t 𝐴))‘𝐹)) ↔ (𝑋 ∈ ((cls‘𝐽)‘𝐴) ∧ ((𝐾 fLimf (((nei‘𝐽)‘{𝑋}) ↾t 𝐴))‘𝐹) ∈ ((𝐾 fLimf (((nei‘𝐽)‘{𝑋}) ↾t 𝐴))‘𝐹)))))
57 opeliunxp 5699 . . . . . 6 (⟨𝑥, ((𝐾 fLimf (((nei‘𝐽)‘{𝑋}) ↾t 𝐴))‘𝐹)⟩ ∈ 𝑥 ∈ ((cls‘𝐽)‘𝐴)({𝑥} × ((𝐾 fLimf (((nei‘𝐽)‘{𝑥}) ↾t 𝐴))‘𝐹)) ↔ (𝑥 ∈ ((cls‘𝐽)‘𝐴) ∧ ((𝐾 fLimf (((nei‘𝐽)‘{𝑋}) ↾t 𝐴))‘𝐹) ∈ ((𝐾 fLimf (((nei‘𝐽)‘{𝑥}) ↾t 𝐴))‘𝐹)))
5850, 56, 57vtoclg1f 3524 . . . . 5 (𝑋𝐶 → (⟨𝑋, ((𝐾 fLimf (((nei‘𝐽)‘{𝑋}) ↾t 𝐴))‘𝐹)⟩ ∈ 𝑥 ∈ ((cls‘𝐽)‘𝐴)({𝑥} × ((𝐾 fLimf (((nei‘𝐽)‘{𝑥}) ↾t 𝐴))‘𝐹)) ↔ (𝑋 ∈ ((cls‘𝐽)‘𝐴) ∧ ((𝐾 fLimf (((nei‘𝐽)‘{𝑋}) ↾t 𝐴))‘𝐹) ∈ ((𝐾 fLimf (((nei‘𝐽)‘{𝑋}) ↾t 𝐴))‘𝐹))))
5958adantl 482 . . . 4 ((𝜑𝑋𝐶) → (⟨𝑋, ((𝐾 fLimf (((nei‘𝐽)‘{𝑋}) ↾t 𝐴))‘𝐹)⟩ ∈ 𝑥 ∈ ((cls‘𝐽)‘𝐴)({𝑥} × ((𝐾 fLimf (((nei‘𝐽)‘{𝑥}) ↾t 𝐴))‘𝐹)) ↔ (𝑋 ∈ ((cls‘𝐽)‘𝐴) ∧ ((𝐾 fLimf (((nei‘𝐽)‘{𝑋}) ↾t 𝐴))‘𝐹) ∈ ((𝐾 fLimf (((nei‘𝐽)‘{𝑋}) ↾t 𝐴))‘𝐹))))
6015, 46, 59mpbir2and 711 . . 3 ((𝜑𝑋𝐶) → ⟨𝑋, ((𝐾 fLimf (((nei‘𝐽)‘{𝑋}) ↾t 𝐴))‘𝐹)⟩ ∈ 𝑥 ∈ ((cls‘𝐽)‘𝐴)({𝑥} × ((𝐾 fLimf (((nei‘𝐽)‘{𝑥}) ↾t 𝐴))‘𝐹)))
61 df-br 5106 . . . 4 (𝑋((𝐽CnExt𝐾)‘𝐹) ((𝐾 fLimf (((nei‘𝐽)‘{𝑋}) ↾t 𝐴))‘𝐹) ↔ ⟨𝑋, ((𝐾 fLimf (((nei‘𝐽)‘{𝑋}) ↾t 𝐴))‘𝐹)⟩ ∈ ((𝐽CnExt𝐾)‘𝐹))
62 haustop 22682 . . . . . . . 8 (𝐾 ∈ Haus → 𝐾 ∈ Top)
633, 62syl 17 . . . . . . 7 (𝜑𝐾 ∈ Top)
6463adantr 481 . . . . . 6 ((𝜑𝑋𝐶) → 𝐾 ∈ Top)
659, 10cnextfval 23413 . . . . . 6 (((𝐽 ∈ Top ∧ 𝐾 ∈ Top) ∧ (𝐹:𝐴𝐵𝐴𝐶)) → ((𝐽CnExt𝐾)‘𝐹) = 𝑥 ∈ ((cls‘𝐽)‘𝐴)({𝑥} × ((𝐾 fLimf (((nei‘𝐽)‘{𝑥}) ↾t 𝐴))‘𝐹)))
662, 64, 6, 8, 65syl22anc 837 . . . . 5 ((𝜑𝑋𝐶) → ((𝐽CnExt𝐾)‘𝐹) = 𝑥 ∈ ((cls‘𝐽)‘𝐴)({𝑥} × ((𝐾 fLimf (((nei‘𝐽)‘{𝑥}) ↾t 𝐴))‘𝐹)))
6766eleq2d 2823 . . . 4 ((𝜑𝑋𝐶) → (⟨𝑋, ((𝐾 fLimf (((nei‘𝐽)‘{𝑋}) ↾t 𝐴))‘𝐹)⟩ ∈ ((𝐽CnExt𝐾)‘𝐹) ↔ ⟨𝑋, ((𝐾 fLimf (((nei‘𝐽)‘{𝑋}) ↾t 𝐴))‘𝐹)⟩ ∈ 𝑥 ∈ ((cls‘𝐽)‘𝐴)({𝑥} × ((𝐾 fLimf (((nei‘𝐽)‘{𝑥}) ↾t 𝐴))‘𝐹))))
6861, 67bitrid 282 . . 3 ((𝜑𝑋𝐶) → (𝑋((𝐽CnExt𝐾)‘𝐹) ((𝐾 fLimf (((nei‘𝐽)‘{𝑋}) ↾t 𝐴))‘𝐹) ↔ ⟨𝑋, ((𝐾 fLimf (((nei‘𝐽)‘{𝑋}) ↾t 𝐴))‘𝐹)⟩ ∈ 𝑥 ∈ ((cls‘𝐽)‘𝐴)({𝑥} × ((𝐾 fLimf (((nei‘𝐽)‘{𝑥}) ↾t 𝐴))‘𝐹))))
