MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dvfsumlem4 Structured version   Visualization version   GIF version

Theorem dvfsumlem4 25953
Description: Lemma for dvfsumrlim 25955. (Contributed by Mario Carneiro, 18-May-2016.)
Hypotheses
Ref Expression
dvfsum.s 𝑆 = (𝑇(,)+∞)
dvfsum.z 𝑍 = (ℤ𝑀)
dvfsum.m (𝜑𝑀 ∈ ℤ)
dvfsum.d (𝜑𝐷 ∈ ℝ)
dvfsum.md (𝜑𝑀 ≤ (𝐷 + 1))
dvfsum.t (𝜑𝑇 ∈ ℝ)
dvfsum.a ((𝜑𝑥𝑆) → 𝐴 ∈ ℝ)
dvfsum.b1 ((𝜑𝑥𝑆) → 𝐵𝑉)
dvfsum.b2 ((𝜑𝑥𝑍) → 𝐵 ∈ ℝ)
dvfsum.b3 (𝜑 → (ℝ D (𝑥𝑆𝐴)) = (𝑥𝑆𝐵))
dvfsum.c (𝑥 = 𝑘𝐵 = 𝐶)
dvfsum.u (𝜑𝑈 ∈ ℝ*)
dvfsum.l ((𝜑 ∧ (𝑥𝑆𝑘𝑆) ∧ (𝐷𝑥𝑥𝑘𝑘𝑈)) → 𝐶𝐵)
dvfsumlem4.g 𝐺 = (𝑥𝑆 ↦ (Σ𝑘 ∈ (𝑀...(⌊‘𝑥))𝐶𝐴))
dvfsumlem4.0 ((𝜑 ∧ (𝑥𝑆𝐷𝑥𝑥𝑈)) → 0 ≤ 𝐵)
dvfsumlem4.1 (𝜑𝑋𝑆)
dvfsumlem4.2 (𝜑𝑌𝑆)
dvfsumlem4.3 (𝜑𝐷𝑋)
dvfsumlem4.4 (𝜑𝑋𝑌)
dvfsumlem4.5 (𝜑𝑌𝑈)
Assertion
Ref Expression
dvfsumlem4 (𝜑 → (abs‘((𝐺𝑌) − (𝐺𝑋))) ≤ 𝑋 / 𝑥𝐵)
Distinct variable groups:   𝐵,𝑘   𝑥,𝐶   𝑥,𝑘,𝐷   𝜑,𝑘,𝑥   𝑆,𝑘,𝑥   𝑘,𝑀,𝑥   𝑥,𝑇   𝑘,𝑌,𝑥   𝑥,𝑍   𝑈,𝑘,𝑥   𝑘,𝑋,𝑥
Allowed substitution hints:   𝐴(𝑥,𝑘)   𝐵(𝑥)   𝐶(𝑘)   𝑇(𝑘)   𝐺(𝑥,𝑘)   𝑉(𝑥,𝑘)   𝑍(𝑘)

Proof of Theorem dvfsumlem4
Dummy variable 𝑚 is distinct from all other variables.
StepHypRef Expression
1 dvfsumlem4.2 . . . . 5 (𝜑𝑌𝑆)
2 fzfid 13899 . . . . . . 7 (𝜑 → (𝑀...(⌊‘𝑌)) ∈ Fin)
3 dvfsum.b2 . . . . . . . . 9 ((𝜑𝑥𝑍) → 𝐵 ∈ ℝ)
43ralrimiva 3121 . . . . . . . 8 (𝜑 → ∀𝑥𝑍 𝐵 ∈ ℝ)
5 elfzuz 13442 . . . . . . . . 9 (𝑘 ∈ (𝑀...(⌊‘𝑌)) → 𝑘 ∈ (ℤ𝑀))
6 dvfsum.z . . . . . . . . 9 𝑍 = (ℤ𝑀)
75, 6eleqtrrdi 2839 . . . . . . . 8 (𝑘 ∈ (𝑀...(⌊‘𝑌)) → 𝑘𝑍)
8 dvfsum.c . . . . . . . . . 10 (𝑥 = 𝑘𝐵 = 𝐶)
98eleq1d 2813 . . . . . . . . 9 (𝑥 = 𝑘 → (𝐵 ∈ ℝ ↔ 𝐶 ∈ ℝ))
109rspccva 3578 . . . . . . . 8 ((∀𝑥𝑍 𝐵 ∈ ℝ ∧ 𝑘𝑍) → 𝐶 ∈ ℝ)
114, 7, 10syl2an 596 . . . . . . 7 ((𝜑𝑘 ∈ (𝑀...(⌊‘𝑌))) → 𝐶 ∈ ℝ)
122, 11fsumrecl 15660 . . . . . 6 (𝜑 → Σ𝑘 ∈ (𝑀...(⌊‘𝑌))𝐶 ∈ ℝ)
13 dvfsum.a . . . . . . . 8 ((𝜑𝑥𝑆) → 𝐴 ∈ ℝ)
1413ralrimiva 3121 . . . . . . 7 (𝜑 → ∀𝑥𝑆 𝐴 ∈ ℝ)
15 nfcsb1v 3877 . . . . . . . . 9 𝑥𝑌 / 𝑥𝐴
1615nfel1 2908 . . . . . . . 8 𝑥𝑌 / 𝑥𝐴 ∈ ℝ
17 csbeq1a 3867 . . . . . . . . 9 (𝑥 = 𝑌𝐴 = 𝑌 / 𝑥𝐴)
1817eleq1d 2813 . . . . . . . 8 (𝑥 = 𝑌 → (𝐴 ∈ ℝ ↔ 𝑌 / 𝑥𝐴 ∈ ℝ))
1916, 18rspc 3567 . . . . . . 7 (𝑌𝑆 → (∀𝑥𝑆 𝐴 ∈ ℝ → 𝑌 / 𝑥𝐴 ∈ ℝ))
201, 14, 19sylc 65 . . . . . 6 (𝜑𝑌 / 𝑥𝐴 ∈ ℝ)
2112, 20resubcld 11567 . . . . 5 (𝜑 → (Σ𝑘 ∈ (𝑀...(⌊‘𝑌))𝐶𝑌 / 𝑥𝐴) ∈ ℝ)
22 nfcv 2891 . . . . . 6 𝑥𝑌
23 nfcv 2891 . . . . . . 7 𝑥Σ𝑘 ∈ (𝑀...(⌊‘𝑌))𝐶
24 nfcv 2891 . . . . . . 7 𝑥
2523, 24, 15nfov 7383 . . . . . 6 𝑥𝑘 ∈ (𝑀...(⌊‘𝑌))𝐶𝑌 / 𝑥𝐴)
26 fveq2 6826 . . . . . . . . 9 (𝑥 = 𝑌 → (⌊‘𝑥) = (⌊‘𝑌))
2726oveq2d 7369 . . . . . . . 8 (𝑥 = 𝑌 → (𝑀...(⌊‘𝑥)) = (𝑀...(⌊‘𝑌)))
2827sumeq1d 15626 . . . . . . 7 (𝑥 = 𝑌 → Σ𝑘 ∈ (𝑀...(⌊‘𝑥))𝐶 = Σ𝑘 ∈ (𝑀...(⌊‘𝑌))𝐶)
2928, 17oveq12d 7371 . . . . . 6 (𝑥 = 𝑌 → (Σ𝑘 ∈ (𝑀...(⌊‘𝑥))𝐶𝐴) = (Σ𝑘 ∈ (𝑀...(⌊‘𝑌))𝐶𝑌 / 𝑥𝐴))
30 dvfsumlem4.g . . . . . 6 𝐺 = (𝑥𝑆 ↦ (Σ𝑘 ∈ (𝑀...(⌊‘𝑥))𝐶𝐴))
