MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dvfsumlem2OLD Structured version   Visualization version   GIF version

Theorem dvfsumlem2OLD 26083
Description: Obsolete version of dvfsumlem2 26082 as of 17-Apr-2025. (Contributed by Mario Carneiro, 17-May-2016.) (Proof modification is discouraged.) (New usage is discouraged.)
Hypotheses
Ref Expression
dvfsum.s 𝑆 = (𝑇(,)+∞)
dvfsum.z 𝑍 = (ℤ𝑀)
dvfsum.m (𝜑𝑀 ∈ ℤ)
dvfsum.d (𝜑𝐷 ∈ ℝ)
dvfsum.md (𝜑𝑀 ≤ (𝐷 + 1))
dvfsum.t (𝜑𝑇 ∈ ℝ)
dvfsum.a ((𝜑𝑥𝑆) → 𝐴 ∈ ℝ)
dvfsum.b1 ((𝜑𝑥𝑆) → 𝐵𝑉)
dvfsum.b2 ((𝜑𝑥𝑍) → 𝐵 ∈ ℝ)
dvfsum.b3 (𝜑 → (ℝ D (𝑥𝑆𝐴)) = (𝑥𝑆𝐵))
dvfsum.c (𝑥 = 𝑘𝐵 = 𝐶)
dvfsum.u (𝜑𝑈 ∈ ℝ*)
dvfsum.l ((𝜑 ∧ (𝑥𝑆𝑘𝑆) ∧ (𝐷𝑥𝑥𝑘𝑘𝑈)) → 𝐶𝐵)
dvfsum.h 𝐻 = (𝑥𝑆 ↦ (((𝑥 − (⌊‘𝑥)) · 𝐵) + (Σ𝑘 ∈ (𝑀...(⌊‘𝑥))𝐶𝐴)))
dvfsumlem1.1 (𝜑𝑋𝑆)
dvfsumlem1.2 (𝜑𝑌𝑆)
dvfsumlem1.3 (𝜑𝐷𝑋)
dvfsumlem1.4 (𝜑𝑋𝑌)
dvfsumlem1.5 (𝜑𝑌𝑈)
dvfsumlem1.6 (𝜑𝑌 ≤ ((⌊‘𝑋) + 1))
Assertion
Ref Expression
dvfsumlem2OLD (𝜑 → ((𝐻𝑌) ≤ (𝐻𝑋) ∧ ((𝐻𝑋) − 𝑋 / 𝑥𝐵) ≤ ((𝐻𝑌) − 𝑌 / 𝑥𝐵)))
Distinct variable groups:   𝐵,𝑘   𝑥,𝐶   𝑥,𝑘,𝐷   𝜑,𝑘,𝑥   𝑆,𝑘,𝑥   𝑘,𝑀,𝑥   𝑥,𝑇   𝑘,𝑌,𝑥   𝑥,𝑍   𝑈,𝑘,𝑥   𝑘,𝑋,𝑥
Allowed substitution hints:   𝐴(𝑥,𝑘)   𝐵(𝑥)   𝐶(𝑘)   𝑇(𝑘)   𝐻(𝑥,𝑘)   𝑉(𝑥,𝑘)   𝑍(𝑘)

Proof of Theorem dvfsumlem2OLD
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 dvfsum.s . . . . . . . . 9 𝑆 = (𝑇(,)+∞)
2 ioossre 13445 . . . . . . . . 9 (𝑇(,)+∞) ⊆ ℝ
31, 2eqsstri 4030 . . . . . . . 8 𝑆 ⊆ ℝ
4 dvfsumlem1.2 . . . . . . . 8 (𝜑𝑌𝑆)
53, 4sselid 3993 . . . . . . 7 (𝜑𝑌 ∈ ℝ)
6 dvfsumlem1.1 . . . . . . . . . . 11 (𝜑𝑋𝑆)
76, 1eleqtrdi 2849 . . . . . . . . . 10 (𝜑𝑋 ∈ (𝑇(,)+∞))
8 dvfsum.t . . . . . . . . . . . 12 (𝜑𝑇 ∈ ℝ)
98rexrd 11309 . . . . . . . . . . 11 (𝜑𝑇 ∈ ℝ*)
10 elioopnf 13480 . . . . . . . . . . 11 (𝑇 ∈ ℝ* → (𝑋 ∈ (𝑇(,)+∞) ↔ (𝑋 ∈ ℝ ∧ 𝑇 < 𝑋)))
119, 10syl 17 . . . . . . . . . 10 (𝜑 → (𝑋 ∈ (𝑇(,)+∞) ↔ (𝑋 ∈ ℝ ∧ 𝑇 < 𝑋)))
127, 11mpbid 232 . . . . . . . . 9 (𝜑 → (𝑋 ∈ ℝ ∧ 𝑇 < 𝑋))
1312simpld 494 . . . . . . . 8 (𝜑𝑋 ∈ ℝ)
14 reflcl 13833 . . . . . . . 8 (𝑋 ∈ ℝ → (⌊‘𝑋) ∈ ℝ)
1513, 14syl 17 . . . . . . 7 (𝜑 → (⌊‘𝑋) ∈ ℝ)
165, 15resubcld 11689 . . . . . 6 (𝜑 → (𝑌 − (⌊‘𝑋)) ∈ ℝ)
17 csbeq1 3911 . . . . . . . 8 (𝑦 = 𝑌𝑦 / 𝑥𝐵 = 𝑌 / 𝑥𝐵)
1817eleq1d 2824 . . . . . . 7 (𝑦 = 𝑌 → (𝑦 / 𝑥𝐵 ∈ ℝ ↔ 𝑌 / 𝑥𝐵 ∈ ℝ))
193a1i 11 . . . . . . . . . 10 (𝜑𝑆 ⊆ ℝ)
20 dvfsum.a . . . . . . . . . 10 ((𝜑𝑥𝑆) → 𝐴 ∈ ℝ)
21 dvfsum.b1 . . . . . . . . . 10 ((𝜑𝑥𝑆) → 𝐵𝑉)
22 dvfsum.b3 . . . . . . . . . 10 (𝜑 → (ℝ D (𝑥𝑆𝐴)) = (𝑥𝑆𝐵))
2319, 20, 21, 22dvmptrecl 26079 . . . . . . . . 9 ((𝜑𝑥𝑆) → 𝐵 ∈ ℝ)
2423fmpttd 7135 . . . . . . . 8 (𝜑 → (𝑥𝑆𝐵):𝑆⟶ℝ)
25 nfcv 2903 . . . . . . . . . 10 𝑦𝐵
