| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > opeliunxp2 | Structured version Visualization version GIF version | ||
| Description: Membership in a union of Cartesian products. (Contributed by Mario Carneiro, 14-Feb-2015.) |
| Ref | Expression |
|---|---|
| opeliunxp2.1 | ⊢ (𝑥 = 𝐶 → 𝐵 = 𝐸) |
| Ref | Expression |
|---|---|
| opeliunxp2 | ⊢ (〈𝐶, 𝐷〉 ∈ ∪ 𝑥 ∈ 𝐴 ({𝑥} × 𝐵) ↔ (𝐶 ∈ 𝐴 ∧ 𝐷 ∈ 𝐸)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-br 5108 | . . 3 ⊢ (𝐶∪ 𝑥 ∈ 𝐴 ({𝑥} × 𝐵)𝐷 ↔ 〈𝐶, 𝐷〉 ∈ ∪ 𝑥 ∈ 𝐴 ({𝑥} × 𝐵)) | |
| 2 | relxp 5656 | . . . . . 6 ⊢ Rel ({𝑥} × 𝐵) | |
| 3 | 2 | rgenw 3048 | . . . . 5 ⊢ ∀𝑥 ∈ 𝐴 Rel ({𝑥} × 𝐵) |
| 4 | reliun 5779 | . . . . 5 ⊢ (Rel ∪ 𝑥 ∈ 𝐴 ({𝑥} × 𝐵) ↔ ∀𝑥 ∈ 𝐴 Rel ({𝑥} × 𝐵)) | |
| 5 | 3, 4 | mpbir 231 | . . . 4 ⊢ Rel ∪ 𝑥 ∈ 𝐴 ({𝑥} × 𝐵) |
| 6 | 5 | brrelex1i 5694 | . . 3 ⊢ (𝐶∪ 𝑥 ∈ 𝐴 ({𝑥} × 𝐵)𝐷 → 𝐶 ∈ V) |
| 7 | 1, 6 | sylbir 235 | . 2 ⊢ (〈𝐶, 𝐷〉 ∈ ∪ 𝑥 ∈ 𝐴 ({𝑥} × 𝐵) → 𝐶 ∈ V) |
| 8 | elex 3468 | . . 3 ⊢ (𝐶 ∈ 𝐴 → 𝐶 ∈ V) | |
| 9 | 8 | adantr 480 | . 2 ⊢ ((𝐶 ∈ 𝐴 ∧ 𝐷 ∈ 𝐸) → 𝐶 ∈ V) |
| 10 | nfiu1 4991 | . . . . 5 ⊢ Ⅎ𝑥∪ 𝑥 ∈ 𝐴 ({𝑥} × 𝐵) | |
| 11 | 10 | nfel2 2910 | . . . 4 ⊢ Ⅎ𝑥〈𝐶, 𝐷〉 ∈ ∪ 𝑥 ∈ 𝐴 ({𝑥} × 𝐵) |
| 12 | nfv 1914 | . . . 4 ⊢ Ⅎ𝑥(𝐶 ∈ 𝐴 ∧ 𝐷 ∈ 𝐸) | |
| 13 | 11, 12 | nfbi 1903 | . . 3 ⊢ Ⅎ𝑥(〈𝐶, 𝐷〉 ∈ ∪ 𝑥 ∈ 𝐴 ({𝑥} × 𝐵) ↔ (𝐶 ∈ 𝐴 ∧ 𝐷 ∈ 𝐸)) |
| 14 | opeq1 4837 | . . . . 5 ⊢ (𝑥 = 𝐶 → 〈𝑥, 𝐷〉 = 〈𝐶, 𝐷〉) | |
| 15 | 14 | eleq1d 2813 | . . . 4 ⊢ (𝑥 = 𝐶 → (〈𝑥, 𝐷〉 ∈ ∪ 𝑥 ∈ 𝐴 ({𝑥} × 𝐵) ↔ 〈𝐶, 𝐷〉 ∈ ∪ 𝑥 ∈ 𝐴 ({𝑥} × 𝐵))) |
| 16 | eleq1 2816 | . . . . 5 ⊢ (𝑥 = 𝐶 → (𝑥 ∈ 𝐴 ↔ 𝐶 ∈ 𝐴)) | |
| 17 | opeliunxp2.1 | . . . . . 6 ⊢ (𝑥 = 𝐶 → 𝐵 = 𝐸) | |
| 18 | 17 | eleq2d 2814 | . . . . 5 ⊢ (𝑥 = 𝐶 → (𝐷 ∈ 𝐵 ↔ 𝐷 ∈ 𝐸)) |
| 19 | 16, 18 | anbi12d 632 | . . . 4 ⊢ (𝑥 = 𝐶 → ((𝑥 ∈ 𝐴 ∧ 𝐷 ∈ 𝐵) ↔ (𝐶 ∈ 𝐴 ∧ 𝐷 ∈ 𝐸))) |
| 20 | 15, 19 | bibi12d 345 | . . 3 ⊢ (𝑥 = 𝐶 → ((〈𝑥, 𝐷〉 ∈ ∪ 𝑥 ∈ 𝐴 ({𝑥} × 𝐵) ↔ (𝑥 ∈ 𝐴 ∧ 𝐷 ∈ 𝐵)) ↔ (〈𝐶, 𝐷〉 ∈ ∪ 𝑥 ∈ 𝐴 ({𝑥} × 𝐵) ↔ (𝐶 ∈ 𝐴 ∧ 𝐷 ∈ 𝐸)))) |
| 21 | opeliunxp 5705 | . . 3 ⊢ (〈𝑥, 𝐷〉 ∈ ∪ 𝑥 ∈ 𝐴 ({𝑥} × 𝐵) ↔ (𝑥 ∈ 𝐴 ∧ 𝐷 ∈ 𝐵)) | |
| 22 | 13, 20, 21 | vtoclg1f 3536 | . 2 ⊢ (𝐶 ∈ V → (〈𝐶, 𝐷〉 ∈ ∪ 𝑥 ∈ 𝐴 ({𝑥} × 𝐵) ↔ (𝐶 ∈ 𝐴 ∧ 𝐷 ∈ 𝐸))) |
| 23 | 7, 9, 22 | pm5.21nii 378 | 1 ⊢ (〈𝐶, 𝐷〉 ∈ ∪ 𝑥 ∈ 𝐴 ({𝑥} × 𝐵) ↔ (𝐶 ∈ 𝐴 ∧ 𝐷 ∈ 𝐸)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ∀wral 3044 Vcvv 3447 {csn 4589 〈cop 4595 ∪ ciun 4955 class class class wbr 5107 × cxp 5636 Rel wrel 5643 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pr 5387 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ral 3045 df-rex 3054 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-ss 3931 df-nul 4297 df-if 4489 df-sn 4590 df-pr 4592 df-op 4596 df-iun 4957 df-br 5108 df-opab 5170 df-xp 5644 df-rel 5645 |
| This theorem is referenced by: mpoxopn0yelv 8192 mpoxopxnop0 8194 eldmcoa 18027 dmdprd 19930 ply1frcl 22205 cnextfres 23956 eldv 25799 perfdvf 25804 eltayl 26267 dfcnv2 32600 gsumwrd2dccat 33007 cvmliftlem1 35272 filnetlem3 36368 |
| Copyright terms: Public domain | W3C validator |