3122, 25, 29, 30fvmptf 6955 . . . . 5 ((𝑌𝑆 ∧ (Σ𝑘 ∈ (𝑀...(⌊‘𝑌))𝐶𝑌 / 𝑥𝐴) ∈ ℝ) → (𝐺𝑌) = (Σ𝑘 ∈ (𝑀...(⌊‘𝑌))𝐶𝑌 / 𝑥𝐴))
321, 21, 31syl2anc 584 . . . 4 (𝜑 → (𝐺𝑌) = (Σ𝑘 ∈ (𝑀...(⌊‘𝑌))𝐶𝑌 / 𝑥𝐴))
33 dvfsumlem4.1 . . . . 5 (𝜑𝑋𝑆)
34 fzfid 13899 . . . . . . 7 (𝜑 → (𝑀...(⌊‘𝑋)) ∈ Fin)
35 elfzuz 13442 . . . . . . . . 9 (𝑘 ∈ (𝑀...(⌊‘𝑋)) → 𝑘 ∈ (ℤ𝑀))
3635, 6eleqtrrdi 2839 . . . . . . . 8 (𝑘 ∈ (𝑀...(⌊‘𝑋)) → 𝑘𝑍)
374, 36, 10syl2an 596 . . . . . . 7 ((𝜑𝑘 ∈ (𝑀...(⌊‘𝑋))) → 𝐶 ∈ ℝ)
3834, 37fsumrecl 15660 . . . . . 6 (𝜑 → Σ𝑘 ∈ (𝑀...(⌊‘𝑋))𝐶 ∈ ℝ)
39 nfcsb1v 3877 . . . . . . . . 9 𝑥𝑋 / 𝑥𝐴
4039nfel1 2908 . . . . . . . 8 𝑥𝑋 / 𝑥𝐴 ∈ ℝ
41 csbeq1a 3867 . . . . . . . . 9 (𝑥 = 𝑋𝐴 = 𝑋 / 𝑥𝐴)
4241eleq1d 2813 . . . . . . . 8 (𝑥 = 𝑋 → (𝐴 ∈ ℝ ↔ 𝑋 / 𝑥𝐴 ∈ ℝ))
4340, 42rspc 3567 . . . . . . 7 (𝑋𝑆 → (∀𝑥𝑆 𝐴 ∈ ℝ → 𝑋 / 𝑥𝐴 ∈ ℝ))
4433, 14, 43sylc 65 . . . . . 6 (𝜑𝑋 / 𝑥𝐴 ∈ ℝ)
4538, 44resubcld 11567 . . . . 5 (𝜑 → (Σ𝑘 ∈ (𝑀...(⌊‘𝑋))𝐶𝑋 / 𝑥𝐴) ∈ ℝ)
46 nfcv 2891 . . . . . 6 𝑥𝑋
47 nfcv 2891 . . . . . . 7 𝑥Σ𝑘 ∈ (𝑀...(⌊‘𝑋))𝐶
4847, 24, 39nfov 7383 . . . . . 6 𝑥𝑘 ∈ (𝑀...(⌊‘𝑋))𝐶𝑋 / 𝑥𝐴)
49 fveq2 6826 . . . . . . . . 9 (𝑥 = 𝑋 → (⌊‘𝑥) = (⌊‘𝑋))
5049oveq2d 7369 . . . . . . . 8 (𝑥 = 𝑋 → (𝑀...(⌊‘𝑥)) = (𝑀...(⌊‘𝑋)))
5150sumeq1d 15626 . . . . . . 7 (𝑥 = 𝑋 → Σ𝑘 ∈ (𝑀...(⌊‘𝑥))𝐶 = Σ𝑘 ∈ (𝑀...(⌊‘𝑋))𝐶)
5251, 41oveq12d 7371 . . . . . 6 (𝑥 = 𝑋 → (Σ𝑘 ∈ (𝑀...(⌊‘𝑥))𝐶𝐴) = (Σ𝑘 ∈ (𝑀...(⌊‘𝑋))𝐶𝑋 / 𝑥𝐴))
5346, 48, 52, 30fvmptf 6955 . . . . 5 ((𝑋𝑆 ∧ (Σ𝑘 ∈ (𝑀...(⌊‘𝑋))𝐶𝑋 / 𝑥𝐴) ∈ ℝ) → (𝐺𝑋) = (Σ𝑘 ∈ (𝑀...(⌊‘𝑋))𝐶𝑋 / 𝑥𝐴))
5433, 45, 53syl2anc 584 . . . 4 (𝜑 → (𝐺𝑋) = (Σ𝑘 ∈ (𝑀...(⌊‘𝑋))𝐶𝑋 / 𝑥𝐴))
5532, 54oveq12d 7371 . . 3 (𝜑 → ((𝐺𝑌) − (𝐺𝑋)) = ((Σ𝑘 ∈ (𝑀...(⌊‘𝑌))𝐶𝑌 / 𝑥𝐴) − (Σ𝑘 ∈ (𝑀...(⌊‘𝑋))𝐶𝑋 / 𝑥𝐴)))
5655fveq2d 6830 . 2 (𝜑 → (abs‘((𝐺𝑌) − (𝐺𝑋))) = (abs‘((Σ𝑘 ∈ (𝑀...(⌊‘𝑌))𝐶𝑌 / 𝑥𝐴) − (Σ𝑘 ∈ (𝑀...(⌊‘𝑋))𝐶𝑋 / 𝑥𝐴))))
57 dvfsum.s . . . . . . . . . . 11 𝑆 = (𝑇(,)+∞)
58 ioossre 13329 . . . . . . . . . . 11 (𝑇(,)+∞) ⊆ ℝ
5957, 58eqsstri 3984 . . . . . . . . . 10 𝑆 ⊆ ℝ
6059a1i 11 . . . . . . . . 9 (𝜑𝑆 ⊆ ℝ)
61 dvfsum.b1 . . . . . . . . 9 ((𝜑𝑥𝑆) → 𝐵𝑉)
62 dvfsum.b3 . . . . . . . . 9 (𝜑 → (ℝ D (𝑥𝑆𝐴)) = (𝑥𝑆𝐵))
6360, 13, 61, 62dvmptrecl 25947 . . . . . . . 8 ((𝜑𝑥𝑆) → 𝐵 ∈ ℝ)
6463ralrimiva 3121 . . . . . . 7 (𝜑 → ∀𝑥𝑆 𝐵 ∈ ℝ)
65 nfv 1914 . . . . . . . 8 𝑚 𝐵 ∈ ℝ
66 nfcsb1v 3877 . . . . . . . . 9 𝑥𝑚 / 𝑥𝐵
6766nfel1 2908 . . . . . . . 8 𝑥𝑚 / 𝑥𝐵 ∈ ℝ
68 csbeq1a 3867 . . . . . . . . 9 (𝑥 = 𝑚𝐵 = 𝑚 / 𝑥𝐵)
6968eleq1d 2813 . . . . . . . 8 (𝑥 = 𝑚 → (𝐵 ∈ ℝ ↔ 𝑚 / 𝑥𝐵 ∈ ℝ))
7065, 67, 69cbvralw 3272 . . . . . . 7 (∀𝑥𝑆 𝐵 ∈ ℝ ↔ ∀𝑚𝑆 𝑚 / 𝑥𝐵 ∈ ℝ)
7164, 70sylib 218 . . . . . 6 (𝜑 → ∀𝑚𝑆 𝑚 / 𝑥𝐵 ∈ ℝ)
72 csbeq1 3856 . . . . . . . 8 (𝑚 = 𝑋𝑚 / 𝑥𝐵 = 𝑋 / 𝑥𝐵)
7372eleq1d 2813 . . . . . . 7 (𝑚 = 𝑋 → (𝑚 / 𝑥𝐵 ∈ ℝ ↔ 𝑋 / 𝑥𝐵 ∈ ℝ))
7473rspcv 3575 . . . . . 6 (𝑋𝑆 → (∀𝑚𝑆 𝑚 / 𝑥𝐵 ∈ ℝ → 𝑋 / 𝑥𝐵 ∈ ℝ))
7533, 71, 74sylc 65 . . . . 5 (𝜑𝑋 / 𝑥𝐵 ∈ ℝ)
