Proof of Theorem cnextfvval
Step | Hyp | Ref
| Expression |
1 | | cnextf.3 |
. . . 4
⊢ (𝜑 → 𝐽 ∈ Top) |
2 | 1 | adantr 481 |
. . 3
⊢ ((𝜑 ∧ 𝑋 ∈ 𝐶) → 𝐽 ∈ Top) |
3 | | cnextf.4 |
. . . 4
⊢ (𝜑 → 𝐾 ∈ Haus) |
4 | 3 | adantr 481 |
. . 3
⊢ ((𝜑 ∧ 𝑋 ∈ 𝐶) → 𝐾 ∈ Haus) |
5 | | cnextf.5 |
. . . 4
⊢ (𝜑 → 𝐹:𝐴⟶𝐵) |
6 | 5 | adantr 481 |
. . 3
⊢ ((𝜑 ∧ 𝑋 ∈ 𝐶) → 𝐹:𝐴⟶𝐵) |
7 | | cnextf.a |
. . . 4
⊢ (𝜑 → 𝐴 ⊆ 𝐶) |
8 | 7 | adantr 481 |
. . 3
⊢ ((𝜑 ∧ 𝑋 ∈ 𝐶) → 𝐴 ⊆ 𝐶) |
9 | | cnextf.1 |
. . . 4
⊢ 𝐶 = ∪
𝐽 |
10 | | cnextf.2 |
. . . 4
⊢ 𝐵 = ∪
𝐾 |
11 | 9, 10 | cnextfun 23215 |
. . 3
⊢ (((𝐽 ∈ Top ∧ 𝐾 ∈ Haus) ∧ (𝐹:𝐴⟶𝐵 ∧ 𝐴 ⊆ 𝐶)) → Fun ((𝐽CnExt𝐾)‘𝐹)) |
12 | 2, 4, 6, 8, 11 | syl22anc 836 |
. 2
⊢ ((𝜑 ∧ 𝑋 ∈ 𝐶) → Fun ((𝐽CnExt𝐾)‘𝐹)) |
13 | | cnextf.6 |
. . . . . 6
⊢ (𝜑 → ((cls‘𝐽)‘𝐴) = 𝐶) |
14 | 13 | eleq2d 2824 |
. . . . 5
⊢ (𝜑 → (𝑋 ∈ ((cls‘𝐽)‘𝐴) ↔ 𝑋 ∈ 𝐶)) |
15 | 14 | biimpar 478 |
. . . 4
⊢ ((𝜑 ∧ 𝑋 ∈ 𝐶) → 𝑋 ∈ ((cls‘𝐽)‘𝐴)) |
16 | | fvex 6787 |
. . . . . . 7
⊢ ((𝐾 fLimf (((nei‘𝐽)‘{𝑋}) ↾t 𝐴))‘𝐹) ∈ V |
17 | 16 | uniex 7594 |
. . . . . 6
⊢ ∪ ((𝐾
fLimf (((nei‘𝐽)‘{𝑋}) ↾t 𝐴))‘𝐹) ∈ V |
18 | 17 | snid 4597 |
. . . . 5
⊢ ∪ ((𝐾
fLimf (((nei‘𝐽)‘{𝑋}) ↾t 𝐴))‘𝐹) ∈ {∪
((𝐾 fLimf
(((nei‘𝐽)‘{𝑋}) ↾t 𝐴))‘𝐹)} |
19 | | sneq 4571 |
. . . . . . . . . . . . . 14
⊢ (𝑥 = 𝑋 → {𝑥} = {𝑋}) |
20 | 19 | fveq2d 6778 |
. . . . . . . . . . . . 13
⊢ (𝑥 = 𝑋 → ((nei‘𝐽)‘{𝑥}) = ((nei‘𝐽)‘{𝑋})) |
21 | 20 | oveq1d 7290 |
. . . . . . . . . . . 12
⊢ (𝑥 = 𝑋 → (((nei‘𝐽)‘{𝑥}) ↾t 𝐴) = (((nei‘𝐽)‘{𝑋}) ↾t 𝐴)) |
22 | 21 | oveq2d 7291 |