26 nfcsb1v 3933 . . . . . . . . . 10 𝑥𝑦 / 𝑥𝐵
27 csbeq1a 3922 . . . . . . . . . 10 (𝑥 = 𝑦𝐵 = 𝑦 / 𝑥𝐵)
2825, 26, 27cbvmpt 5259 . . . . . . . . 9 (𝑥𝑆𝐵) = (𝑦𝑆𝑦 / 𝑥𝐵)
2928fmpt 7130 . . . . . . . 8 (∀𝑦𝑆 𝑦 / 𝑥𝐵 ∈ ℝ ↔ (𝑥𝑆𝐵):𝑆⟶ℝ)
3024, 29sylibr 234 . . . . . . 7 (𝜑 → ∀𝑦𝑆 𝑦 / 𝑥𝐵 ∈ ℝ)
3118, 30, 4rspcdva 3623 . . . . . 6 (𝜑𝑌 / 𝑥𝐵 ∈ ℝ)
3216, 31remulcld 11289 . . . . 5 (𝜑 → ((𝑌 − (⌊‘𝑋)) · 𝑌 / 𝑥𝐵) ∈ ℝ)
33 csbeq1 3911 . . . . . . 7 (𝑦 = 𝑌𝑦 / 𝑥𝐴 = 𝑌 / 𝑥𝐴)
3433eleq1d 2824 . . . . . 6 (𝑦 = 𝑌 → (𝑦 / 𝑥𝐴 ∈ ℝ ↔ 𝑌 / 𝑥𝐴 ∈ ℝ))
3520fmpttd 7135 . . . . . . 7 (𝜑 → (𝑥𝑆𝐴):𝑆⟶ℝ)
36 nfcv 2903 . . . . . . . . 9 𝑦𝐴
37 nfcsb1v 3933 . . . . . . . . 9 𝑥𝑦 / 𝑥𝐴
38 csbeq1a 3922 . . . . . . . . 9 (𝑥 = 𝑦𝐴 = 𝑦 / 𝑥𝐴)
3936, 37, 38cbvmpt 5259 . . . . . . . 8 (𝑥𝑆𝐴) = (𝑦𝑆𝑦 / 𝑥𝐴)
4039fmpt 7130 . . . . . . 7 (∀𝑦𝑆 𝑦 / 𝑥𝐴 ∈ ℝ ↔ (𝑥𝑆𝐴):𝑆⟶ℝ)
4135, 40sylibr 234 . . . . . 6 (𝜑 → ∀𝑦𝑆 𝑦 / 𝑥𝐴 ∈ ℝ)
4234, 41, 4rspcdva 3623 . . . . 5 (𝜑𝑌 / 𝑥𝐴 ∈ ℝ)
4332, 42resubcld 11689 . . . 4 (𝜑 → (((𝑌 − (⌊‘𝑋)) · 𝑌 / 𝑥𝐵) − 𝑌 / 𝑥𝐴) ∈ ℝ)
4413, 15resubcld 11689 . . . . . 6 (𝜑 → (𝑋 − (⌊‘𝑋)) ∈ ℝ)
45 csbeq1 3911 . . . . . . . 8 (𝑦 = 𝑋𝑦 / 𝑥𝐵 = 𝑋 / 𝑥𝐵)
4645eleq1d 2824 . . . . . . 7 (𝑦 = 𝑋 → (𝑦 / 𝑥𝐵 ∈ ℝ ↔ 𝑋 / 𝑥𝐵 ∈ ℝ))
4746, 30, 6rspcdva 3623 . . . . . 6 (𝜑𝑋 / 𝑥𝐵 ∈ ℝ)
4844, 47remulcld 11289 . . . . 5 (𝜑 → ((𝑋 − (⌊‘𝑋)) · 𝑋 / 𝑥𝐵) ∈ ℝ)
49 csbeq1 3911 . . . . . . 7 (𝑦 = 𝑋𝑦 / 𝑥𝐴 = 𝑋 / 𝑥𝐴)
5049eleq1d 2824 . . . . . 6 (𝑦 = 𝑋 → (𝑦 / 𝑥𝐴 ∈ ℝ ↔ 𝑋 / 𝑥𝐴 ∈ ℝ))
5150, 41, 6rspcdva 3623 . . . . 5 (𝜑𝑋 / 𝑥𝐴 ∈ ℝ)
5248, 51resubcld 11689 . . . 4 (𝜑 → (((𝑋 − (⌊‘𝑋)) · 𝑋 / 𝑥𝐵) − 𝑋 / 𝑥𝐴) ∈ ℝ)
53 fzfid 14011 . . . . 5 (𝜑 → (𝑀...(⌊‘𝑋)) ∈ Fin)
54 dvfsum.b2 . . . . . . 7 ((𝜑𝑥𝑍) → 𝐵 ∈ ℝ)
5554ralrimiva 3144 . . . . . 6 (𝜑 → ∀𝑥𝑍 𝐵 ∈ ℝ)
56 elfzuz 13557 . . . . . . 7 (𝑘 ∈ (𝑀...(⌊‘𝑋)) → 𝑘 ∈ (ℤ𝑀))
57 dvfsum.z . . . . . . 7 𝑍 = (ℤ𝑀)
5856, 57eleqtrrdi 2850 . . . . . 6 (𝑘 ∈ (𝑀...(⌊‘𝑋)) → 𝑘𝑍)
59 dvfsum.c . . . . . . . 8 (𝑥 = 𝑘𝐵 = 𝐶)
6059eleq1d 2824 . . . . . . 7 (𝑥 = 𝑘 → (𝐵 ∈ ℝ ↔ 𝐶 ∈ ℝ))
6160rspccva 3621 . . . . . 6 ((∀𝑥𝑍 𝐵 ∈ ℝ ∧ 𝑘𝑍) → 𝐶 ∈ ℝ)
6255, 58, 61syl2an 596 . . . . 5 ((𝜑𝑘 ∈ (𝑀...(⌊‘𝑋))) → 𝐶 ∈ ℝ)
6353, 62fsumrecl 15767 . . . 4 (𝜑 → Σ𝑘 ∈ (𝑀...(⌊‘𝑋))𝐶 ∈ ℝ)
6444, 31remulcld 11289 . . . . . 6 (𝜑 → ((𝑋 − (⌊‘𝑋)) · 𝑌 / 𝑥𝐵) ∈ ℝ)
6564, 51resubcld 11689 . . . . 5 (𝜑 → (((𝑋 − (⌊‘𝑋)) · 𝑌 / 𝑥𝐵) − 𝑋 / 𝑥𝐴) ∈ ℝ)
665, 13resubcld 11689 . . . . . . . . 9 (𝜑 → (𝑌𝑋) ∈ ℝ)
6731, 66remulcld 11289 . . . . . . . 8 (𝜑 → (𝑌 / 𝑥𝐵 · (𝑌𝑋)) ∈ ℝ)
6831recnd 11287 . . . . . . . . . 10 (𝜑𝑌 / 𝑥𝐵 ∈ ℂ)
695recnd 11287 . . . . . . . . . 10 (𝜑𝑌 ∈ ℂ)
7013recnd 11287 . . . . . . . . . 10 (𝜑𝑋 ∈ ℂ)