6960, 68mpbird 256 . 2 ((𝜑𝑋𝐶) → 𝑋((𝐽CnExt𝐾)‘𝐹) ((𝐾 fLimf (((nei‘𝐽)‘{𝑋}) ↾t 𝐴))‘𝐹))
70 funbrfv 6893 . 2 (Fun ((𝐽CnExt𝐾)‘𝐹) → (𝑋((𝐽CnExt𝐾)‘𝐹) ((𝐾 fLimf (((nei‘𝐽)‘{𝑋}) ↾t 𝐴))‘𝐹) → (((𝐽CnExt𝐾)‘𝐹)‘𝑋) = ((𝐾 fLimf (((nei‘𝐽)‘{𝑋}) ↾t 𝐴))‘𝐹)))
7112, 69, 70sylc 65 1 ((𝜑𝑋𝐶) → (((𝐽CnExt𝐾)‘𝐹)‘𝑋) = ((𝐾 fLimf (((nei‘𝐽)‘{𝑋}) ↾t 𝐴))‘𝐹))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396  w3a 1087   = wceq 1541  wcel 2106  wne 2943  wss 3910  c0 4282  {csn 4586  cop 4592   cuni 4865   ciun 4954   class class class wbr 5105   × cxp 5631  Fun wfun 6490  wf 6492  cfv 6496  (class class class)co 7357  1oc1o 8405  cen 8880  t crest 17302  Topctop 22242  TopOnctopon 22259  clsccl 22369  neicnei 22448  Hauscha 22659  Filcfil 23196   fLimf cflf 23286  CnExtccnext 23410
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2707  ax-rep 5242  ax-sep 5256  ax-nul 5263  ax-pow 5320  ax-pr 5384  ax-un 7672
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3065  df-rex 3074  df-reu 3354  df-rab 3408  df-v 3447  df-sbc 3740  df-csb 3856  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-nul 4283  df-if 4487  df-pw 4562  df-sn 4587  df-pr 4589  df-op 4593  df-uni 4866  df-int 4908  df-iun 4956  df-iin 4957  df-br 5106  df-opab 5168  df-mpt 5189  df-id 5531  df-xp 5639  df-rel 5640  df-cnv 5641  df-co 5642  df-dm 5643  df-rn 5644  df-res 5645  df-ima 5646  df-suc 6323  df-iota 6448  df-fun 6498  df-fn 6499  df-f 6500  df-f1 6501  df-fo 6502  df-f1o 6503  df-fv 6504  df-ov 7360  df-oprab 7361  df-mpo 7362  df-1st 7921  df-2nd 7922  df-1o 8412  df-map 8767  df-pm 8768  df-en 8884  df-rest 17304  df-fbas 20793  df-top 22243  df-topon 22260  df-cld 22370  df-ntr 22371  df-cls 22372  df-nei 22449  df-haus 22666  df-fil 23197  df-flim 23290  df-flf 23291  df-cnext 23411
This theorem is referenced by:  cnextcn  23418  cnextfres1  23419
  Copyright terms: Public domain W3C validator