7645, 75resubcld 11567 . . . 4 (𝜑 → ((Σ𝑘 ∈ (𝑀...(⌊‘𝑋))𝐶𝑋 / 𝑥𝐴) − 𝑋 / 𝑥𝐵) ∈ ℝ)
7759, 33sselid 3935 . . . . . . . 8 (𝜑𝑋 ∈ ℝ)
78 reflcl 13719 . . . . . . . . 9 (𝑋 ∈ ℝ → (⌊‘𝑋) ∈ ℝ)
7977, 78syl 17 . . . . . . . 8 (𝜑 → (⌊‘𝑋) ∈ ℝ)
8077, 79resubcld 11567 . . . . . . 7 (𝜑 → (𝑋 − (⌊‘𝑋)) ∈ ℝ)
8180, 75remulcld 11164 . . . . . 6 (𝜑 → ((𝑋 − (⌊‘𝑋)) · 𝑋 / 𝑥𝐵) ∈ ℝ)
8281, 45readdcld 11163 . . . . 5 (𝜑 → (((𝑋 − (⌊‘𝑋)) · 𝑋 / 𝑥𝐵) + (Σ𝑘 ∈ (𝑀...(⌊‘𝑋))𝐶𝑋 / 𝑥𝐴)) ∈ ℝ)
8382, 75resubcld 11567 . . . 4 (𝜑 → ((((𝑋 − (⌊‘𝑋)) · 𝑋 / 𝑥𝐵) + (Σ𝑘 ∈ (𝑀...(⌊‘𝑋))𝐶𝑋 / 𝑥𝐴)) − 𝑋 / 𝑥𝐵) ∈ ℝ)
84 fracge0 13727 . . . . . . . 8 (𝑋 ∈ ℝ → 0 ≤ (𝑋 − (⌊‘𝑋)))
8577, 84syl 17 . . . . . . 7 (𝜑 → 0 ≤ (𝑋 − (⌊‘𝑋)))
86 dvfsumlem4.3 . . . . . . . . 9 (𝜑𝐷𝑋)
8777rexrd 11184 . . . . . . . . . 10 (𝜑𝑋 ∈ ℝ*)
8859, 1sselid 3935 . . . . . . . . . . 11 (𝜑𝑌 ∈ ℝ)
8988rexrd 11184 . . . . . . . . . 10 (𝜑𝑌 ∈ ℝ*)
90 dvfsum.u . . . . . . . . . 10 (𝜑𝑈 ∈ ℝ*)
91 dvfsumlem4.4 . . . . . . . . . 10 (𝜑𝑋𝑌)
92 dvfsumlem4.5 . . . . . . . . . 10 (𝜑𝑌𝑈)
9387, 89, 90, 91, 92xrletrd 13083 . . . . . . . . 9 (𝜑𝑋𝑈)
9433, 86, 933jca 1128 . . . . . . . 8 (𝜑 → (𝑋𝑆𝐷𝑋𝑋𝑈))
95 simpr1 1195 . . . . . . . . 9 ((𝜑 ∧ (𝑋𝑆𝐷𝑋𝑋𝑈)) → 𝑋𝑆)
96 nfv 1914 . . . . . . . . . . 11 𝑥(𝜑 ∧ (𝑋𝑆𝐷𝑋𝑋𝑈))
97 nfcv 2891 . . . . . . . . . . . 12 𝑥0
98 nfcv 2891 . . . . . . . . . . . 12 𝑥
99 nfcsb1v 3877 . . . . . . . . . . . 12 𝑥𝑋 / 𝑥𝐵
10097, 98, 99nfbr 5142 . . . . . . . . . . 11 𝑥0 ≤ 𝑋 / 𝑥𝐵
10196, 100nfim 1896 . . . . . . . . . 10 𝑥((𝜑 ∧ (𝑋𝑆𝐷𝑋𝑋𝑈)) → 0 ≤ 𝑋 / 𝑥𝐵)
102 eleq1 2816 . . . . . . . . . . . . 13 (𝑥 = 𝑋 → (𝑥𝑆𝑋𝑆))
103 breq2 5099 . . . . . . . . . . . . 13 (𝑥 = 𝑋 → (𝐷𝑥𝐷𝑋))
104 breq1 5098 . . . . . . . . . . . . 13 (𝑥 = 𝑋 → (𝑥𝑈𝑋𝑈))
105102, 103, 1043anbi123d 1438 . . . . . . . . . . . 12 (𝑥 = 𝑋 → ((𝑥𝑆𝐷𝑥𝑥𝑈) ↔ (𝑋𝑆𝐷𝑋𝑋𝑈)))
106105anbi2d 630 . . . . . . . . . . 11 (𝑥 = 𝑋 → ((𝜑 ∧ (𝑥𝑆𝐷𝑥𝑥𝑈)) ↔ (𝜑 ∧ (𝑋𝑆𝐷𝑋𝑋𝑈))))
107 csbeq1a 3867 . . . . . . . . . . . 12 (𝑥 = 𝑋𝐵 = 𝑋 / 𝑥𝐵)
108107breq2d 5107 . . . . . . . . . . 11 (𝑥 = 𝑋 → (0 ≤ 𝐵 ↔ 0 ≤ 𝑋 / 𝑥𝐵))
109106, 108imbi12d 344 . . . . . . . . . 10 (𝑥 = 𝑋 → (((𝜑 ∧ (𝑥𝑆𝐷𝑥𝑥𝑈)) → 0 ≤ 𝐵) ↔ ((𝜑 ∧ (𝑋𝑆𝐷𝑋𝑋𝑈)) → 0 ≤ 𝑋 / 𝑥𝐵)))
110 dvfsumlem4.0 . . . . . . . . . 10 ((𝜑 ∧ (𝑥𝑆𝐷𝑥𝑥𝑈)) → 0 ≤ 𝐵)
111101, 109, 110vtoclg1f 3527 . . . . . . . . 9 (𝑋𝑆 → ((𝜑 ∧ (𝑋𝑆𝐷𝑋𝑋𝑈)) → 0 ≤ 𝑋 / 𝑥𝐵))
11295, 111mpcom 38 . . . . . . . 8 ((𝜑 ∧ (𝑋𝑆𝐷𝑋𝑋𝑈)) → 0 ≤ 𝑋 / 𝑥𝐵)
11394, 112mpdan 687 . . . . . . 7 (𝜑 → 0 ≤ 𝑋 / 𝑥𝐵)
11480, 75, 85, 113mulge0d 11716 . . . . . 6 (𝜑 → 0 ≤ ((𝑋 − (⌊‘𝑋)) · 𝑋 / 𝑥𝐵))
11545, 81addge02d 11728 . . . . . 6 (𝜑 → (0 ≤ ((𝑋 − (⌊‘𝑋)) · 𝑋 / 𝑥𝐵) ↔ (Σ𝑘 ∈ (𝑀...(⌊‘𝑋))𝐶𝑋 / 𝑥𝐴) ≤ (((𝑋 − (⌊‘𝑋)) · 𝑋 / 𝑥𝐵) + (Σ𝑘 ∈ (𝑀...(⌊‘𝑋))𝐶𝑋 / 𝑥𝐴))))
116114, 115mpbid 232 . . . . 5 (𝜑 → (Σ𝑘 ∈ (𝑀...(⌊‘𝑋))𝐶𝑋 / 𝑥𝐴) ≤ (((𝑋 − (⌊‘𝑋)) · 𝑋 / 𝑥𝐵) + (Σ𝑘 ∈ (𝑀...(⌊‘𝑋))𝐶𝑋 / 𝑥𝐴)))
