MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  opeliunxp2 Structured version   Visualization version   GIF version

Theorem opeliunxp2 5805
Description: Membership in a union of Cartesian products. (Contributed by Mario Carneiro, 14-Feb-2015.)
Hypothesis
Ref Expression
opeliunxp2.1 (𝑥 = 𝐶𝐵 = 𝐸)
Assertion
Ref Expression
opeliunxp2 (⟨𝐶, 𝐷⟩ ∈ 𝑥𝐴 ({𝑥} × 𝐵) ↔ (𝐶𝐴𝐷𝐸))
Distinct variable groups:   𝑥,𝐶   𝑥,𝐷   𝑥,𝐸   𝑥,𝐴
Allowed substitution hint:   𝐵(𝑥)

Proof of Theorem opeliunxp2
StepHypRef Expression
1 df-br 5111 . . 3 (𝐶 𝑥𝐴 ({𝑥} × 𝐵)𝐷 ↔ ⟨𝐶, 𝐷⟩ ∈ 𝑥𝐴 ({𝑥} × 𝐵))
2 relxp 5659 . . . . . 6 Rel ({𝑥} × 𝐵)
32rgenw 3049 . . . . 5 𝑥𝐴 Rel ({𝑥} × 𝐵)
4 reliun 5782 . . . . 5 (Rel 𝑥𝐴 ({𝑥} × 𝐵) ↔ ∀𝑥𝐴 Rel ({𝑥} × 𝐵))
53, 4mpbir 231 . . . 4 Rel 𝑥𝐴 ({𝑥} × 𝐵)
65brrelex1i 5697 . . 3 (𝐶 𝑥𝐴 ({𝑥} × 𝐵)𝐷𝐶 ∈ V)
71, 6sylbir 235 . 2 (⟨𝐶, 𝐷⟩ ∈ 𝑥𝐴 ({𝑥} × 𝐵) → 𝐶 ∈ V)
8 elex 3471 . . 3 (𝐶𝐴𝐶 ∈ V)
98adantr 480 . 2 ((𝐶𝐴𝐷𝐸) → 𝐶 ∈ V)
10 nfiu1 4994 . . . . 5 𝑥 𝑥𝐴 ({𝑥} × 𝐵)
1110nfel2 2911 . . . 4 𝑥𝐶, 𝐷⟩ ∈ 𝑥𝐴 ({𝑥} × 𝐵)
12 nfv 1914 . . . 4 𝑥(𝐶𝐴𝐷𝐸)
1311, 12nfbi 1903 . . 3 𝑥(⟨𝐶, 𝐷⟩ ∈ 𝑥𝐴 ({𝑥} × 𝐵) ↔ (𝐶𝐴𝐷𝐸))
14 opeq1 4840 . . . . 5 (𝑥 = 𝐶 → ⟨𝑥, 𝐷⟩ = ⟨𝐶, 𝐷⟩)
1514eleq1d 2814 . . . 4 (𝑥 = 𝐶 → (⟨𝑥, 𝐷⟩ ∈ 𝑥𝐴 ({𝑥} × 𝐵) ↔ ⟨𝐶, 𝐷⟩ ∈ 𝑥𝐴 ({𝑥} × 𝐵)))
16 eleq1 2817 . . . . 5 (𝑥 = 𝐶 → (𝑥𝐴𝐶𝐴))
17 opeliunxp2.1 . . . . . 6 (𝑥 = 𝐶𝐵 = 𝐸)
1817eleq2d 2815 . . . . 5 (𝑥 = 𝐶 → (𝐷𝐵𝐷𝐸))
1916, 18anbi12d 632 . . . 4 (𝑥 = 𝐶 → ((𝑥𝐴𝐷𝐵) ↔ (𝐶𝐴𝐷𝐸)))
2015, 19bibi12d 345 . . 3 (𝑥 = 𝐶 → ((⟨𝑥, 𝐷⟩ ∈ 𝑥𝐴 ({𝑥} × 𝐵) ↔ (𝑥𝐴𝐷𝐵)) ↔ (⟨𝐶, 𝐷⟩ ∈ 𝑥𝐴 ({𝑥} × 𝐵) ↔ (𝐶𝐴𝐷𝐸))))
21 opeliunxp 5708 . . 3 (⟨𝑥, 𝐷⟩ ∈ 𝑥𝐴 ({𝑥} × 𝐵) ↔ (𝑥𝐴𝐷𝐵))
2213, 20, 21vtoclg1f 3539 . 2 (𝐶 ∈ V → (⟨𝐶, 𝐷⟩ ∈ 𝑥𝐴 ({𝑥} × 𝐵) ↔ (𝐶𝐴𝐷𝐸)))
237, 9, 22pm5.21nii 378 1 (⟨𝐶, 𝐷⟩ ∈ 𝑥𝐴 ({𝑥} × 𝐵) ↔ (𝐶𝐴𝐷𝐸))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  wral 3045  Vcvv 3450  {csn 4592  cop 4598   ciun 4958   class class class wbr 5110   × cxp 5639  Rel wrel 5646
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pr 5390
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ral 3046  df-rex 3055  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-ss 3934  df-nul 4300  df-if 4492  df-sn 4593  df-pr 4595  df-op 4599  df-iun 4960  df-br 5111  df-opab 5173  df-xp 5647  df-rel 5648
This theorem is referenced by:  mpoxopn0yelv  8195  mpoxopxnop0  8197  eldmcoa  18034  dmdprd  19937  ply1frcl  22212  cnextfres  23963  eldv  25806  perfdvf  25811  eltayl  26274  dfcnv2  32607  gsumwrd2dccat  33014  cvmliftlem1  35279  filnetlem3  36375
  Copyright terms: Public domain W3C validator