![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > opeliunxp2 | Structured version Visualization version GIF version |
Description: Membership in a union of Cartesian products. (Contributed by Mario Carneiro, 14-Feb-2015.) |
Ref | Expression |
---|---|
opeliunxp2.1 | ⊢ (𝑥 = 𝐶 → 𝐵 = 𝐸) |
Ref | Expression |
---|---|
opeliunxp2 | ⊢ (〈𝐶, 𝐷〉 ∈ ∪ 𝑥 ∈ 𝐴 ({𝑥} × 𝐵) ↔ (𝐶 ∈ 𝐴 ∧ 𝐷 ∈ 𝐸)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-br 5149 | . . 3 ⊢ (𝐶∪ 𝑥 ∈ 𝐴 ({𝑥} × 𝐵)𝐷 ↔ 〈𝐶, 𝐷〉 ∈ ∪ 𝑥 ∈ 𝐴 ({𝑥} × 𝐵)) | |
2 | relxp 5694 | . . . . . 6 ⊢ Rel ({𝑥} × 𝐵) | |
3 | 2 | rgenw 3064 | . . . . 5 ⊢ ∀𝑥 ∈ 𝐴 Rel ({𝑥} × 𝐵) |
4 | reliun 5816 | . . . . 5 ⊢ (Rel ∪ 𝑥 ∈ 𝐴 ({𝑥} × 𝐵) ↔ ∀𝑥 ∈ 𝐴 Rel ({𝑥} × 𝐵)) | |
5 | 3, 4 | mpbir 230 | . . . 4 ⊢ Rel ∪ 𝑥 ∈ 𝐴 ({𝑥} × 𝐵) |
6 | 5 | brrelex1i 5732 | . . 3 ⊢ (𝐶∪ 𝑥 ∈ 𝐴 ({𝑥} × 𝐵)𝐷 → 𝐶 ∈ V) |
7 | 1, 6 | sylbir 234 | . 2 ⊢ (〈𝐶, 𝐷〉 ∈ ∪ 𝑥 ∈ 𝐴 ({𝑥} × 𝐵) → 𝐶 ∈ V) |
8 | elex 3492 | . . 3 ⊢ (𝐶 ∈ 𝐴 → 𝐶 ∈ V) | |
9 | 8 | adantr 480 | . 2 ⊢ ((𝐶 ∈ 𝐴 ∧ 𝐷 ∈ 𝐸) → 𝐶 ∈ V) |
10 | nfiu1 5031 | . . . . 5 ⊢ Ⅎ𝑥∪ 𝑥 ∈ 𝐴 ({𝑥} × 𝐵) | |
11 | 10 | nfel2 2920 | . . . 4 ⊢ Ⅎ𝑥〈𝐶, 𝐷〉 ∈ ∪ 𝑥 ∈ 𝐴 ({𝑥} × 𝐵) |
12 | nfv 1916 | . . . 4 ⊢ Ⅎ𝑥(𝐶 ∈ 𝐴 ∧ 𝐷 ∈ 𝐸) | |
13 | 11, 12 | nfbi 1905 | . . 3 ⊢ Ⅎ𝑥(〈𝐶, 𝐷〉 ∈ ∪ 𝑥 ∈ 𝐴 ({𝑥} × 𝐵) ↔ (𝐶 ∈ 𝐴 ∧ 𝐷 ∈ 𝐸)) |
14 | opeq1 4873 | . . . . 5 ⊢ (𝑥 = 𝐶 → 〈𝑥, 𝐷〉 = 〈𝐶, 𝐷〉) | |
15 | 14 | eleq1d 2817 | . . . 4 ⊢ (𝑥 = 𝐶 → (〈𝑥, 𝐷〉 ∈ ∪ 𝑥 ∈ 𝐴 ({𝑥} × 𝐵) ↔ 〈𝐶, 𝐷〉 ∈ ∪ 𝑥 ∈ 𝐴 ({𝑥} × 𝐵))) |
16 | eleq1 2820 | . . . . 5 ⊢ (𝑥 = 𝐶 → (𝑥 ∈ 𝐴 ↔ 𝐶 ∈ 𝐴)) | |
17 | opeliunxp2.1 | . . . . . 6 ⊢ (𝑥 = 𝐶 → 𝐵 = 𝐸) | |
18 | 17 | eleq2d 2818 | . . . . 5 ⊢ (𝑥 = 𝐶 → (𝐷 ∈ 𝐵 ↔ 𝐷 ∈ 𝐸)) |
19 | 16, 18 | anbi12d 630 | . . . 4 ⊢ (𝑥 = 𝐶 → ((𝑥 ∈ 𝐴 ∧ 𝐷 ∈ 𝐵) ↔ (𝐶 ∈ 𝐴 ∧ 𝐷 ∈ 𝐸))) |
20 | 15, 19 | bibi12d 345 | . . 3 ⊢ (𝑥 = 𝐶 → ((〈𝑥, 𝐷〉 ∈ ∪ 𝑥 ∈ 𝐴 ({𝑥} × 𝐵) ↔ (𝑥 ∈ 𝐴 ∧ 𝐷 ∈ 𝐵)) ↔ (〈𝐶, 𝐷〉 ∈ ∪ 𝑥 ∈ 𝐴 ({𝑥} × 𝐵) ↔ (𝐶 ∈ 𝐴 ∧ 𝐷 ∈ 𝐸)))) |
21 | opeliunxp 5743 | . . 3 ⊢ (〈𝑥, 𝐷〉 ∈ ∪ 𝑥 ∈ 𝐴 ({𝑥} × 𝐵) ↔ (𝑥 ∈ 𝐴 ∧ 𝐷 ∈ 𝐵)) | |
22 | 13, 20, 21 | vtoclg1f 3558 | . 2 ⊢ (𝐶 ∈ V → (〈𝐶, 𝐷〉 ∈ ∪ 𝑥 ∈ 𝐴 ({𝑥} × 𝐵) ↔ (𝐶 ∈ 𝐴 ∧ 𝐷 ∈ 𝐸))) |
23 | 7, 9, 22 | pm5.21nii 378 | 1 ⊢ (〈𝐶, 𝐷〉 ∈ ∪ 𝑥 ∈ 𝐴 ({𝑥} × 𝐵) ↔ (𝐶 ∈ 𝐴 ∧ 𝐷 ∈ 𝐸)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 = wceq 1540 ∈ wcel 2105 ∀wral 3060 Vcvv 3473 {csn 4628 〈cop 4634 ∪ ciun 4997 class class class wbr 5148 × cxp 5674 Rel wrel 5681 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2702 ax-sep 5299 ax-nul 5306 ax-pr 5427 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-clab 2709 df-cleq 2723 df-clel 2809 df-nfc 2884 df-ral 3061 df-rex 3070 df-rab 3432 df-v 3475 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-nul 4323 df-if 4529 df-sn 4629 df-pr 4631 df-op 4635 df-iun 4999 df-br 5149 df-opab 5211 df-xp 5682 df-rel 5683 |
This theorem is referenced by: mpoxopn0yelv 8204 mpoxopxnop0 8206 eldmcoa 18025 dmdprd 19916 ply1frcl 22157 cnextfres 23893 eldv 25747 perfdvf 25752 eltayl 26211 dfcnv2 32334 cvmliftlem1 34740 filnetlem3 35729 |
Copyright terms: Public domain | W3C validator |