Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > opeliunxp2 | Structured version Visualization version GIF version |
Description: Membership in a union of Cartesian products. (Contributed by Mario Carneiro, 14-Feb-2015.) |
Ref | Expression |
---|---|
opeliunxp2.1 | ⊢ (𝑥 = 𝐶 → 𝐵 = 𝐸) |
Ref | Expression |
---|---|
opeliunxp2 | ⊢ (〈𝐶, 𝐷〉 ∈ ∪ 𝑥 ∈ 𝐴 ({𝑥} × 𝐵) ↔ (𝐶 ∈ 𝐴 ∧ 𝐷 ∈ 𝐸)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-br 5075 | . . 3 ⊢ (𝐶∪ 𝑥 ∈ 𝐴 ({𝑥} × 𝐵)𝐷 ↔ 〈𝐶, 𝐷〉 ∈ ∪ 𝑥 ∈ 𝐴 ({𝑥} × 𝐵)) | |
2 | relxp 5607 | . . . . . 6 ⊢ Rel ({𝑥} × 𝐵) | |
3 | 2 | rgenw 3076 | . . . . 5 ⊢ ∀𝑥 ∈ 𝐴 Rel ({𝑥} × 𝐵) |
4 | reliun 5726 | . . . . 5 ⊢ (Rel ∪ 𝑥 ∈ 𝐴 ({𝑥} × 𝐵) ↔ ∀𝑥 ∈ 𝐴 Rel ({𝑥} × 𝐵)) | |
5 | 3, 4 | mpbir 230 | . . . 4 ⊢ Rel ∪ 𝑥 ∈ 𝐴 ({𝑥} × 𝐵) |
6 | 5 | brrelex1i 5643 | . . 3 ⊢ (𝐶∪ 𝑥 ∈ 𝐴 ({𝑥} × 𝐵)𝐷 → 𝐶 ∈ V) |
7 | 1, 6 | sylbir 234 | . 2 ⊢ (〈𝐶, 𝐷〉 ∈ ∪ 𝑥 ∈ 𝐴 ({𝑥} × 𝐵) → 𝐶 ∈ V) |
8 | elex 3450 | . . 3 ⊢ (𝐶 ∈ 𝐴 → 𝐶 ∈ V) | |
9 | 8 | adantr 481 | . 2 ⊢ ((𝐶 ∈ 𝐴 ∧ 𝐷 ∈ 𝐸) → 𝐶 ∈ V) |
10 | nfiu1 4958 | . . . . 5 ⊢ Ⅎ𝑥∪ 𝑥 ∈ 𝐴 ({𝑥} × 𝐵) | |
11 | 10 | nfel2 2925 | . . . 4 ⊢ Ⅎ𝑥〈𝐶, 𝐷〉 ∈ ∪ 𝑥 ∈ 𝐴 ({𝑥} × 𝐵) |
12 | nfv 1917 | . . . 4 ⊢ Ⅎ𝑥(𝐶 ∈ 𝐴 ∧ 𝐷 ∈ 𝐸) | |
13 | 11, 12 | nfbi 1906 | . . 3 ⊢ Ⅎ𝑥(〈𝐶, 𝐷〉 ∈ ∪ 𝑥 ∈ 𝐴 ({𝑥} × 𝐵) ↔ (𝐶 ∈ 𝐴 ∧ 𝐷 ∈ 𝐸)) |
14 | opeq1 4804 | . . . . 5 ⊢ (𝑥 = 𝐶 → 〈𝑥, 𝐷〉 = 〈𝐶, 𝐷〉) | |
15 | 14 | eleq1d 2823 | . . . 4 ⊢ (𝑥 = 𝐶 → (〈𝑥, 𝐷〉 ∈ ∪ 𝑥 ∈ 𝐴 ({𝑥} × 𝐵) ↔ 〈𝐶, 𝐷〉 ∈ ∪ 𝑥 ∈ 𝐴 ({𝑥} × 𝐵))) |
16 | eleq1 2826 | . . . . 5 ⊢ (𝑥 = 𝐶 → (𝑥 ∈ 𝐴 ↔ 𝐶 ∈ 𝐴)) | |
17 | opeliunxp2.1 | . . . . . 6 ⊢ (𝑥 = 𝐶 → 𝐵 = 𝐸) | |
18 | 17 | eleq2d 2824 | . . . . 5 ⊢ (𝑥 = 𝐶 → (𝐷 ∈ 𝐵 ↔ 𝐷 ∈ 𝐸)) |
19 | 16, 18 | anbi12d 631 | . . . 4 ⊢ (𝑥 = 𝐶 → ((𝑥 ∈ 𝐴 ∧ 𝐷 ∈ 𝐵) ↔ (𝐶 ∈ 𝐴 ∧ 𝐷 ∈ 𝐸))) |
20 | 15, 19 | bibi12d 346 | . . 3 ⊢ (𝑥 = 𝐶 → ((〈𝑥, 𝐷〉 ∈ ∪ 𝑥 ∈ 𝐴 ({𝑥} × 𝐵) ↔ (𝑥 ∈ 𝐴 ∧ 𝐷 ∈ 𝐵)) ↔ (〈𝐶, 𝐷〉 ∈ ∪ 𝑥 ∈ 𝐴 ({𝑥} × 𝐵) ↔ (𝐶 ∈ 𝐴 ∧ 𝐷 ∈ 𝐸)))) |
21 | opeliunxp 5654 | . . 3 ⊢ (〈𝑥, 𝐷〉 ∈ ∪ 𝑥 ∈ 𝐴 ({𝑥} × 𝐵) ↔ (𝑥 ∈ 𝐴 ∧ 𝐷 ∈ 𝐵)) | |
22 | 13, 20, 21 | vtoclg1f 3504 | . 2 ⊢ (𝐶 ∈ V → (〈𝐶, 𝐷〉 ∈ ∪ 𝑥 ∈ 𝐴 ({𝑥} × 𝐵) ↔ (𝐶 ∈ 𝐴 ∧ 𝐷 ∈ 𝐸))) |
23 | 7, 9, 22 | pm5.21nii 380 | 1 ⊢ (〈𝐶, 𝐷〉 ∈ ∪ 𝑥 ∈ 𝐴 ({𝑥} × 𝐵) ↔ (𝐶 ∈ 𝐴 ∧ 𝐷 ∈ 𝐸)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 396 = wceq 1539 ∈ wcel 2106 ∀wral 3064 Vcvv 3432 {csn 4561 〈cop 4567 ∪ ciun 4924 class class class wbr 5074 × cxp 5587 Rel wrel 5594 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pr 5352 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ral 3069 df-rex 3070 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-sn 4562 df-pr 4564 df-op 4568 df-iun 4926 df-br 5075 df-opab 5137 df-xp 5595 df-rel 5596 |
This theorem is referenced by: mpoxopn0yelv 8029 mpoxopxnop0 8031 eldmcoa 17780 dmdprd 19601 ply1frcl 21484 cnextfres 23220 eldv 25062 perfdvf 25067 eltayl 25519 dfcnv2 31013 cvmliftlem1 33247 filnetlem3 34569 |
Copyright terms: Public domain | W3C validator |