11745, 82, 75, 116lesub1dd 11755 . . . 4 (𝜑 → ((Σ𝑘 ∈ (𝑀...(⌊‘𝑋))𝐶𝑋 / 𝑥𝐴) − 𝑋 / 𝑥𝐵) ≤ ((((𝑋 − (⌊‘𝑋)) · 𝑋 / 𝑥𝐵) + (Σ𝑘 ∈ (𝑀...(⌊‘𝑋))𝐶𝑋 / 𝑥𝐴)) − 𝑋 / 𝑥𝐵))
118 reflcl 13719 . . . . . . . . . 10 (𝑌 ∈ ℝ → (⌊‘𝑌) ∈ ℝ)
11988, 118syl 17 . . . . . . . . 9 (𝜑 → (⌊‘𝑌) ∈ ℝ)
12088, 119resubcld 11567 . . . . . . . 8 (𝜑 → (𝑌 − (⌊‘𝑌)) ∈ ℝ)
121 csbeq1 3856 . . . . . . . . . . 11 (𝑚 = 𝑌𝑚 / 𝑥𝐵 = 𝑌 / 𝑥𝐵)
122121eleq1d 2813 . . . . . . . . . 10 (𝑚 = 𝑌 → (𝑚 / 𝑥𝐵 ∈ ℝ ↔ 𝑌 / 𝑥𝐵 ∈ ℝ))
123122rspcv 3575 . . . . . . . . 9 (𝑌𝑆 → (∀𝑚𝑆 𝑚 / 𝑥𝐵 ∈ ℝ → 𝑌 / 𝑥𝐵 ∈ ℝ))
1241, 71, 123sylc 65 . . . . . . . 8 (𝜑𝑌 / 𝑥𝐵 ∈ ℝ)
125120, 124remulcld 11164 . . . . . . 7 (𝜑 → ((𝑌 − (⌊‘𝑌)) · 𝑌 / 𝑥𝐵) ∈ ℝ)
126125, 21readdcld 11163 . . . . . 6 (𝜑 → (((𝑌 − (⌊‘𝑌)) · 𝑌 / 𝑥𝐵) + (Σ𝑘 ∈ (𝑀...(⌊‘𝑌))𝐶𝑌 / 𝑥𝐴)) ∈ ℝ)
127126, 124resubcld 11567 . . . . 5 (𝜑 → ((((𝑌 − (⌊‘𝑌)) · 𝑌 / 𝑥𝐵) + (Σ𝑘 ∈ (𝑀...(⌊‘𝑌))𝐶𝑌 / 𝑥𝐴)) − 𝑌 / 𝑥𝐵) ∈ ℝ)
128 dvfsum.m . . . . . . . 8 (𝜑𝑀 ∈ ℤ)
129 dvfsum.d . . . . . . . 8 (𝜑𝐷 ∈ ℝ)
130 dvfsum.md . . . . . . . 8 (𝜑𝑀 ≤ (𝐷 + 1))
131 dvfsum.t . . . . . . . 8 (𝜑𝑇 ∈ ℝ)
132 dvfsum.l . . . . . . . 8 ((𝜑 ∧ (𝑥𝑆𝑘𝑆) ∧ (𝐷𝑥𝑥𝑘𝑘𝑈)) → 𝐶𝐵)
133 eqid 2729 . . . . . . . 8 (𝑥𝑆 ↦ (((𝑥 − (⌊‘𝑥)) · 𝐵) + (Σ𝑘 ∈ (𝑀...(⌊‘𝑥))𝐶𝐴))) = (𝑥𝑆 ↦ (((𝑥 − (⌊‘𝑥)) · 𝐵) + (Σ𝑘 ∈ (𝑀...(⌊‘𝑥))𝐶𝐴)))
13457, 6, 128, 129, 130, 131, 13, 61, 3, 62, 8, 90, 132, 133, 33, 1, 86, 91, 92dvfsumlem3 25952 . . . . . . 7 (𝜑 → (((𝑥𝑆 ↦ (((𝑥 − (⌊‘𝑥)) · 𝐵) + (Σ𝑘 ∈ (𝑀...(⌊‘𝑥))𝐶𝐴)))‘𝑌) ≤ ((𝑥𝑆 ↦ (((𝑥 − (⌊‘𝑥)) · 𝐵) + (Σ𝑘 ∈ (𝑀...(⌊‘𝑥))𝐶𝐴)))‘𝑋) ∧ (((𝑥𝑆 ↦ (((𝑥 − (⌊‘𝑥)) · 𝐵) + (Σ𝑘 ∈ (𝑀...(⌊‘𝑥))𝐶𝐴)))‘𝑋) − 𝑋 / 𝑥𝐵) ≤ (((𝑥𝑆 ↦ (((𝑥 − (⌊‘𝑥)) · 𝐵) + (Σ𝑘 ∈ (𝑀...(⌊‘𝑥))𝐶𝐴)))‘𝑌) − 𝑌 / 𝑥𝐵)))
135134simprd 495 . . . . . 6 (𝜑 → (((𝑥𝑆 ↦ (((𝑥 − (⌊‘𝑥)) · 𝐵) + (Σ𝑘 ∈ (𝑀...(⌊‘𝑥))𝐶𝐴)))‘𝑋) − 𝑋 / 𝑥𝐵) ≤ (((𝑥𝑆 ↦ (((𝑥 − (⌊‘𝑥)) · 𝐵) + (Σ𝑘 ∈ (𝑀...(⌊‘𝑥))𝐶𝐴)))‘𝑌) − 𝑌 / 𝑥𝐵))
136 nfcv 2891 . . . . . . . . . . 11 𝑥(𝑋 − (⌊‘𝑋))
137 nfcv 2891 . . . . . . . . . . 11 𝑥 ·
138136, 137, 99nfov 7383 . . . . . . . . . 10 𝑥((𝑋 − (⌊‘𝑋)) · 𝑋 / 𝑥𝐵)
139 nfcv 2891 . . . . . . . . . 10 𝑥 +
140138, 139, 48nfov 7383 . . . . . . . . 9 𝑥(((𝑋 − (⌊‘𝑋)) · 𝑋 / 𝑥𝐵) + (Σ𝑘 ∈ (𝑀...(⌊‘𝑋))𝐶𝑋 / 𝑥𝐴))
141 id 22 . . . . . . . . . . . 12 (𝑥 = 𝑋𝑥 = 𝑋)
142141, 49oveq12d 7371 . . . . . . . . . . 11 (𝑥 = 𝑋 → (𝑥 − (⌊‘𝑥)) = (𝑋 − (⌊‘𝑋)))
143142, 107oveq12d 7371 . . . . . . . . . 10 (𝑥 = 𝑋 → ((𝑥 − (⌊‘𝑥)) · 𝐵) = ((𝑋 − (⌊‘𝑋)) · 𝑋 / 𝑥𝐵))
144143, 52oveq12d 7371 . . . . . . . . 9 (𝑥 = 𝑋 → (((𝑥 − (⌊‘𝑥)) · 𝐵) + (Σ𝑘 ∈ (𝑀...(⌊‘𝑥))𝐶𝐴)) = (((𝑋 − (⌊‘𝑋)) · 𝑋 / 𝑥𝐵) + (Σ𝑘 ∈ (𝑀...(⌊‘𝑋))𝐶𝑋 / 𝑥𝐴)))
14546, 140, 144, 133fvmptf 6955 . . . . . . . 8 ((𝑋𝑆 ∧ (((𝑋 − (⌊‘𝑋)) · 𝑋 / 𝑥𝐵) + (Σ𝑘 ∈ (𝑀...(⌊‘𝑋))𝐶𝑋 / 𝑥𝐴)) ∈ ℝ) → ((𝑥𝑆 ↦ (((𝑥 − (⌊‘𝑥)) · 𝐵) + (Σ𝑘 ∈ (𝑀...(⌊‘𝑥))𝐶𝐴)))‘𝑋) = (((𝑋 − (⌊‘𝑋)) · 𝑋 / 𝑥𝐵) + (Σ𝑘 ∈ (𝑀...(⌊‘𝑋))𝐶𝑋 / 𝑥𝐴)))
14633, 82, 145syl2anc 584 . . . . . . 7 (𝜑 → ((𝑥𝑆 ↦ (((𝑥 − (⌊‘𝑥)) · 𝐵) + (Σ𝑘 ∈ (𝑀...(⌊‘𝑥))𝐶𝐴)))‘𝑋) = (((𝑋 − (⌊‘𝑋)) · 𝑋 / 𝑥𝐵) + (Σ𝑘 ∈ (𝑀...(⌊‘𝑋))𝐶𝑋 / 𝑥𝐴)))