. . . . . . . . . . 11
⊢ (𝑥 = 𝑋 → (𝐾 fLimf (((nei‘𝐽)‘{𝑥}) ↾t 𝐴)) = (𝐾 fLimf (((nei‘𝐽)‘{𝑋}) ↾t 𝐴))) |
23 | 22 | fveq1d 6776 |
. . . . . . . . . 10
⊢ (𝑥 = 𝑋 → ((𝐾 fLimf (((nei‘𝐽)‘{𝑥}) ↾t 𝐴))‘𝐹) = ((𝐾 fLimf (((nei‘𝐽)‘{𝑋}) ↾t 𝐴))‘𝐹)) |
24 | 23 | breq1d 5084 |
. . . . . . . . 9
⊢ (𝑥 = 𝑋 → (((𝐾 fLimf (((nei‘𝐽)‘{𝑥}) ↾t 𝐴))‘𝐹) ≈ 1o ↔ ((𝐾 fLimf (((nei‘𝐽)‘{𝑋}) ↾t 𝐴))‘𝐹) ≈ 1o)) |
25 | 24 | imbi2d 341 |
. . . . . . . 8
⊢ (𝑥 = 𝑋 → ((𝜑 → ((𝐾 fLimf (((nei‘𝐽)‘{𝑥}) ↾t 𝐴))‘𝐹) ≈ 1o) ↔ (𝜑 → ((𝐾 fLimf (((nei‘𝐽)‘{𝑋}) ↾t 𝐴))‘𝐹) ≈ 1o))) |
26 | 3 | adantr 481 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐶) → 𝐾 ∈ Haus) |
27 | 1 | adantr 481 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐶) → 𝐽 ∈ Top) |
28 | 9 | toptopon 22066 |
. . . . . . . . . . . 12
⊢ (𝐽 ∈ Top ↔ 𝐽 ∈ (TopOn‘𝐶)) |
29 | 27, 28 | sylib 217 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐶) → 𝐽 ∈ (TopOn‘𝐶)) |
30 | 7 | adantr 481 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐶) → 𝐴 ⊆ 𝐶) |
31 | | simpr 485 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐶) → 𝑥 ∈ 𝐶) |
32 | 13 | eleq2d 2824 |
. . . . . . . . . . . 12
⊢ (𝜑 → (𝑥 ∈ ((cls‘𝐽)‘𝐴) ↔ 𝑥 ∈ 𝐶)) |
33 | 32 | biimpar 478 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐶) → 𝑥 ∈ ((cls‘𝐽)‘𝐴)) |
34 | | trnei 23043 |
. . . . . . . . . . . 12
⊢ ((𝐽 ∈ (TopOn‘𝐶) ∧ 𝐴 ⊆ 𝐶 ∧ 𝑥 ∈ 𝐶) → (𝑥 ∈ ((cls‘𝐽)‘𝐴) ↔ (((nei‘𝐽)‘{𝑥}) ↾t 𝐴) ∈ (Fil‘𝐴))) |
35 | 34 | biimpa 477 |
. . . . . . . . . . 11
⊢ (((𝐽 ∈ (TopOn‘𝐶) ∧ 𝐴 ⊆ 𝐶 ∧ 𝑥 ∈ 𝐶) ∧ 𝑥 ∈ ((cls‘𝐽)‘𝐴)) → (((nei‘𝐽)‘{𝑥}) ↾t 𝐴) ∈ (Fil‘𝐴)) |
