MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  opeliunxp2 Structured version   Visualization version   GIF version

Theorem opeliunxp2 5702
Description: Membership in a union of Cartesian products. (Contributed by Mario Carneiro, 14-Feb-2015.)
Hypothesis
Ref Expression
opeliunxp2.1 (𝑥 = 𝐶𝐵 = 𝐸)
Assertion
Ref Expression
opeliunxp2 (⟨𝐶, 𝐷⟩ ∈ 𝑥𝐴 ({𝑥} × 𝐵) ↔ (𝐶𝐴𝐷𝐸))
Distinct variable groups:   𝑥,𝐶   𝑥,𝐷   𝑥,𝐸   𝑥,𝐴
Allowed substitution hint:   𝐵(𝑥)

Proof of Theorem opeliunxp2
StepHypRef Expression
1 df-br 5058 . . 3 (𝐶 𝑥𝐴 ({𝑥} × 𝐵)𝐷 ↔ ⟨𝐶, 𝐷⟩ ∈ 𝑥𝐴 ({𝑥} × 𝐵))
2 relxp 5566 . . . . . 6 Rel ({𝑥} × 𝐵)
32rgenw 3148 . . . . 5 𝑥𝐴 Rel ({𝑥} × 𝐵)
4 reliun 5682 . . . . 5 (Rel 𝑥𝐴 ({𝑥} × 𝐵) ↔ ∀𝑥𝐴 Rel ({𝑥} × 𝐵))
53, 4mpbir 233 . . . 4 Rel 𝑥𝐴 ({𝑥} × 𝐵)
65brrelex1i 5601 . . 3 (𝐶 𝑥𝐴 ({𝑥} × 𝐵)𝐷𝐶 ∈ V)
71, 6sylbir 237 . 2 (⟨𝐶, 𝐷⟩ ∈ 𝑥𝐴 ({𝑥} × 𝐵) → 𝐶 ∈ V)
8 elex 3511 . . 3 (𝐶𝐴𝐶 ∈ V)
98adantr 483 . 2 ((𝐶𝐴𝐷𝐸) → 𝐶 ∈ V)
10 nfiu1 4944 . . . . 5 𝑥 𝑥𝐴 ({𝑥} × 𝐵)
1110nfel2 2994 . . . 4 𝑥𝐶, 𝐷⟩ ∈ 𝑥𝐴 ({𝑥} × 𝐵)
12 nfv 1908 . . . 4 𝑥(𝐶𝐴𝐷𝐸)
1311, 12nfbi 1897 . . 3 𝑥(⟨𝐶, 𝐷⟩ ∈ 𝑥𝐴 ({𝑥} × 𝐵) ↔ (𝐶𝐴𝐷𝐸))
14 opeq1 4795 . . . . 5 (𝑥 = 𝐶 → ⟨𝑥, 𝐷⟩ = ⟨𝐶, 𝐷⟩)
1514eleq1d 2895 . . . 4 (𝑥 = 𝐶 → (⟨𝑥, 𝐷⟩ ∈ 𝑥𝐴 ({𝑥} × 𝐵) ↔ ⟨𝐶, 𝐷⟩ ∈ 𝑥𝐴 ({𝑥} × 𝐵)))
16 eleq1 2898 . . . . 5 (𝑥 = 𝐶 → (𝑥𝐴𝐶𝐴))
17 opeliunxp2.1 . . . . . 6 (𝑥 = 𝐶𝐵 = 𝐸)
1817eleq2d 2896 . . . . 5 (𝑥 = 𝐶 → (𝐷𝐵𝐷𝐸))
1916, 18anbi12d 632 . . . 4 (𝑥 = 𝐶 → ((𝑥𝐴𝐷𝐵) ↔ (𝐶𝐴𝐷𝐸)))
2015, 19bibi12d 348 . . 3 (𝑥 = 𝐶 → ((⟨𝑥, 𝐷⟩ ∈ 𝑥𝐴 ({𝑥} × 𝐵) ↔ (𝑥𝐴𝐷𝐵)) ↔ (⟨𝐶, 𝐷⟩ ∈ 𝑥𝐴 ({𝑥} × 𝐵) ↔ (𝐶𝐴𝐷𝐸))))
21 opeliunxp 5612 . . 3 (⟨𝑥, 𝐷⟩ ∈ 𝑥𝐴 ({𝑥} × 𝐵) ↔ (𝑥𝐴𝐷𝐵))
2213, 20, 21vtoclg1f 3565 . 2 (𝐶 ∈ V → (⟨𝐶, 𝐷⟩ ∈ 𝑥𝐴 ({𝑥} × 𝐵) ↔ (𝐶𝐴𝐷𝐸)))
237, 9, 22pm5.21nii 382 1 (⟨𝐶, 𝐷⟩ ∈ 𝑥𝐴 ({𝑥} × 𝐵) ↔ (𝐶𝐴𝐷𝐸))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398   = wceq 1530  wcel 2107  wral 3136  Vcvv 3493  {csn 4559  cop 4565   ciun 4910   class class class wbr 5057   × cxp 5546  Rel wrel 5553
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1904  ax-6 1963  ax-7 2008  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2153  ax-12 2169  ax-ext 2791  ax-sep 5194  ax-nul 5201  ax-pr 5320
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1083  df-tru 1533  df-ex 1774  df-nf 1778  df-sb 2063  df-clab 2798  df-cleq 2812  df-clel 2891  df-nfc 2961  df-ral 3141  df-rex 3142  df-rab 3145  df-v 3495  df-sbc 3771  df-csb 3882  df-dif 3937  df-un 3939  df-in 3941  df-ss 3950  df-nul 4290  df-if 4466  df-sn 4560  df-pr 4562  df-op 4566  df-iun 4912  df-br 5058  df-opab 5120  df-xp 5554  df-rel 5555
This theorem is referenced by:  mpoxopn0yelv  7871  mpoxopxnop0  7873  eldmcoa  17317  dmdprd  19112  ply1frcl  20473  cnextfres  22669  eldv  24488  perfdvf  24493  eltayl  24940  dfcnv2  30414  cvmliftlem1  32520  filnetlem3  33716
  Copyright terms: Public domain W3C validator