147146oveq1d 7368 . . . . . 6 (𝜑 → (((𝑥𝑆 ↦ (((𝑥 − (⌊‘𝑥)) · 𝐵) + (Σ𝑘 ∈ (𝑀...(⌊‘𝑥))𝐶𝐴)))‘𝑋) − 𝑋 / 𝑥𝐵) = ((((𝑋 − (⌊‘𝑋)) · 𝑋 / 𝑥𝐵) + (Σ𝑘 ∈ (𝑀...(⌊‘𝑋))𝐶𝑋 / 𝑥𝐴)) − 𝑋 / 𝑥𝐵))
148 nfcv 2891 . . . . . . . . . . 11 𝑥(𝑌 − (⌊‘𝑌))
149 nfcsb1v 3877 . . . . . . . . . . 11 𝑥𝑌 / 𝑥𝐵
150148, 137, 149nfov 7383 . . . . . . . . . 10 𝑥((𝑌 − (⌊‘𝑌)) · 𝑌 / 𝑥𝐵)
151150, 139, 25nfov 7383 . . . . . . . . 9 𝑥(((𝑌 − (⌊‘𝑌)) · 𝑌 / 𝑥𝐵) + (Σ𝑘 ∈ (𝑀...(⌊‘𝑌))𝐶𝑌 / 𝑥𝐴))
152 id 22 . . . . . . . . . . . 12 (𝑥 = 𝑌𝑥 = 𝑌)
153152, 26oveq12d 7371 . . . . . . . . . . 11 (𝑥 = 𝑌 → (𝑥 − (⌊‘𝑥)) = (𝑌 − (⌊‘𝑌)))
154 csbeq1a 3867 . . . . . . . . . . 11 (𝑥 = 𝑌𝐵 = 𝑌 / 𝑥𝐵)
155153, 154oveq12d 7371 . . . . . . . . . 10 (𝑥 = 𝑌 → ((𝑥 − (⌊‘𝑥)) · 𝐵) = ((𝑌 − (⌊‘𝑌)) · 𝑌 / 𝑥𝐵))
156155, 29oveq12d 7371 . . . . . . . . 9 (𝑥 = 𝑌 → (((𝑥 − (⌊‘𝑥)) · 𝐵) + (Σ𝑘 ∈ (𝑀...(⌊‘𝑥))𝐶𝐴)) = (((𝑌 − (⌊‘𝑌)) · 𝑌 / 𝑥𝐵) + (Σ𝑘 ∈ (𝑀...(⌊‘𝑌))𝐶𝑌 / 𝑥𝐴)))
15722, 151, 156, 133fvmptf 6955 . . . . . . . 8 ((𝑌𝑆 ∧ (((𝑌 − (⌊‘𝑌)) · 𝑌 / 𝑥𝐵) + (Σ𝑘 ∈ (𝑀...(⌊‘𝑌))𝐶𝑌 / 𝑥𝐴)) ∈ ℝ) → ((𝑥𝑆 ↦ (((𝑥 − (⌊‘𝑥)) · 𝐵) + (Σ𝑘 ∈ (𝑀...(⌊‘𝑥))𝐶𝐴)))‘𝑌) = (((𝑌 − (⌊‘𝑌)) · 𝑌 / 𝑥𝐵) + (Σ𝑘 ∈ (𝑀...(⌊‘𝑌))𝐶𝑌 / 𝑥𝐴)))
1581, 126, 157syl2anc 584 . . . . . . 7 (𝜑 → ((𝑥𝑆 ↦ (((𝑥 − (⌊‘𝑥)) · 𝐵) + (Σ𝑘 ∈ (𝑀...(⌊‘𝑥))𝐶𝐴)))‘𝑌) = (((𝑌 − (⌊‘𝑌)) · 𝑌 / 𝑥𝐵) + (Σ𝑘 ∈ (𝑀...(⌊‘𝑌))𝐶𝑌 / 𝑥𝐴)))
159158oveq1d 7368 . . . . . 6 (𝜑 → (((𝑥𝑆 ↦ (((𝑥 − (⌊‘𝑥)) · 𝐵) + (Σ𝑘 ∈ (𝑀...(⌊‘𝑥))𝐶𝐴)))‘𝑌) − 𝑌 / 𝑥𝐵) = ((((𝑌 − (⌊‘𝑌)) · 𝑌 / 𝑥𝐵) + (Σ𝑘 ∈ (𝑀...(⌊‘𝑌))𝐶𝑌 / 𝑥𝐴)) − 𝑌 / 𝑥𝐵))
160135, 147, 1593brtr3d 5126 . . . . 5 (𝜑 → ((((𝑋 − (⌊‘𝑋)) · 𝑋 / 𝑥𝐵) + (Σ𝑘 ∈ (𝑀...(⌊‘𝑋))𝐶𝑋 / 𝑥𝐴)) − 𝑋 / 𝑥𝐵) ≤ ((((𝑌 − (⌊‘𝑌)) · 𝑌 / 𝑥𝐵) + (Σ𝑘 ∈ (𝑀...(⌊‘𝑌))𝐶𝑌 / 𝑥𝐴)) − 𝑌 / 𝑥𝐵))
16121recnd 11162 . . . . . . . 8 (𝜑 → (Σ𝑘 ∈ (𝑀...(⌊‘𝑌))𝐶𝑌 / 𝑥𝐴) ∈ ℂ)
162124recnd 11162 . . . . . . . 8 (𝜑𝑌 / 𝑥𝐵 ∈ ℂ)
163125recnd 11162 . . . . . . . 8 (𝜑 → ((𝑌 − (⌊‘𝑌)) · 𝑌 / 𝑥𝐵) ∈ ℂ)
164161, 162, 163subsub3d 11524 . . . . . . 7 (𝜑 → ((Σ𝑘 ∈ (𝑀...(⌊‘𝑌))𝐶𝑌 / 𝑥𝐴) − (𝑌 / 𝑥𝐵 − ((𝑌 − (⌊‘𝑌)) · 𝑌 / 𝑥𝐵))) = (((Σ𝑘 ∈ (𝑀...(⌊‘𝑌))𝐶𝑌 / 𝑥𝐴) + ((𝑌 − (⌊‘𝑌)) · 𝑌 / 𝑥𝐵)) − 𝑌 / 𝑥𝐵))
165161, 163addcomd 11337 . . . . . . . 8 (𝜑 → ((Σ𝑘 ∈ (𝑀...(⌊‘𝑌))𝐶𝑌 / 𝑥𝐴) + ((𝑌 − (⌊‘𝑌)) · 𝑌 / 𝑥𝐵)) = (((𝑌 − (⌊‘𝑌)) · 𝑌 / 𝑥𝐵) + (Σ𝑘 ∈ (𝑀...(⌊‘𝑌))𝐶𝑌 / 𝑥𝐴)))
166165oveq1d 7368 . . . . . . 7 (𝜑 → (((Σ𝑘 ∈ (𝑀...(⌊‘𝑌))𝐶𝑌 / 𝑥𝐴) + ((𝑌 − (⌊‘𝑌)) · 𝑌 / 𝑥𝐵)) − 𝑌 / 𝑥𝐵) = ((((𝑌 − (⌊‘𝑌)) · 𝑌 / 𝑥𝐵) + (Σ𝑘 ∈ (𝑀...(⌊‘𝑌))𝐶𝑌 / 𝑥𝐴)) − 𝑌 / 𝑥𝐵))
167164, 166eqtrd 2764 . . . . . 6 (𝜑 → ((Σ𝑘 ∈ (𝑀...(⌊‘𝑌))𝐶𝑌 / 𝑥𝐴) − (𝑌 / 𝑥𝐵 − ((𝑌 − (⌊‘𝑌)) · 𝑌 / 𝑥𝐵))) = ((((𝑌 − (⌊‘𝑌)) · 𝑌 / 𝑥𝐵) + (Σ𝑘 ∈ (𝑀...(⌊‘𝑌))𝐶𝑌 / 𝑥𝐴)) − 𝑌 / 𝑥𝐵))
168 1red 11135 . . . . . . . . . 10 (𝜑 → 1 ∈ ℝ)
169129, 77, 88, 86, 91letrd 11292 . . . . . . . . . . . 12 (𝜑𝐷𝑌)
1701, 169, 923jca 1128 . . . . . . . . . . 11 (𝜑 → (𝑌𝑆𝐷𝑌𝑌𝑈))
171 simpr1 1195 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑌𝑆𝐷𝑌𝑌𝑈)) → 𝑌𝑆)