36 | 29, 30, 31, 33, 35 | syl31anc 1372 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐶) → (((nei‘𝐽)‘{𝑥}) ↾t 𝐴) ∈ (Fil‘𝐴)) |
37 | 5 | adantr 481 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐶) → 𝐹:𝐴⟶𝐵) |
38 | | cnextf.7 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐶) → ((𝐾 fLimf (((nei‘𝐽)‘{𝑥}) ↾t 𝐴))‘𝐹) ≠ ∅) |
39 | 10 | hausflf2 23149 |
. . . . . . . . . 10
⊢ (((𝐾 ∈ Haus ∧
(((nei‘𝐽)‘{𝑥}) ↾t 𝐴) ∈ (Fil‘𝐴) ∧ 𝐹:𝐴⟶𝐵) ∧ ((𝐾 fLimf (((nei‘𝐽)‘{𝑥}) ↾t 𝐴))‘𝐹) ≠ ∅) → ((𝐾 fLimf (((nei‘𝐽)‘{𝑥}) ↾t 𝐴))‘𝐹) ≈ 1o) |
40 | 26, 36, 37, 38, 39 | syl31anc 1372 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐶) → ((𝐾 fLimf (((nei‘𝐽)‘{𝑥}) ↾t 𝐴))‘𝐹) ≈ 1o) |
41 | 40 | expcom 414 |
. . . . . . . 8
⊢ (𝑥 ∈ 𝐶 → (𝜑 → ((𝐾 fLimf (((nei‘𝐽)‘{𝑥}) ↾t 𝐴))‘𝐹) ≈ 1o)) |
42 | 25, 41 | vtoclga 3513 |
. . . . . . 7
⊢ (𝑋 ∈ 𝐶 → (𝜑 → ((𝐾 fLimf (((nei‘𝐽)‘{𝑋}) ↾t 𝐴))‘𝐹) ≈ 1o)) |
43 | 42 | impcom 408 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑋 ∈ 𝐶) → ((𝐾 fLimf (((nei‘𝐽)‘{𝑋}) ↾t 𝐴))‘𝐹) ≈ 1o) |
44 | | en1b 8813 |
. . . . . 6
⊢ (((𝐾 fLimf (((nei‘𝐽)‘{𝑋}) ↾t 𝐴))‘𝐹) ≈ 1o ↔ ((𝐾 fLimf (((nei‘𝐽)‘{𝑋}) ↾t 𝐴))‘𝐹) = {∪ ((𝐾 fLimf (((nei‘𝐽)‘{𝑋}) ↾t 𝐴))‘𝐹)}) |
45 | 43, 44 | sylib 217 |
. . . . 5
⊢ ((𝜑 ∧ 𝑋 ∈ 𝐶) → ((𝐾 fLimf (((nei‘𝐽)‘{𝑋}) ↾t 𝐴))‘𝐹) = {∪ ((𝐾 fLimf (((nei‘𝐽)‘{𝑋}) ↾t 𝐴))‘𝐹)}) |
46 | 18, 45 | eleqtrrid 2846 |
. . . 4
⊢ ((𝜑 ∧ 𝑋 ∈ 𝐶) → ∪
((𝐾 fLimf
(((nei‘𝐽)‘{𝑋}) ↾t 𝐴))‘𝐹) ∈ ((𝐾 fLimf (((nei‘𝐽)‘{𝑋}) ↾t 𝐴))‘𝐹)) |