7168, 69, 70subdid 11717 . . . . . . . . 9 (𝜑 → (𝑌 / 𝑥𝐵 · (𝑌𝑋)) = ((𝑌 / 𝑥𝐵 · 𝑌) − (𝑌 / 𝑥𝐵 · 𝑋)))
72 eqid 2735 . . . . . . . . . . 11 (TopOpen‘ℂfld) = (TopOpen‘ℂfld)
7372mulcn 24903 . . . . . . . . . . 11 · ∈ (((TopOpen‘ℂfld) ×t (TopOpen‘ℂfld)) Cn (TopOpen‘ℂfld))
74 pnfxr 11313 . . . . . . . . . . . . . . . 16 +∞ ∈ ℝ*
7574a1i 11 . . . . . . . . . . . . . . 15 (𝜑 → +∞ ∈ ℝ*)
7612simprd 495 . . . . . . . . . . . . . . 15 (𝜑𝑇 < 𝑋)
775ltpnfd 13161 . . . . . . . . . . . . . . 15 (𝜑𝑌 < +∞)
78 iccssioo 13453 . . . . . . . . . . . . . . 15 (((𝑇 ∈ ℝ* ∧ +∞ ∈ ℝ*) ∧ (𝑇 < 𝑋𝑌 < +∞)) → (𝑋[,]𝑌) ⊆ (𝑇(,)+∞))
799, 75, 76, 77, 78syl22anc 839 . . . . . . . . . . . . . 14 (𝜑 → (𝑋[,]𝑌) ⊆ (𝑇(,)+∞))
8079, 2sstrdi 4008 . . . . . . . . . . . . 13 (𝜑 → (𝑋[,]𝑌) ⊆ ℝ)
81 ax-resscn 11210 . . . . . . . . . . . . 13 ℝ ⊆ ℂ
8280, 81sstrdi 4008 . . . . . . . . . . . 12 (𝜑 → (𝑋[,]𝑌) ⊆ ℂ)
8381a1i 11 . . . . . . . . . . . 12 (𝜑 → ℝ ⊆ ℂ)
84 cncfmptc 24952 . . . . . . . . . . . 12 ((𝑌 / 𝑥𝐵 ∈ ℝ ∧ (𝑋[,]𝑌) ⊆ ℂ ∧ ℝ ⊆ ℂ) → (𝑦 ∈ (𝑋[,]𝑌) ↦ 𝑌 / 𝑥𝐵) ∈ ((𝑋[,]𝑌)–cn→ℝ))
8531, 82, 83, 84syl3anc 1370 . . . . . . . . . . 11 (𝜑 → (𝑦 ∈ (𝑋[,]𝑌) ↦ 𝑌 / 𝑥𝐵) ∈ ((𝑋[,]𝑌)–cn→ℝ))
86 cncfmptid 24953 . . . . . . . . . . . 12 (((𝑋[,]𝑌) ⊆ ℝ ∧ ℝ ⊆ ℂ) → (𝑦 ∈ (𝑋[,]𝑌) ↦ 𝑦) ∈ ((𝑋[,]𝑌)–cn→ℝ))
8780, 81, 86sylancl 586 . . . . . . . . . . 11 (𝜑 → (𝑦 ∈ (𝑋[,]𝑌) ↦ 𝑦) ∈ ((𝑋[,]𝑌)–cn→ℝ))
88 remulcl 11238 . . . . . . . . . . 11 ((𝑌 / 𝑥𝐵 ∈ ℝ ∧ 𝑦 ∈ ℝ) → (𝑌 / 𝑥𝐵 · 𝑦) ∈ ℝ)
8972, 73, 85, 87, 81, 88cncfmpt2ss 24956 . . . . . . . . . 10 (𝜑 → (𝑦 ∈ (𝑋[,]𝑌) ↦ (𝑌 / 𝑥𝐵 · 𝑦)) ∈ ((𝑋[,]𝑌)–cn→ℝ))
90 reelprrecn 11245 . . . . . . . . . . . . 13 ℝ ∈ {ℝ, ℂ}
9190a1i 11 . . . . . . . . . . . 12 (𝜑 → ℝ ∈ {ℝ, ℂ})
92 ioossicc 13470 . . . . . . . . . . . . . . 15 (𝑋(,)𝑌) ⊆ (𝑋[,]𝑌)
9392, 80sstrid 4007 . . . . . . . . . . . . . 14 (𝜑 → (𝑋(,)𝑌) ⊆ ℝ)
9493sselda 3995 . . . . . . . . . . . . 13 ((𝜑𝑦 ∈ (𝑋(,)𝑌)) → 𝑦 ∈ ℝ)
9594recnd 11287 . . . . . . . . . . . 12 ((𝜑𝑦 ∈ (𝑋(,)𝑌)) → 𝑦 ∈ ℂ)
96 1cnd 11254 . . . . . . . . . . . 12 ((𝜑𝑦 ∈ (𝑋(,)𝑌)) → 1 ∈ ℂ)
97 simpr 484 . . . . . . . . . . . . . 14 ((𝜑𝑦 ∈ ℝ) → 𝑦 ∈ ℝ)
9897recnd 11287 . . . . . . . . . . . . 13 ((𝜑𝑦 ∈ ℝ) → 𝑦 ∈ ℂ)
99 1cnd 11254 . . . . . . . . . . . . 13 ((𝜑𝑦 ∈ ℝ) → 1 ∈ ℂ)
10091dvmptid 26010 . . . . . . . . . . . . 13 (𝜑 → (ℝ D (𝑦 ∈ ℝ ↦ 𝑦)) = (𝑦 ∈ ℝ ↦ 1))
10172tgioo2 24839 . . . . . . . . . . . . 13 (topGen‘ran (,)) = ((TopOpen‘ℂfld) ↾t ℝ)
102 iooretop 24802 . . . . . . . . . . . . . 14 (𝑋(,)𝑌) ∈ (topGen‘ran (,))
103102a1i 11 . . . . . . . . . . . . 13 (𝜑 → (𝑋(,)𝑌) ∈ (topGen‘ran (,)))