172 nfv 1914 . . . . . . . . . . . . . 14 𝑥(𝜑 ∧ (𝑌𝑆𝐷𝑌𝑌𝑈))
17397, 98, 149nfbr 5142 . . . . . . . . . . . . . 14 𝑥0 ≤ 𝑌 / 𝑥𝐵
174172, 173nfim 1896 . . . . . . . . . . . . 13 𝑥((𝜑 ∧ (𝑌𝑆𝐷𝑌𝑌𝑈)) → 0 ≤ 𝑌 / 𝑥𝐵)
175 eleq1 2816 . . . . . . . . . . . . . . . 16 (𝑥 = 𝑌 → (𝑥𝑆𝑌𝑆))
176 breq2 5099 . . . . . . . . . . . . . . . 16 (𝑥 = 𝑌 → (𝐷𝑥𝐷𝑌))
177 breq1 5098 . . . . . . . . . . . . . . . 16 (𝑥 = 𝑌 → (𝑥𝑈𝑌𝑈))
178175, 176, 1773anbi123d 1438 . . . . . . . . . . . . . . 15 (𝑥 = 𝑌 → ((𝑥𝑆𝐷𝑥𝑥𝑈) ↔ (𝑌𝑆𝐷𝑌𝑌𝑈)))
179178anbi2d 630 . . . . . . . . . . . . . 14 (𝑥 = 𝑌 → ((𝜑 ∧ (𝑥𝑆𝐷𝑥𝑥𝑈)) ↔ (𝜑 ∧ (𝑌𝑆𝐷𝑌𝑌𝑈))))
180154breq2d 5107 . . . . . . . . . . . . . 14 (𝑥 = 𝑌 → (0 ≤ 𝐵 ↔ 0 ≤ 𝑌 / 𝑥𝐵))
181179, 180imbi12d 344 . . . . . . . . . . . . 13 (𝑥 = 𝑌 → (((𝜑 ∧ (𝑥𝑆𝐷𝑥𝑥𝑈)) → 0 ≤ 𝐵) ↔ ((𝜑 ∧ (𝑌𝑆𝐷𝑌𝑌𝑈)) → 0 ≤ 𝑌 / 𝑥𝐵)))
182174, 181, 110vtoclg1f 3527 . . . . . . . . . . . 12 (𝑌𝑆 → ((𝜑 ∧ (𝑌𝑆𝐷𝑌𝑌𝑈)) → 0 ≤ 𝑌 / 𝑥𝐵))
183171, 182mpcom 38 . . . . . . . . . . 11 ((𝜑 ∧ (𝑌𝑆𝐷𝑌𝑌𝑈)) → 0 ≤ 𝑌 / 𝑥𝐵)
184170, 183mpdan 687 . . . . . . . . . 10 (𝜑 → 0 ≤ 𝑌 / 𝑥𝐵)
185 fracle1 13726 . . . . . . . . . . 11 (𝑌 ∈ ℝ → (𝑌 − (⌊‘𝑌)) ≤ 1)
18688, 185syl 17 . . . . . . . . . 10 (𝜑 → (𝑌 − (⌊‘𝑌)) ≤ 1)
187120, 168, 124, 184, 186lemul1ad 12083 . . . . . . . . 9 (𝜑 → ((𝑌 − (⌊‘𝑌)) · 𝑌 / 𝑥𝐵) ≤ (1 · 𝑌 / 𝑥𝐵))
188162mullidd 11152 . . . . . . . . 9 (𝜑 → (1 · 𝑌 / 𝑥𝐵) = 𝑌 / 𝑥𝐵)
189187, 188breqtrd 5121 . . . . . . . 8 (𝜑 → ((𝑌 − (⌊‘𝑌)) · 𝑌 / 𝑥𝐵) ≤ 𝑌 / 𝑥𝐵)
190124, 125subge0d 11729 . . . . . . . 8 (𝜑 → (0 ≤ (𝑌 / 𝑥𝐵 − ((𝑌 − (⌊‘𝑌)) · 𝑌 / 𝑥𝐵)) ↔ ((𝑌 − (⌊‘𝑌)) · 𝑌 / 𝑥𝐵) ≤ 𝑌 / 𝑥𝐵))
191189, 190mpbird 257 . . . . . . 7 (𝜑 → 0 ≤ (𝑌 / 𝑥𝐵 − ((𝑌 − (⌊‘𝑌)) · 𝑌 / 𝑥𝐵)))
192124, 125resubcld 11567 . . . . . . . 8 (𝜑 → (𝑌 / 𝑥𝐵 − ((𝑌 − (⌊‘𝑌)) · 𝑌 / 𝑥𝐵)) ∈ ℝ)
19321, 192subge02d 11731 . . . . . . 7 (𝜑 → (0 ≤ (𝑌 / 𝑥𝐵 − ((𝑌 − (⌊‘𝑌)) · 𝑌 / 𝑥𝐵)) ↔ ((Σ𝑘 ∈ (𝑀...(⌊‘𝑌))𝐶𝑌 / 𝑥𝐴) − (𝑌 / 𝑥𝐵 − ((𝑌 − (⌊‘𝑌)) · 𝑌 / 𝑥𝐵))) ≤ (Σ𝑘 ∈ (𝑀...(⌊‘𝑌))𝐶𝑌 / 𝑥𝐴)))
194191, 193mpbid 232 . . . . . 6 (𝜑 → ((Σ𝑘 ∈ (𝑀...(⌊‘𝑌))𝐶𝑌 / 𝑥𝐴) − (𝑌 / 𝑥𝐵 − ((𝑌 − (⌊‘𝑌)) · 𝑌 / 𝑥𝐵))) ≤ (Σ𝑘 ∈ (𝑀...(⌊‘𝑌))𝐶𝑌 / 𝑥𝐴))
195167, 194eqbrtrrd 5119 . . . . 5 (𝜑 → ((((𝑌 − (⌊‘𝑌)) · 𝑌 / 𝑥𝐵) + (Σ𝑘 ∈ (𝑀...(⌊‘𝑌))𝐶𝑌 / 𝑥𝐴)) − 𝑌 / 𝑥𝐵) ≤ (Σ𝑘 ∈ (𝑀...(⌊‘𝑌))𝐶𝑌 / 𝑥𝐴))
19683, 127, 21, 160, 195letrd 11292 . . . 4 (𝜑 → ((((𝑋 − (⌊‘𝑋)) · 𝑋 / 𝑥𝐵) + (Σ𝑘 ∈ (𝑀...(⌊‘𝑋))𝐶𝑋 / 𝑥𝐴)) − 𝑋 / 𝑥𝐵) ≤ (Σ𝑘 ∈ (𝑀...(⌊‘𝑌))𝐶𝑌 / 𝑥𝐴))
19776, 83, 21, 117, 196letrd 11292 . . 3 (𝜑 → ((Σ𝑘 ∈ (𝑀...(⌊‘𝑋))𝐶𝑋 / 𝑥𝐴) − 𝑋 / 𝑥𝐵) ≤ (Σ𝑘 ∈ (𝑀...(⌊‘𝑌))𝐶𝑌 / 𝑥𝐴))
19875, 45readdcld 11163 . . . . 5 (𝜑 → (𝑋 / 𝑥𝐵 + (Σ𝑘 ∈ (𝑀...(⌊‘𝑋))𝐶𝑋 / 𝑥𝐴)) ∈ ℝ)
199 fracge0 13727 . . . . . . . . 9 (𝑌 ∈ ℝ → 0 ≤ (𝑌 − (⌊‘𝑌)))
20088, 199syl 17 . . . . . . . 8 (𝜑 → 0 ≤ (𝑌 − (⌊‘𝑌)))
201120, 124, 200, 184mulge0d 11716 . . . . . . 7 (𝜑 → 0 ≤ ((𝑌 − (⌊‘𝑌)) · 𝑌 / 𝑥𝐵))