47 | | nfiu1 4958 |
. . . . . . . 8
⊢
Ⅎ𝑥∪ 𝑥 ∈ ((cls‘𝐽)‘𝐴)({𝑥} × ((𝐾 fLimf (((nei‘𝐽)‘{𝑥}) ↾t 𝐴))‘𝐹)) |
48 | 47 | nfel2 2925 |
. . . . . . 7
⊢
Ⅎ𝑥〈𝑋, ∪
((𝐾 fLimf
(((nei‘𝐽)‘{𝑋}) ↾t 𝐴))‘𝐹)〉 ∈ ∪ 𝑥 ∈ ((cls‘𝐽)‘𝐴)({𝑥} × ((𝐾 fLimf (((nei‘𝐽)‘{𝑥}) ↾t 𝐴))‘𝐹)) |
49 | | nfv 1917 |
. . . . . . 7
⊢
Ⅎ𝑥(𝑋 ∈ ((cls‘𝐽)‘𝐴) ∧ ∪ ((𝐾 fLimf (((nei‘𝐽)‘{𝑋}) ↾t 𝐴))‘𝐹) ∈ ((𝐾 fLimf (((nei‘𝐽)‘{𝑋}) ↾t 𝐴))‘𝐹)) |
50 | 48, 49 | nfbi 1906 |
. . . . . 6
⊢
Ⅎ𝑥(〈𝑋, ∪
((𝐾 fLimf
(((nei‘𝐽)‘{𝑋}) ↾t 𝐴))‘𝐹)〉 ∈ ∪ 𝑥 ∈ ((cls‘𝐽)‘𝐴)({𝑥} × ((𝐾 fLimf (((nei‘𝐽)‘{𝑥}) ↾t 𝐴))‘𝐹)) ↔ (𝑋 ∈ ((cls‘𝐽)‘𝐴) ∧ ∪ ((𝐾 fLimf (((nei‘𝐽)‘{𝑋}) ↾t 𝐴))‘𝐹) ∈ ((𝐾 fLimf (((nei‘𝐽)‘{𝑋}) ↾t 𝐴))‘𝐹))) |
51 | | opeq1 4804 |
. . . . . . . 8
⊢ (𝑥 = 𝑋 → 〈𝑥, ∪ ((𝐾 fLimf (((nei‘𝐽)‘{𝑋}) ↾t 𝐴))‘𝐹)〉 = 〈𝑋, ∪ ((𝐾 fLimf (((nei‘𝐽)‘{𝑋}) ↾t 𝐴))‘𝐹)〉) |
52 | 51 | eleq1d 2823 |
. . . . . . 7
⊢ (𝑥 = 𝑋 → (〈𝑥, ∪ ((𝐾 fLimf (((nei‘𝐽)‘{𝑋}) ↾t 𝐴))‘𝐹)〉 ∈ ∪ 𝑥 ∈ ((cls‘𝐽)‘𝐴)({𝑥} × ((𝐾 fLimf (((nei‘𝐽)‘{𝑥}) ↾t 𝐴))‘𝐹)) ↔ 〈𝑋, ∪ ((𝐾 fLimf (((nei‘𝐽)‘{𝑋}) ↾t 𝐴))‘𝐹)〉 ∈ ∪ 𝑥 ∈ ((cls‘𝐽)‘𝐴)({𝑥} × ((𝐾 fLimf (((nei‘𝐽)‘{𝑥}) ↾t 𝐴))‘𝐹)))) |
53 | | eleq1 2826 |
. . . . . . . 8
⊢ (𝑥 = 𝑋 → (𝑥 ∈ ((cls‘𝐽)‘𝐴) ↔ 𝑋 ∈ ((cls‘𝐽)‘𝐴))) |
54 | 23 | eleq2d 2824 |
. . . . . . . 8
⊢ (𝑥 = 𝑋 → (∪
((𝐾 fLimf
(((nei‘𝐽)‘{𝑋}) ↾t 𝐴))‘𝐹) ∈ ((𝐾 fLimf (((nei‘𝐽)‘{𝑥}) ↾t 𝐴))‘𝐹) ↔ ∪
((𝐾 fLimf
(((nei‘𝐽)‘{𝑋}) ↾t 𝐴))‘𝐹) ∈ ((𝐾 fLimf (((nei‘𝐽)‘{𝑋}) ↾t 𝐴))‘𝐹))) |
55 | 53, 54 | anbi12d 631 |
. . . . . . 7
⊢ (𝑥 = 𝑋 → ((𝑥 ∈ ((cls‘𝐽)‘𝐴) ∧ ∪ ((𝐾 fLimf (((nei‘𝐽)‘{𝑋}) ↾t 𝐴))‘𝐹) ∈ ((𝐾 fLimf (((nei‘𝐽)‘{𝑥}) ↾t 𝐴))‘𝐹)) ↔ (𝑋 ∈ ((cls‘𝐽)‘𝐴) ∧ ∪ ((𝐾 fLimf (((nei‘𝐽)‘{𝑋}) ↾t 𝐴))‘𝐹) ∈ ((𝐾 fLimf (((nei‘𝐽)‘{𝑋}) ↾t 𝐴))‘𝐹)))) |