10491, 98, 99, 100, 93, 101, 72, 103dvmptres 26016 . . . . . . . . . . . 12 (𝜑 → (ℝ D (𝑦 ∈ (𝑋(,)𝑌) ↦ 𝑦)) = (𝑦 ∈ (𝑋(,)𝑌) ↦ 1))
10591, 95, 96, 104, 68dvmptcmul 26017 . . . . . . . . . . 11 (𝜑 → (ℝ D (𝑦 ∈ (𝑋(,)𝑌) ↦ (𝑌 / 𝑥𝐵 · 𝑦))) = (𝑦 ∈ (𝑋(,)𝑌) ↦ (𝑌 / 𝑥𝐵 · 1)))
10668mulridd 11276 . . . . . . . . . . . 12 (𝜑 → (𝑌 / 𝑥𝐵 · 1) = 𝑌 / 𝑥𝐵)
107106mpteq2dv 5250 . . . . . . . . . . 11 (𝜑 → (𝑦 ∈ (𝑋(,)𝑌) ↦ (𝑌 / 𝑥𝐵 · 1)) = (𝑦 ∈ (𝑋(,)𝑌) ↦ 𝑌 / 𝑥𝐵))
108105, 107eqtrd 2775 . . . . . . . . . 10 (𝜑 → (ℝ D (𝑦 ∈ (𝑋(,)𝑌) ↦ (𝑌 / 𝑥𝐵 · 𝑦))) = (𝑦 ∈ (𝑋(,)𝑌) ↦ 𝑌 / 𝑥𝐵))
10979, 1sseqtrrdi 4047 . . . . . . . . . . . 12 (𝜑 → (𝑋[,]𝑌) ⊆ 𝑆)
110109resmptd 6060 . . . . . . . . . . 11 (𝜑 → ((𝑦𝑆𝑦 / 𝑥𝐴) ↾ (𝑋[,]𝑌)) = (𝑦 ∈ (𝑋[,]𝑌) ↦ 𝑦 / 𝑥𝐴))
11120recnd 11287 . . . . . . . . . . . . . . . . 17 ((𝜑𝑥𝑆) → 𝐴 ∈ ℂ)
112111fmpttd 7135 . . . . . . . . . . . . . . . 16 (𝜑 → (𝑥𝑆𝐴):𝑆⟶ℂ)
11322dmeqd 5919 . . . . . . . . . . . . . . . . 17 (𝜑 → dom (ℝ D (𝑥𝑆𝐴)) = dom (𝑥𝑆𝐵))
11421ralrimiva 3144 . . . . . . . . . . . . . . . . . 18 (𝜑 → ∀𝑥𝑆 𝐵𝑉)
115 dmmptg 6264 . . . . . . . . . . . . . . . . . 18 (∀𝑥𝑆 𝐵𝑉 → dom (𝑥𝑆𝐵) = 𝑆)
116114, 115syl 17 . . . . . . . . . . . . . . . . 17 (𝜑 → dom (𝑥𝑆𝐵) = 𝑆)
117113, 116eqtrd 2775 . . . . . . . . . . . . . . . 16 (𝜑 → dom (ℝ D (𝑥𝑆𝐴)) = 𝑆)
118 dvcn 25972 . . . . . . . . . . . . . . . 16 (((ℝ ⊆ ℂ ∧ (𝑥𝑆𝐴):𝑆⟶ℂ ∧ 𝑆 ⊆ ℝ) ∧ dom (ℝ D (𝑥𝑆𝐴)) = 𝑆) → (𝑥𝑆𝐴) ∈ (𝑆cn→ℂ))
11983, 112, 19, 117, 118syl31anc 1372 . . . . . . . . . . . . . . 15 (𝜑 → (𝑥𝑆𝐴) ∈ (𝑆cn→ℂ))
120 cncfcdm 24938 . . . . . . . . . . . . . . 15 ((ℝ ⊆ ℂ ∧ (𝑥𝑆𝐴) ∈ (𝑆cn→ℂ)) → ((𝑥𝑆𝐴) ∈ (𝑆cn→ℝ) ↔ (𝑥𝑆𝐴):𝑆⟶ℝ))
12181, 119, 120sylancr 587 . . . . . . . . . . . . . 14 (𝜑 → ((𝑥𝑆𝐴) ∈ (𝑆cn→ℝ) ↔ (𝑥𝑆𝐴):𝑆⟶ℝ))
12235, 121mpbird 257 . . . . . . . . . . . . 13 (𝜑 → (𝑥𝑆𝐴) ∈ (𝑆cn→ℝ))
12339, 122eqeltrrid 2844 . . . . . . . . . . . 12 (𝜑 → (𝑦𝑆𝑦 / 𝑥𝐴) ∈ (𝑆cn→ℝ))
124 rescncf 24937 . . . . . . . . . . . 12 ((𝑋[,]𝑌) ⊆ 𝑆 → ((𝑦𝑆𝑦 / 𝑥𝐴) ∈ (𝑆cn→ℝ) → ((𝑦𝑆𝑦 / 𝑥𝐴) ↾ (𝑋[,]𝑌)) ∈ ((𝑋[,]𝑌)–cn→ℝ)))
125109, 123, 124sylc 65 . . . . . . . . . . 11 (𝜑 → ((𝑦𝑆𝑦 / 𝑥𝐴) ↾ (𝑋[,]𝑌)) ∈ ((𝑋[,]𝑌)–cn→ℝ))
126110, 125eqeltrrd 2840 . . . . . . . . . 10 (𝜑 → (𝑦 ∈ (𝑋[,]𝑌) ↦ 𝑦 / 𝑥𝐴) ∈ ((𝑋[,]𝑌)–cn→ℝ))
12741r19.21bi 3249 . . . . . . . . . . . 12 ((𝜑𝑦𝑆) → 𝑦 / 𝑥𝐴 ∈ ℝ)
128127recnd 11287 . . . . . . . . . . 11 ((𝜑𝑦𝑆) → 𝑦 / 𝑥𝐴 ∈ ℂ)
12930r19.21bi 3249 . . . . . . . . . . 11 ((𝜑𝑦𝑆) → 𝑦 / 𝑥𝐵 ∈ ℝ)
13039oveq2i 7442 . . . . . . . . . . . 12 (ℝ D (𝑥𝑆𝐴)) = (ℝ D (𝑦𝑆𝑦 / 𝑥𝐴))
13122, 130, 283eqtr3g 2798 . . . . . . . . . . 11 (𝜑 → (ℝ D (𝑦𝑆𝑦 / 𝑥𝐴)) = (𝑦𝑆𝑦 / 𝑥𝐵))
13292, 109sstrid 4007 . . . . . . . . . . 11 (𝜑 → (𝑋(,)𝑌) ⊆ 𝑆)