20221, 125addge02d 11728 . . . . . . 7 (𝜑 → (0 ≤ ((𝑌 − (⌊‘𝑌)) · 𝑌 / 𝑥𝐵) ↔ (Σ𝑘 ∈ (𝑀...(⌊‘𝑌))𝐶𝑌 / 𝑥𝐴) ≤ (((𝑌 − (⌊‘𝑌)) · 𝑌 / 𝑥𝐵) + (Σ𝑘 ∈ (𝑀...(⌊‘𝑌))𝐶𝑌 / 𝑥𝐴))))
203201, 202mpbid 232 . . . . . 6 (𝜑 → (Σ𝑘 ∈ (𝑀...(⌊‘𝑌))𝐶𝑌 / 𝑥𝐴) ≤ (((𝑌 − (⌊‘𝑌)) · 𝑌 / 𝑥𝐵) + (Σ𝑘 ∈ (𝑀...(⌊‘𝑌))𝐶𝑌 / 𝑥𝐴)))
204134simpld 494 . . . . . . 7 (𝜑 → ((𝑥𝑆 ↦ (((𝑥 − (⌊‘𝑥)) · 𝐵) + (Σ𝑘 ∈ (𝑀...(⌊‘𝑥))𝐶𝐴)))‘𝑌) ≤ ((𝑥𝑆 ↦ (((𝑥 − (⌊‘𝑥)) · 𝐵) + (Σ𝑘 ∈ (𝑀...(⌊‘𝑥))𝐶𝐴)))‘𝑋))
205204, 158, 1463brtr3d 5126 . . . . . 6 (𝜑 → (((𝑌 − (⌊‘𝑌)) · 𝑌 / 𝑥𝐵) + (Σ𝑘 ∈ (𝑀...(⌊‘𝑌))𝐶𝑌 / 𝑥𝐴)) ≤ (((𝑋 − (⌊‘𝑋)) · 𝑋 / 𝑥𝐵) + (Σ𝑘 ∈ (𝑀...(⌊‘𝑋))𝐶𝑋 / 𝑥𝐴)))
20621, 126, 82, 203, 205letrd 11292 . . . . 5 (𝜑 → (Σ𝑘 ∈ (𝑀...(⌊‘𝑌))𝐶𝑌 / 𝑥𝐴) ≤ (((𝑋 − (⌊‘𝑋)) · 𝑋 / 𝑥𝐵) + (Σ𝑘 ∈ (𝑀...(⌊‘𝑋))𝐶𝑋 / 𝑥𝐴)))
207 fracle1 13726 . . . . . . . . 9 (𝑋 ∈ ℝ → (𝑋 − (⌊‘𝑋)) ≤ 1)
20877, 207syl 17 . . . . . . . 8 (𝜑 → (𝑋 − (⌊‘𝑋)) ≤ 1)
20980, 168, 75, 113, 208lemul1ad 12083 . . . . . . 7 (𝜑 → ((𝑋 − (⌊‘𝑋)) · 𝑋 / 𝑥𝐵) ≤ (1 · 𝑋 / 𝑥𝐵))
21075recnd 11162 . . . . . . . 8 (𝜑𝑋 / 𝑥𝐵 ∈ ℂ)
211210mullidd 11152 . . . . . . 7 (𝜑 → (1 · 𝑋 / 𝑥𝐵) = 𝑋 / 𝑥𝐵)
212209, 211breqtrd 5121 . . . . . 6 (𝜑 → ((𝑋 − (⌊‘𝑋)) · 𝑋 / 𝑥𝐵) ≤ 𝑋 / 𝑥𝐵)
21381, 75, 45, 212leadd1dd 11753 . . . . 5 (𝜑 → (((𝑋 − (⌊‘𝑋)) · 𝑋 / 𝑥𝐵) + (Σ𝑘 ∈ (𝑀...(⌊‘𝑋))𝐶𝑋 / 𝑥𝐴)) ≤ (𝑋 / 𝑥𝐵 + (Σ𝑘 ∈ (𝑀...(⌊‘𝑋))𝐶𝑋 / 𝑥𝐴)))
21421, 82, 198, 206, 213letrd 11292 . . . 4 (𝜑 → (Σ𝑘 ∈ (𝑀...(⌊‘𝑌))𝐶𝑌 / 𝑥𝐴) ≤ (𝑋 / 𝑥𝐵 + (Σ𝑘 ∈ (𝑀...(⌊‘𝑋))𝐶𝑋 / 𝑥𝐴)))
21545recnd 11162 . . . . 5 (𝜑 → (Σ𝑘 ∈ (𝑀...(⌊‘𝑋))𝐶𝑋 / 𝑥𝐴) ∈ ℂ)
216210, 215addcomd 11337 . . . 4 (𝜑 → (𝑋 / 𝑥𝐵 + (Σ𝑘 ∈ (𝑀...(⌊‘𝑋))𝐶𝑋 / 𝑥𝐴)) = ((Σ𝑘 ∈ (𝑀...(⌊‘𝑋))𝐶𝑋 / 𝑥𝐴) + 𝑋 / 𝑥𝐵))
217214, 216breqtrd 5121 . . 3 (𝜑 → (Σ𝑘 ∈ (𝑀...(⌊‘𝑌))𝐶𝑌 / 𝑥𝐴) ≤ ((Σ𝑘 ∈ (𝑀...(⌊‘𝑋))𝐶𝑋 / 𝑥𝐴) + 𝑋 / 𝑥𝐵))
21821, 45, 75absdifled 15363 . . 3 (𝜑 → ((abs‘((Σ𝑘 ∈ (𝑀...(⌊‘𝑌))𝐶𝑌 / 𝑥𝐴) − (Σ𝑘 ∈ (𝑀...(⌊‘𝑋))𝐶𝑋 / 𝑥𝐴))) ≤ 𝑋 / 𝑥𝐵 ↔ (((Σ𝑘 ∈ (𝑀...(⌊‘𝑋))𝐶𝑋 / 𝑥𝐴) − 𝑋 / 𝑥𝐵) ≤ (Σ𝑘 ∈ (𝑀...(⌊‘𝑌))𝐶𝑌 / 𝑥𝐴) ∧ (Σ𝑘 ∈ (𝑀...(⌊‘𝑌))𝐶𝑌 / 𝑥𝐴) ≤ ((Σ𝑘 ∈ (𝑀...(⌊‘𝑋))𝐶𝑋 / 𝑥𝐴) + 𝑋 / 𝑥𝐵))))
219197, 217, 218mpbir2and 713 . 2 (𝜑 → (abs‘((Σ𝑘 ∈ (𝑀...(⌊‘𝑌))𝐶𝑌 / 𝑥𝐴) − (Σ𝑘 ∈ (𝑀...(⌊‘𝑋))𝐶𝑋 / 𝑥𝐴))) ≤ 𝑋 / 𝑥𝐵)
22056, 219eqbrtrd 5117 1 (𝜑 → (abs‘((𝐺𝑌) − (𝐺𝑋))) ≤ 𝑋 / 𝑥𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2109  wral 3044  csb 3853  wss 3905   class class class wbr 5095  cmpt 5176  cfv 6486  (class class class)co 7353  cr 11027  0cc0 11028  1c1 11029   + caddc 11031   · cmul 11033  +∞cpnf 11165  *cxr 11167  cle 11169  cmin 11366  cz 12490  cuz 12754  (,)cioo 13267  ...cfz 13429  cfl 13713  abscabs 15160  Σcsu 15612   D cdv 25781
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7675  ax-inf2 9556  ax-cnex 11084  ax-resscn 11085  ax-1cn 11086  ax-icn 11087  ax-addcl 11088  ax-addrcl 11089  ax-mulcl 11090  ax-mulrcl 11091  ax-mulcom 11092  ax-addass 11093  ax-mulass 11094  ax-distr 11095  ax-i2m1 11096  ax-1ne0 11097  ax-1rid 11098  ax-rnegex 11099  ax-rrecex 11100  ax-cnre 11101  ax-pre-lttri 11102  ax-pre-lttrn 11103  ax-pre-ltadd 11104  ax-pre-mulgt0 11105  ax-pre-sup 11106  ax-addf 11107
