![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > opeliunxp2 | Structured version Visualization version GIF version |
Description: Membership in a union of Cartesian products. (Contributed by Mario Carneiro, 14-Feb-2015.) |
Ref | Expression |
---|---|
opeliunxp2.1 | ⊢ (𝑥 = 𝐶 → 𝐵 = 𝐸) |
Ref | Expression |
---|---|
opeliunxp2 | ⊢ (〈𝐶, 𝐷〉 ∈ ∪ 𝑥 ∈ 𝐴 ({𝑥} × 𝐵) ↔ (𝐶 ∈ 𝐴 ∧ 𝐷 ∈ 𝐸)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-br 4844 | . . 3 ⊢ (𝐶∪ 𝑥 ∈ 𝐴 ({𝑥} × 𝐵)𝐷 ↔ 〈𝐶, 𝐷〉 ∈ ∪ 𝑥 ∈ 𝐴 ({𝑥} × 𝐵)) | |
2 | relxp 5330 | . . . . . 6 ⊢ Rel ({𝑥} × 𝐵) | |
3 | 2 | rgenw 3105 | . . . . 5 ⊢ ∀𝑥 ∈ 𝐴 Rel ({𝑥} × 𝐵) |
4 | reliun 5443 | . . . . 5 ⊢ (Rel ∪ 𝑥 ∈ 𝐴 ({𝑥} × 𝐵) ↔ ∀𝑥 ∈ 𝐴 Rel ({𝑥} × 𝐵)) | |
5 | 3, 4 | mpbir 223 | . . . 4 ⊢ Rel ∪ 𝑥 ∈ 𝐴 ({𝑥} × 𝐵) |
6 | 5 | brrelex1i 5363 | . . 3 ⊢ (𝐶∪ 𝑥 ∈ 𝐴 ({𝑥} × 𝐵)𝐷 → 𝐶 ∈ V) |
7 | 1, 6 | sylbir 227 | . 2 ⊢ (〈𝐶, 𝐷〉 ∈ ∪ 𝑥 ∈ 𝐴 ({𝑥} × 𝐵) → 𝐶 ∈ V) |
8 | elex 3400 | . . 3 ⊢ (𝐶 ∈ 𝐴 → 𝐶 ∈ V) | |
9 | 8 | adantr 473 | . 2 ⊢ ((𝐶 ∈ 𝐴 ∧ 𝐷 ∈ 𝐸) → 𝐶 ∈ V) |
10 | nfiu1 4740 | . . . . 5 ⊢ Ⅎ𝑥∪ 𝑥 ∈ 𝐴 ({𝑥} × 𝐵) | |
11 | 10 | nfel2 2958 | . . . 4 ⊢ Ⅎ𝑥〈𝐶, 𝐷〉 ∈ ∪ 𝑥 ∈ 𝐴 ({𝑥} × 𝐵) |
12 | nfv 2010 | . . . 4 ⊢ Ⅎ𝑥(𝐶 ∈ 𝐴 ∧ 𝐷 ∈ 𝐸) | |
13 | 11, 12 | nfbi 2003 | . . 3 ⊢ Ⅎ𝑥(〈𝐶, 𝐷〉 ∈ ∪ 𝑥 ∈ 𝐴 ({𝑥} × 𝐵) ↔ (𝐶 ∈ 𝐴 ∧ 𝐷 ∈ 𝐸)) |
14 | opeq1 4593 | . . . . 5 ⊢ (𝑥 = 𝐶 → 〈𝑥, 𝐷〉 = 〈𝐶, 𝐷〉) | |
15 | 14 | eleq1d 2863 | . . . 4 ⊢ (𝑥 = 𝐶 → (〈𝑥, 𝐷〉 ∈ ∪ 𝑥 ∈ 𝐴 ({𝑥} × 𝐵) ↔ 〈𝐶, 𝐷〉 ∈ ∪ 𝑥 ∈ 𝐴 ({𝑥} × 𝐵))) |
16 | eleq1 2866 | . . . . 5 ⊢ (𝑥 = 𝐶 → (𝑥 ∈ 𝐴 ↔ 𝐶 ∈ 𝐴)) | |
17 | opeliunxp2.1 | . . . . . 6 ⊢ (𝑥 = 𝐶 → 𝐵 = 𝐸) | |
18 | 17 | eleq2d 2864 | . . . . 5 ⊢ (𝑥 = 𝐶 → (𝐷 ∈ 𝐵 ↔ 𝐷 ∈ 𝐸)) |