13391, 128, 129, 131, 132, 101, 72, 103dvmptres 26016 . . . . . . . . . 10 (𝜑 → (ℝ D (𝑦 ∈ (𝑋(,)𝑌) ↦ 𝑦 / 𝑥𝐴)) = (𝑦 ∈ (𝑋(,)𝑌) ↦ 𝑦 / 𝑥𝐵))
13492sseli 3991 . . . . . . . . . . 11 (𝑦 ∈ (𝑋(,)𝑌) → 𝑦 ∈ (𝑋[,]𝑌))
135 simpl 482 . . . . . . . . . . . 12 ((𝜑𝑦 ∈ (𝑋[,]𝑌)) → 𝜑)
136109sselda 3995 . . . . . . . . . . . 12 ((𝜑𝑦 ∈ (𝑋[,]𝑌)) → 𝑦𝑆)
1374adantr 480 . . . . . . . . . . . 12 ((𝜑𝑦 ∈ (𝑋[,]𝑌)) → 𝑌𝑆)
138 dvfsum.d . . . . . . . . . . . . . 14 (𝜑𝐷 ∈ ℝ)
139138adantr 480 . . . . . . . . . . . . 13 ((𝜑𝑦 ∈ (𝑋[,]𝑌)) → 𝐷 ∈ ℝ)
14013adantr 480 . . . . . . . . . . . . 13 ((𝜑𝑦 ∈ (𝑋[,]𝑌)) → 𝑋 ∈ ℝ)
141 elicc2 13449 . . . . . . . . . . . . . . . 16 ((𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ) → (𝑦 ∈ (𝑋[,]𝑌) ↔ (𝑦 ∈ ℝ ∧ 𝑋𝑦𝑦𝑌)))
14213, 5, 141syl2anc 584 . . . . . . . . . . . . . . 15 (𝜑 → (𝑦 ∈ (𝑋[,]𝑌) ↔ (𝑦 ∈ ℝ ∧ 𝑋𝑦𝑦𝑌)))
143142biimpa 476 . . . . . . . . . . . . . 14 ((𝜑𝑦 ∈ (𝑋[,]𝑌)) → (𝑦 ∈ ℝ ∧ 𝑋𝑦𝑦𝑌))
144143simp1d 1141 . . . . . . . . . . . . 13 ((𝜑𝑦 ∈ (𝑋[,]𝑌)) → 𝑦 ∈ ℝ)
145 dvfsumlem1.3 . . . . . . . . . . . . . 14 (𝜑𝐷𝑋)
146145adantr 480 . . . . . . . . . . . . 13 ((𝜑𝑦 ∈ (𝑋[,]𝑌)) → 𝐷𝑋)
147143simp2d 1142 . . . . . . . . . . . . 13 ((𝜑𝑦 ∈ (𝑋[,]𝑌)) → 𝑋𝑦)
148139, 140, 144, 146, 147letrd 11416 . . . . . . . . . . . 12 ((𝜑𝑦 ∈ (𝑋[,]𝑌)) → 𝐷𝑦)
149143simp3d 1143 . . . . . . . . . . . 12 ((𝜑𝑦 ∈ (𝑋[,]𝑌)) → 𝑦𝑌)
150 dvfsumlem1.5 . . . . . . . . . . . . 13 (𝜑𝑌𝑈)
151150adantr 480 . . . . . . . . . . . 12 ((𝜑𝑦 ∈ (𝑋[,]𝑌)) → 𝑌𝑈)
152 simp2r 1199 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑦𝑆𝑌𝑆) ∧ (𝐷𝑦𝑦𝑌𝑌𝑈)) → 𝑌𝑆)
153 eleq1 2827 . . . . . . . . . . . . . . . . 17 (𝑘 = 𝑌 → (𝑘𝑆𝑌𝑆))
154153anbi2d 630 . . . . . . . . . . . . . . . 16 (𝑘 = 𝑌 → ((𝑦𝑆𝑘𝑆) ↔ (𝑦𝑆𝑌𝑆)))
155 breq2 5152 . . . . . . . . . . . . . . . . 17 (𝑘 = 𝑌 → (𝑦𝑘𝑦𝑌))
156 breq1 5151 . . . . . . . . . . . . . . . . 17 (𝑘 = 𝑌 → (𝑘𝑈𝑌𝑈))
157155, 1563anbi23d 1438 . . . . . . . . . . . . . . . 16 (𝑘 = 𝑌 → ((𝐷𝑦𝑦𝑘𝑘𝑈) ↔ (𝐷𝑦𝑦𝑌𝑌𝑈)))
158154, 1573anbi23d 1438 . . . . . . . . . . . . . . 15 (𝑘 = 𝑌 → ((𝜑 ∧ (𝑦𝑆𝑘𝑆) ∧ (𝐷𝑦𝑦𝑘𝑘𝑈)) ↔ (𝜑 ∧ (𝑦𝑆𝑌𝑆) ∧ (𝐷𝑦𝑦𝑌𝑌𝑈))))
159 vex 3482 . . . . . . . . . . . . . . . . . 18 𝑘 ∈ V
160159, 59csbie 3944 . . . . . . . . . . . . . . . . 17 𝑘 / 𝑥𝐵 = 𝐶
161 csbeq1 3911 . . . . . . . . . . . . . . . . 17 (𝑘 = 𝑌𝑘 / 𝑥𝐵 = 𝑌 / 𝑥𝐵)
162160, 161eqtr3id 2789 . . . . . . . . . . . . . . . 16 (𝑘 = 𝑌𝐶 = 𝑌 / 𝑥𝐵)
163162breq1d 5158 . . . . . . . . . . . . . . 15 (𝑘 = 𝑌 → (𝐶𝑦 / 𝑥𝐵𝑌 / 𝑥𝐵𝑦 / 𝑥𝐵))
164158, 163imbi12d 344 . . . . . . . . . . . . . 14 (𝑘 = 𝑌 → (((𝜑 ∧ (𝑦𝑆𝑘𝑆) ∧ (𝐷𝑦𝑦𝑘𝑘𝑈)) → 𝐶𝑦 / 𝑥𝐵) ↔ ((𝜑 ∧ (𝑦𝑆𝑌𝑆) ∧ (𝐷𝑦𝑦𝑌𝑌𝑈)) → 𝑌 / 𝑥𝐵𝑦 / 𝑥𝐵)))