56 | 52, 55 | bibi12d 346 |
. . . . . 6
⊢ (𝑥 = 𝑋 → ((〈𝑥, ∪ ((𝐾 fLimf (((nei‘𝐽)‘{𝑋}) ↾t 𝐴))‘𝐹)〉 ∈ ∪ 𝑥 ∈ ((cls‘𝐽)‘𝐴)({𝑥} × ((𝐾 fLimf (((nei‘𝐽)‘{𝑥}) ↾t 𝐴))‘𝐹)) ↔ (𝑥 ∈ ((cls‘𝐽)‘𝐴) ∧ ∪ ((𝐾 fLimf (((nei‘𝐽)‘{𝑋}) ↾t 𝐴))‘𝐹) ∈ ((𝐾 fLimf (((nei‘𝐽)‘{𝑥}) ↾t 𝐴))‘𝐹))) ↔ (〈𝑋, ∪ ((𝐾 fLimf (((nei‘𝐽)‘{𝑋}) ↾t 𝐴))‘𝐹)〉 ∈ ∪ 𝑥 ∈ ((cls‘𝐽)‘𝐴)({𝑥} × ((𝐾 fLimf (((nei‘𝐽)‘{𝑥}) ↾t 𝐴))‘𝐹)) ↔ (𝑋 ∈ ((cls‘𝐽)‘𝐴) ∧ ∪ ((𝐾 fLimf (((nei‘𝐽)‘{𝑋}) ↾t 𝐴))‘𝐹) ∈ ((𝐾 fLimf (((nei‘𝐽)‘{𝑋}) ↾t 𝐴))‘𝐹))))) |
57 | | opeliunxp 5654 |
. . . . . 6
⊢
(〈𝑥, ∪ ((𝐾
fLimf (((nei‘𝐽)‘{𝑋}) ↾t 𝐴))‘𝐹)〉 ∈ ∪ 𝑥 ∈ ((cls‘𝐽)‘𝐴)({𝑥} × ((𝐾 fLimf (((nei‘𝐽)‘{𝑥}) ↾t 𝐴))‘𝐹)) ↔ (𝑥 ∈ ((cls‘𝐽)‘𝐴) ∧ ∪ ((𝐾 fLimf (((nei‘𝐽)‘{𝑋}) ↾t 𝐴))‘𝐹) ∈ ((𝐾 fLimf (((nei‘𝐽)‘{𝑥}) ↾t 𝐴))‘𝐹))) |
58 | 50, 56, 57 | vtoclg1f 3504 |
. . . . 5
⊢ (𝑋 ∈ 𝐶 → (〈𝑋, ∪ ((𝐾 fLimf (((nei‘𝐽)‘{𝑋}) ↾t 𝐴))‘𝐹)〉 ∈ ∪ 𝑥 ∈ ((cls‘𝐽)‘𝐴)({𝑥} × ((𝐾 fLimf (((nei‘𝐽)‘{𝑥}) ↾t 𝐴))‘𝐹)) ↔ (𝑋 ∈ ((cls‘𝐽)‘𝐴) ∧ ∪ ((𝐾 fLimf (((nei‘𝐽)‘{𝑋}) ↾t 𝐴))‘𝐹) ∈ ((𝐾 fLimf (((nei‘𝐽)‘{𝑋}) ↾t 𝐴))‘𝐹)))) |
59 | 58 | adantl 482 |
. . . 4
⊢ ((𝜑 ∧ 𝑋 ∈ 𝐶) → (〈𝑋, ∪ ((𝐾 fLimf (((nei‘𝐽)‘{𝑋}) ↾t 𝐴))‘𝐹)〉 ∈ ∪ 𝑥 ∈ ((cls‘𝐽)‘𝐴)({𝑥} × ((𝐾 fLimf (((nei‘𝐽)‘{𝑥}) ↾t 𝐴))‘𝐹)) ↔ (𝑋 ∈ ((cls‘𝐽)‘𝐴) ∧ ∪ ((𝐾 fLimf (((nei‘𝐽)‘{𝑋}) ↾t 𝐴))‘𝐹) ∈ ((𝐾 fLimf (((nei‘𝐽)‘{𝑋}) ↾t 𝐴))‘𝐹)))) |
60 | 15, 46, 59 | mpbir2and 710 |
. . 3
⊢ ((𝜑 ∧ 𝑋 ∈ 𝐶) → 〈𝑋, ∪ ((𝐾 fLimf (((nei‘𝐽)‘{𝑋}) ↾t 𝐴))‘𝐹)〉 ∈ ∪ 𝑥 ∈ ((cls‘𝐽)‘𝐴)({𝑥} × ((𝐾 fLimf (((nei‘𝐽)‘{𝑥}) ↾t 𝐴))‘𝐹))) |