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3345  df-reu 3346  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-pss 3925  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-tp 4584  df-op 4586  df-uni 4862  df-int 4900  df-iun 4946  df-iin 4947  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5518  df-eprel 5523  df-po 5531  df-so 5532  df-fr 5576  df-se 5577  df-we 5578  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-isom 6495  df-riota 7310  df-ov 7356  df-oprab 7357  df-mpo 7358  df-of 7617  df-om 7807  df-1st 7931  df-2nd 7932  df-supp 8101  df-frecs 8221  df-wrecs 8252  df-recs 8301  df-rdg 8339  df-1o 8395  df-2o 8396  df-er 8632  df-map 8762  df-pm 8763  df-ixp 8832  df-en 8880  df-dom 8881  df-sdom 8882  df-fin 8883  df-fsupp 9271  df-fi 9320  df-sup 9351  df-inf 9352  df-oi 9421  df-card 9854  df-pnf 11170  df-mnf 11171  df-xr 11172  df-ltxr 11173  df-le 11174  df-sub 11368  df-neg 11369  df-div 11797  df-nn 12148  df-2 12210  df-3 12211  df-4 12212  df-5 12213  df-6 12214  df-7 12215  df-8 12216  df-9 12217  df-n0 12404  df-z 12491  df-dec 12611  df-uz 12755  df-q 12869  df-rp 12913  df-xneg 13033  df-xadd 13034  df-xmul 13035  df-ioo 13271  df-ico 13273  df-icc 13274  df-fz 13430  df-fzo 13577  df-fl 13715  df-seq 13928  df-exp 13988  df-hash 14257  df-cj 15025  df-re 15026  df-im 15027  df-sqrt 15161  df-abs 15162  df-clim 15414  df-sum 15613  df-struct 17077  df-sets 17094  df-slot 17112  df-ndx 17124  df-base 17140  df-ress 17161  df-plusg 17193  df-mulr 17194  df-starv 17195  df-sca 17196  df-vsca 17197  df-ip 17198  df-tset 17199  df-ple 17200  df-ds 17202  df-unif 17203  df-hom 17204  df-cco 17205  df-rest 17345  df-topn 17346  df-0g 17364  df-gsum 17365  df-topgen 17366  df-pt 17367  df-prds 17370  df-xrs 17425  df-qtop 17430  df-imas 17431  df-xps 17433  df-mre 17507  df-mrc 17508  df-acs 17510  df-mgm 18533  df-sgrp 18612  df-mnd 18628  df-submnd 18677  df-mulg 18966  df-cntz 19215  df-cmn 19680  df-psmet 21272  df-xmet 21273  df-met 21274  df-bl 21275  df-mopn 21276  df-fbas 21277  df-fg 21278  df-cnfld 21281  df-top 22798  df-topon 22815  df-topsp 22837  df-bases 22850  df-cld 22923  df-ntr 22924  df-cls 22925  df-nei 23002  df-lp 23040  df-perf 23041  df-cn 23131  df-cnp 23132  df-haus 23219  df-cmp 23291  df-tx 23466  df-hmeo 23659  df-fil 23750  df-fm 23842  df-flim 23843  df-flf 23844  df-xms 24225  df-ms 24226  df-tms 24227  df-cncf 24788  df-limc 25784  df-dv 25785
This theorem is referenced by:  dvfsumrlim  25955  dvfsumrlim2  25956  logexprlim  27153
  Copyright terms: Public domain W3C validator