165 nfv 1912 . . . . . . . . . . . . . . . 16 𝑥(𝜑 ∧ (𝑦𝑆𝑘𝑆) ∧ (𝐷𝑦𝑦𝑘𝑘𝑈))
166 nfcv 2903 . . . . . . . . . . . . . . . . 17 𝑥𝐶
167 nfcv 2903 . . . . . . . . . . . . . . . . 17 𝑥
168166, 167, 26nfbr 5195 . . . . . . . . . . . . . . . 16 𝑥 𝐶𝑦 / 𝑥𝐵
169165, 168nfim 1894 . . . . . . . . . . . . . . 15 𝑥((𝜑 ∧ (𝑦𝑆𝑘𝑆) ∧ (𝐷𝑦𝑦𝑘𝑘𝑈)) → 𝐶𝑦 / 𝑥𝐵)
170 eleq1 2827 . . . . . . . . . . . . . . . . . 18 (𝑥 = 𝑦 → (𝑥𝑆𝑦𝑆))
171170anbi1d 631 . . . . . . . . . . . . . . . . 17 (𝑥 = 𝑦 → ((𝑥𝑆𝑘𝑆) ↔ (𝑦𝑆𝑘𝑆)))
172 breq2 5152 . . . . . . . . . . . . . . . . . 18 (𝑥 = 𝑦 → (𝐷𝑥𝐷𝑦))
173 breq1 5151 . . . . . . . . . . . . . . . . . 18 (𝑥 = 𝑦 → (𝑥𝑘𝑦𝑘))
174172, 1733anbi12d 1436 . . . . . . . . . . . . . . . . 17 (𝑥 = 𝑦 → ((𝐷𝑥𝑥𝑘𝑘𝑈) ↔ (𝐷𝑦𝑦𝑘𝑘𝑈)))
175171, 1743anbi23d 1438 . . . . . . . . . . . . . . . 16 (𝑥 = 𝑦 → ((𝜑 ∧ (𝑥𝑆𝑘𝑆) ∧ (𝐷𝑥𝑥𝑘𝑘𝑈)) ↔ (𝜑 ∧ (𝑦𝑆𝑘𝑆) ∧ (𝐷𝑦𝑦𝑘𝑘𝑈))))
17627breq2d 5160 . . . . . . . . . . . . . . . 16 (𝑥 = 𝑦 → (𝐶𝐵𝐶𝑦 / 𝑥𝐵))
177175, 176imbi12d 344 . . . . . . . . . . . . . . 15 (𝑥 = 𝑦 → (((𝜑 ∧ (𝑥𝑆𝑘𝑆) ∧ (𝐷𝑥𝑥𝑘𝑘𝑈)) → 𝐶𝐵) ↔ ((𝜑 ∧ (𝑦𝑆𝑘𝑆) ∧ (𝐷𝑦𝑦𝑘𝑘𝑈)) → 𝐶𝑦 / 𝑥𝐵)))
178 dvfsum.l . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑥𝑆𝑘𝑆) ∧ (𝐷𝑥𝑥𝑘𝑘𝑈)) → 𝐶𝐵)
179169, 177, 178chvarfv 2238 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑦𝑆𝑘𝑆) ∧ (𝐷𝑦𝑦𝑘𝑘𝑈)) → 𝐶𝑦 / 𝑥𝐵)
180164, 179vtoclg 3554 . . . . . . . . . . . . 13 (𝑌𝑆 → ((𝜑 ∧ (𝑦𝑆𝑌𝑆) ∧ (𝐷𝑦𝑦𝑌𝑌𝑈)) → 𝑌 / 𝑥𝐵𝑦 / 𝑥𝐵))
181152, 180mpcom 38 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑦𝑆𝑌𝑆) ∧ (𝐷𝑦𝑦𝑌𝑌𝑈)) → 𝑌 / 𝑥𝐵𝑦 / 𝑥𝐵)
182135, 136, 137, 148, 149, 151, 181syl123anc 1386 . . . . . . . . . . 11 ((𝜑𝑦 ∈ (𝑋[,]𝑌)) → 𝑌 / 𝑥𝐵𝑦 / 𝑥𝐵)
183134, 182sylan2 593 . . . . . . . . . 10 ((𝜑𝑦 ∈ (𝑋(,)𝑌)) → 𝑌 / 𝑥𝐵𝑦 / 𝑥𝐵)
18413rexrd 11309 . . . . . . . . . . 11 (𝜑𝑋 ∈ ℝ*)
1855rexrd 11309 . . . . . . . . . . 11 (𝜑𝑌 ∈ ℝ*)
186 dvfsumlem1.4 . . . . . . . . . . 11 (𝜑𝑋𝑌)
187 lbicc2 13501 . . . . . . . . . . 11 ((𝑋 ∈ ℝ*𝑌 ∈ ℝ*𝑋𝑌) → 𝑋 ∈ (𝑋[,]𝑌))
188184, 185, 186, 187syl3anc 1370 . . . . . . . . . 10 (𝜑𝑋 ∈ (𝑋[,]𝑌))
189 ubicc2 13502 . . . . . . . . . . 11 ((𝑋 ∈ ℝ*𝑌 ∈ ℝ*𝑋𝑌) → 𝑌 ∈ (𝑋[,]𝑌))
190184, 185, 186, 189syl3anc 1370 . . . . . . . . . 10 (𝜑𝑌 ∈ (𝑋[,]𝑌))
191 oveq2 7439 . . . . . . . . . 10 (𝑦 = 𝑋 → (𝑌 / 𝑥𝐵 · 𝑦) = (𝑌 / 𝑥𝐵 · 𝑋))
192 oveq2 7439 . . . . . . . . . 10 (𝑦 = 𝑌 → (𝑌 / 𝑥𝐵 · 𝑦) = (𝑌 / 𝑥𝐵 · 𝑌))
19313, 5, 89, 108, 126, 133, 183, 188, 190, 186, 191, 49, 192, 33dvle 26061 . . . . . . . . 9 (𝜑 → ((𝑌 / 𝑥𝐵 · 𝑌) − (𝑌 / 𝑥𝐵 · 𝑋)) ≤ (𝑌 / 𝑥𝐴𝑋 / 𝑥𝐴))
19471, 193eqbrtrd 5170 . . . . . . . 8 (𝜑 → (𝑌 / 𝑥𝐵 · (𝑌𝑋)) ≤ (𝑌 / 𝑥𝐴𝑋 / 𝑥𝐴))
19567, 42, 51, 194lesubd 11865 . . . . . . 7 (𝜑𝑋 / 𝑥𝐴 ≤ (𝑌 / 𝑥𝐴 − (𝑌 / 𝑥𝐵 · (𝑌𝑋))))