19 | 16, 18 | anbi12d 625 | . . . 4 ⊢ (𝑥 = 𝐶 → ((𝑥 ∈ 𝐴 ∧ 𝐷 ∈ 𝐵) ↔ (𝐶 ∈ 𝐴 ∧ 𝐷 ∈ 𝐸))) |
20 | 15, 19 | bibi12d 337 | . . 3 ⊢ (𝑥 = 𝐶 → ((〈𝑥, 𝐷〉 ∈ ∪ 𝑥 ∈ 𝐴 ({𝑥} × 𝐵) ↔ (𝑥 ∈ 𝐴 ∧ 𝐷 ∈ 𝐵)) ↔ (〈𝐶, 𝐷〉 ∈ ∪ 𝑥 ∈ 𝐴 ({𝑥} × 𝐵) ↔ (𝐶 ∈ 𝐴 ∧ 𝐷 ∈ 𝐸)))) |
21 | opeliunxp 5373 | . . 3 ⊢ (〈𝑥, 𝐷〉 ∈ ∪ 𝑥 ∈ 𝐴 ({𝑥} × 𝐵) ↔ (𝑥 ∈ 𝐴 ∧ 𝐷 ∈ 𝐵)) | |
22 | 13, 20, 21 | vtoclg1f 3452 | . 2 ⊢ (𝐶 ∈ V → (〈𝐶, 𝐷〉 ∈ ∪ 𝑥 ∈ 𝐴 ({𝑥} × 𝐵) ↔ (𝐶 ∈ 𝐴 ∧ 𝐷 ∈ 𝐸))) |
23 | 7, 9, 22 | pm5.21nii 370 | 1 ⊢ (〈𝐶, 𝐷〉 ∈ ∪ 𝑥 ∈ 𝐴 ({𝑥} × 𝐵) ↔ (𝐶 ∈ 𝐴 ∧ 𝐷 ∈ 𝐸)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 198 ∧ wa 385 = wceq 1653 ∈ wcel 2157 ∀wral 3089 Vcvv 3385 {csn 4368 〈cop 4374 ∪ ciun 4710 class class class wbr 4843 × cxp 5310 Rel wrel 5317 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1891 ax-4 1905 ax-5 2006 ax-6 2072 ax-7 2107 ax-9 2166 ax-10 2185 ax-11 2200 ax-12 2213 ax-13 2377 ax-ext 2777 ax-sep 4975 ax-nul 4983 ax-pr 5097 |
This theorem depends on definitions: df-bi 199 df-an 386 df-or 875 df-3an 1110 df-tru 1657 df-ex 1876 df-nf 1880 df-sb 2065 df-clab 2786 df-cleq 2792 df-clel 2795 df-nfc 2930 df-ral 3094 df-rex 3095 df-rab 3098 df-v 3387 df-sbc 3634 df-csb 3729 df-dif 3772 df-un 3774 df-in 3776 df-ss 3783 df-nul 4116 df-if 4278 df-sn 4369 df-pr 4371 df-op 4375 df-iun 4712 df-br 4844 df-opab 4906 df-xp 5318 df-rel 5319 |
This theorem is referenced by: mpt2xopn0yelv 7577 mpt2xopxnop0 7579 eldmcoa 17029 dmdprd 18713 ply1frcl 20005 cnextfres 22201 eldv 24003 perfdvf 24008 eltayl 24455 dfcnv2 29994 cvmliftlem1 31784 filnetlem3 32887 |
Copyright terms: Public domain | W3C validator |