61 | | df-br 5075 |
. . . 4
⊢ (𝑋((𝐽CnExt𝐾)‘𝐹)∪ ((𝐾 fLimf (((nei‘𝐽)‘{𝑋}) ↾t 𝐴))‘𝐹) ↔ 〈𝑋, ∪ ((𝐾 fLimf (((nei‘𝐽)‘{𝑋}) ↾t 𝐴))‘𝐹)〉 ∈ ((𝐽CnExt𝐾)‘𝐹)) |
62 | | haustop 22482 |
. . . . . . . 8
⊢ (𝐾 ∈ Haus → 𝐾 ∈ Top) |
63 | 3, 62 | syl 17 |
. . . . . . 7
⊢ (𝜑 → 𝐾 ∈ Top) |
64 | 63 | adantr 481 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑋 ∈ 𝐶) → 𝐾 ∈ Top) |
65 | 9, 10 | cnextfval 23213 |
. . . . . 6
⊢ (((𝐽 ∈ Top ∧ 𝐾 ∈ Top) ∧ (𝐹:𝐴⟶𝐵 ∧ 𝐴 ⊆ 𝐶)) → ((𝐽CnExt𝐾)‘𝐹) = ∪
𝑥 ∈ ((cls‘𝐽)‘𝐴)({𝑥} × ((𝐾 fLimf (((nei‘𝐽)‘{𝑥}) ↾t 𝐴))‘𝐹))) |
66 | 2, 64, 6, 8, 65 | syl22anc 836 |
. . . . 5
⊢ ((𝜑 ∧ 𝑋 ∈ 𝐶) → ((𝐽CnExt𝐾)‘𝐹) = ∪
𝑥 ∈ ((cls‘𝐽)‘𝐴)({𝑥} × ((𝐾 fLimf (((nei‘𝐽)‘{𝑥}) ↾t 𝐴))‘𝐹))) |
67 | 66 | eleq2d 2824 |
. . . 4
⊢ ((𝜑 ∧ 𝑋 ∈ 𝐶) → (〈𝑋, ∪ ((𝐾 fLimf (((nei‘𝐽)‘{𝑋}) ↾t 𝐴))‘𝐹)〉 ∈ ((𝐽CnExt𝐾)‘𝐹) ↔ 〈𝑋, ∪ ((𝐾 fLimf (((nei‘𝐽)‘{𝑋}) ↾t 𝐴))‘𝐹)〉 ∈ ∪ 𝑥 ∈ ((cls‘𝐽)‘𝐴)({𝑥} × ((𝐾 fLimf (((nei‘𝐽)‘{𝑥}) ↾t 𝐴))‘𝐹)))) |
68 | 61, 67 | bitrid 282 |
. . 3
⊢ ((𝜑 ∧ 𝑋 ∈ 𝐶) → (𝑋((𝐽CnExt𝐾)‘𝐹)∪ ((𝐾 fLimf (((nei‘𝐽)‘{𝑋}) ↾t 𝐴))‘𝐹) ↔ 〈𝑋, ∪ ((𝐾 fLimf (((nei‘𝐽)‘{𝑋}) ↾t 𝐴))‘𝐹)〉 ∈ ∪ 𝑥 ∈ ((cls‘𝐽)‘𝐴)({𝑥} × ((𝐾 fLimf (((nei‘𝐽)‘{𝑥}) ↾t 𝐴))‘𝐹)))) |
69 | 60, 68 | mpbird 256 |
. 2
⊢ ((𝜑 ∧ 𝑋 ∈ 𝐶) → 𝑋((𝐽CnExt𝐾)‘𝐹)∪ ((𝐾 fLimf (((nei‘𝐽)‘{𝑋}) ↾t 𝐴))‘𝐹)) |
70 | | funbrfv 6820 |
. 2
⊢ (Fun
((𝐽CnExt𝐾)‘𝐹) → (𝑋((𝐽CnExt𝐾)‘𝐹)∪ ((𝐾 fLimf (((nei‘𝐽)‘{𝑋}) ↾t 𝐴))‘𝐹) → (((𝐽CnExt𝐾)‘𝐹)‘𝑋) = ∪ ((𝐾 fLimf (((nei‘𝐽)‘{𝑋}) ↾t 𝐴))‘𝐹))) |
71 | 12, 69, 70 | sylc 65 |
1
⊢ ((𝜑 ∧ 𝑋 ∈ 𝐶) → (((𝐽CnExt𝐾)‘𝐹)‘𝑋) = ∪ ((𝐾 fLimf (((nei‘𝐽)‘{𝑋}) ↾t 𝐴))‘𝐹)) |