19664recnd 11287 . . . . . . . . 9 (𝜑 → ((𝑋 − (⌊‘𝑋)) · 𝑌 / 𝑥𝐵) ∈ ℂ)
19732recnd 11287 . . . . . . . . 9 (𝜑 → ((𝑌 − (⌊‘𝑋)) · 𝑌 / 𝑥𝐵) ∈ ℂ)
19842recnd 11287 . . . . . . . . 9 (𝜑𝑌 / 𝑥𝐴 ∈ ℂ)
199196, 197, 198subsubd 11646 . . . . . . . 8 (𝜑 → (((𝑋 − (⌊‘𝑋)) · 𝑌 / 𝑥𝐵) − (((𝑌 − (⌊‘𝑋)) · 𝑌 / 𝑥𝐵) − 𝑌 / 𝑥𝐴)) = ((((𝑋 − (⌊‘𝑋)) · 𝑌 / 𝑥𝐵) − ((𝑌 − (⌊‘𝑋)) · 𝑌 / 𝑥𝐵)) + 𝑌 / 𝑥𝐴))
200197, 196negsubdi2d 11634 . . . . . . . . . . 11 (𝜑 → -(((𝑌 − (⌊‘𝑋)) · 𝑌 / 𝑥𝐵) − ((𝑋 − (⌊‘𝑋)) · 𝑌 / 𝑥𝐵)) = (((𝑋 − (⌊‘𝑋)) · 𝑌 / 𝑥𝐵) − ((𝑌 − (⌊‘𝑋)) · 𝑌 / 𝑥𝐵)))
20115recnd 11287 . . . . . . . . . . . . . . 15 (𝜑 → (⌊‘𝑋) ∈ ℂ)
20269, 70, 201nnncan2d 11653 . . . . . . . . . . . . . 14 (𝜑 → ((𝑌 − (⌊‘𝑋)) − (𝑋 − (⌊‘𝑋))) = (𝑌𝑋))
203202oveq1d 7446 . . . . . . . . . . . . 13 (𝜑 → (((𝑌 − (⌊‘𝑋)) − (𝑋 − (⌊‘𝑋))) · 𝑌 / 𝑥𝐵) = ((𝑌𝑋) · 𝑌 / 𝑥𝐵))
20416recnd 11287 . . . . . . . . . . . . . 14 (𝜑 → (𝑌 − (⌊‘𝑋)) ∈ ℂ)
20544recnd 11287 . . . . . . . . . . . . . 14 (𝜑 → (𝑋 − (⌊‘𝑋)) ∈ ℂ)
206204, 205, 68subdird 11718 . . . . . . . . . . . . 13 (𝜑 → (((𝑌 − (⌊‘𝑋)) − (𝑋 − (⌊‘𝑋))) · 𝑌 / 𝑥𝐵) = (((𝑌 − (⌊‘𝑋)) · 𝑌 / 𝑥𝐵) − ((𝑋 − (⌊‘𝑋)) · 𝑌 / 𝑥𝐵)))
20766recnd 11287 . . . . . . . . . . . . . 14 (𝜑 → (𝑌𝑋) ∈ ℂ)
208207, 68mulcomd 11280 . . . . . . . . . . . . 13 (𝜑 → ((𝑌𝑋) · 𝑌 / 𝑥𝐵) = (𝑌 / 𝑥𝐵 · (𝑌𝑋)))
209203, 206, 2083eqtr3d 2783 . . . . . . . . . . . 12 (𝜑 → (((𝑌 − (⌊‘𝑋)) · 𝑌 / 𝑥𝐵) − ((𝑋 − (⌊‘𝑋)) · 𝑌 / 𝑥𝐵)) = (𝑌 / 𝑥𝐵 · (𝑌𝑋)))
210209negeqd 11500 . . . . . . . . . . 11 (𝜑 → -(((𝑌 − (⌊‘𝑋)) · 𝑌 / 𝑥𝐵) − ((𝑋 − (⌊‘𝑋)) · 𝑌 / 𝑥𝐵)) = -(𝑌 / 𝑥𝐵 · (𝑌𝑋)))
211200, 210eqtr3d 2777 . . . . . . . . . 10 (𝜑 → (((𝑋 − (⌊‘𝑋)) · 𝑌 / 𝑥𝐵) − ((𝑌 − (⌊‘𝑋)) · 𝑌 / 𝑥𝐵)) = -(𝑌 / 𝑥𝐵 · (𝑌𝑋)))
212211oveq1d 7446 . . . . . . . . 9 (𝜑 → ((((𝑋 − (⌊‘𝑋)) · 𝑌 / 𝑥𝐵) − ((𝑌 − (⌊‘𝑋)) · 𝑌 / 𝑥𝐵)) + 𝑌 / 𝑥𝐴) = (-(𝑌 / 𝑥𝐵 · (𝑌𝑋)) + 𝑌 / 𝑥𝐴))
21367recnd 11287 . . . . . . . . . 10 (𝜑 → (𝑌 / 𝑥𝐵 · (𝑌𝑋)) ∈ ℂ)
214213, 198negsubdid 11633 . . . . . . . . 9 (𝜑 → -((𝑌 / 𝑥𝐵 · (𝑌𝑋)) − 𝑌 / 𝑥𝐴) = (-(𝑌 / 𝑥𝐵 · (𝑌𝑋)) + 𝑌 / 𝑥𝐴))
215212, 214eqtr4d 2778 . . . . . . . 8 (𝜑 → ((((𝑋 − (⌊‘𝑋)) · 𝑌 / 𝑥𝐵) − ((𝑌 − (⌊‘𝑋)) · 𝑌 / 𝑥𝐵)) + 𝑌 / 𝑥𝐴) = -((𝑌 / 𝑥𝐵 · (𝑌𝑋)) − 𝑌 / 𝑥𝐴))
216213, 198negsubdi2d 11634 . . . . . . . 8 (𝜑 → -((𝑌 / 𝑥𝐵 · (𝑌𝑋)) − 𝑌 / 𝑥𝐴) = (𝑌 / 𝑥𝐴 − (𝑌 / 𝑥𝐵 · (𝑌𝑋))))
217199, 215, 2163eqtrd 2779 . . . . . . 7 (𝜑 → (((𝑋 − (⌊‘𝑋)) · 𝑌 / 𝑥𝐵) − (((𝑌 − (⌊‘𝑋)) · 𝑌 / 𝑥𝐵) − 𝑌 / 𝑥𝐴)) = (𝑌 / 𝑥𝐴 − (𝑌 / 𝑥𝐵 · (𝑌𝑋))))
218195, 217breqtrrd 5176 . . . . . 6 (𝜑𝑋 / 𝑥𝐴 ≤ (((𝑋 − (⌊‘𝑋)) · 𝑌 / 𝑥𝐵) − (((𝑌 − (⌊‘𝑋)) · 𝑌 / 𝑥𝐵) − 𝑌 / 𝑥𝐴)))
21951, 64, 43, 218lesubd 11865 . . . . 5 (𝜑 → (((𝑌 − (⌊‘𝑋)) · 𝑌 / 𝑥𝐵) − 𝑌 / 𝑥𝐴) ≤ (((𝑋 − (⌊‘𝑋)) · 𝑌 / 𝑥𝐵) − 𝑋 / 𝑥𝐴))
220 flle 13836 . . . . . . . . 9 (𝑋 ∈ ℝ → (⌊‘𝑋) ≤ 𝑋)
22113, 220syl 17 . . . . . . . 8 (𝜑 → (⌊‘𝑋) ≤ 𝑋)
22213, 15subge0d 11851 . . . . . . . 8 (𝜑 → (0 ≤ (𝑋 − (⌊‘𝑋)) ↔ (⌊‘𝑋) ≤ 𝑋))
223221, 222mpbird 257 . . . . . . 7 (𝜑 → 0 ≤ (𝑋 − (⌊‘𝑋)))
22445breq2d 5160 . . . . . . . 8 (𝑦 = 𝑋 → (𝑌 / 𝑥𝐵𝑦 / 𝑥𝐵𝑌 / 𝑥𝐵𝑋 / 𝑥𝐵))
225182ralrimiva 3144 . . . . . . . 8 (𝜑 → ∀𝑦 ∈ (𝑋[,]𝑌)𝑌 / 𝑥𝐵𝑦 / 𝑥𝐵)
226224, 225, 188rspcdva 3623 . . . . . . 7 (𝜑𝑌 / 𝑥𝐵𝑋 / 𝑥𝐵)
22731, 47, 44, 223, 226lemul2ad 12206 . . . . . 6 (𝜑 → ((𝑋 − (⌊‘𝑋)) · 𝑌 / 𝑥𝐵) ≤ ((𝑋 − (⌊‘𝑋)) · 𝑋 / 𝑥𝐵))
22864, 48, 51, 227lesub1dd 11877 . . . . 5 (𝜑 → (((𝑋 − (⌊‘𝑋)) · 𝑌 / 𝑥𝐵) − 𝑋 / 𝑥𝐴) ≤ (((𝑋 − (⌊‘𝑋)) · 𝑋 / 𝑥𝐵) − 𝑋 / 𝑥𝐴))
22943, 65, 52, 219, 228letrd 11416 . . . 4 (𝜑 → (((𝑌 − (⌊‘𝑋)) · 𝑌 / 𝑥𝐵) − 𝑌 / 𝑥𝐴) ≤ (((𝑋 − (⌊‘𝑋)) · 𝑋 / 𝑥𝐵) − 𝑋 / 𝑥𝐴))
23043, 52, 63, 229leadd1dd 11875 . . 3 (𝜑 → ((((𝑌 − (⌊‘𝑋)) · 𝑌 / 𝑥𝐵) − 𝑌 / 𝑥𝐴) + Σ𝑘 ∈ (𝑀...(⌊‘𝑋))𝐶) ≤ ((((𝑋 − (⌊‘𝑋)) · 𝑋 / 𝑥𝐵) − 𝑋 / 𝑥𝐴) + Σ𝑘 ∈ (𝑀...(⌊‘𝑋))𝐶))
231 dvfsum.m . . . 4 (𝜑𝑀 ∈ ℤ)
232 dvfsum.md . . . 4 (𝜑𝑀 ≤ (𝐷 + 1))
233 dvfsum.u . . . 4 (𝜑𝑈 ∈ ℝ*)
234 dvfsum.h . . . 4 𝐻 = (𝑥𝑆 ↦ (((𝑥 − (⌊‘𝑥)) · 𝐵) + (Σ𝑘 ∈ (𝑀...(⌊‘𝑥))𝐶𝐴)))
235 dvfsumlem1.6 . . . 4 (𝜑𝑌 ≤ ((⌊‘𝑋) + 1))
2361, 57, 231, 138, 232, 8, 20, 21, 54, 22, 59, 233, 178, 234, 6, 4, 145, 186, 150, 235dvfsumlem1 26081 . . 3 (𝜑 → (𝐻𝑌) = ((((𝑌 − (⌊‘𝑋)) · 𝑌 / 𝑥𝐵) − 𝑌 / 𝑥𝐴) + Σ𝑘 ∈ (𝑀...(⌊‘𝑋))𝐶))
23713leidd 11827 . . . 4 (𝜑𝑋𝑋)
238184, 185, 233, 186, 150xrletrd 13201 . . . 4 (𝜑𝑋𝑈)
239 fllep1 13838 . . . . 5 (𝑋 ∈ ℝ → 𝑋 ≤ ((⌊‘𝑋) + 1))
24013, 239syl 17 . . . 4 (𝜑𝑋 ≤ ((⌊‘𝑋) + 1))
2411, 57, 231, 138, 232, 8, 20, 21, 54, 22, 59, 233, 178, 234, 6, 6, 145, 237, 238, 240dvfsumlem1 26081 . . 3 (𝜑 → (𝐻𝑋) = ((((𝑋 − (⌊‘𝑋)) · 𝑋 / 𝑥𝐵) − 𝑋 / 𝑥𝐴) + Σ𝑘 ∈ (𝑀...(⌊‘𝑋))𝐶))
242230, 236, 2413brtr4d 5180 . 2 (𝜑 → (𝐻𝑌) ≤ (𝐻𝑋))
24352, 47resubcld 11689 . . . . 5 (𝜑 → ((((𝑋 − (⌊‘𝑋)) · 𝑋 / 𝑥𝐵) − 𝑋 / 𝑥𝐴) − 𝑋 / 𝑥𝐵) ∈ ℝ)
24443, 31resubcld 11689 . . . . 5 (𝜑 → ((((𝑌 − (⌊‘𝑋)) · 𝑌 / 𝑥𝐵) − 𝑌 / 𝑥𝐴) − 𝑌 / 𝑥𝐵) ∈ ℝ)
245 peano2rem 11574 . . . . . . . . . . 11 ((𝑋 − (⌊‘𝑋)) ∈ ℝ → ((𝑋 − (⌊‘𝑋)) − 1) ∈ ℝ)
24644, 245syl 17 . . . . . . . . . 10 (𝜑 → ((𝑋 − (⌊‘𝑋)) − 1) ∈ ℝ)
247246, 47remulcld 11289 . . . . . . . . 9 (𝜑 → (((𝑋 − (⌊‘𝑋)) − 1) · 𝑋 / 𝑥𝐵) ∈ ℝ)
248247, 51resubcld 11689 . . . . . . . 8 (𝜑 → ((((𝑋 − (⌊‘𝑋)) − 1) · 𝑋 / 𝑥𝐵) − 𝑋 / 𝑥𝐴) ∈ ℝ)
249 peano2rem 11574 . . . . . . . . . . 11 ((𝑌 − (⌊‘𝑋)) ∈ ℝ → ((𝑌 − (⌊‘𝑋)) − 1) ∈ ℝ)
25016, 249syl 17 . . . . . . . . . 10 (𝜑 → ((𝑌 − (⌊‘𝑋)) − 1) ∈ ℝ)
251250, 47remulcld 11289 . . . . . . . . 9 (𝜑 → (((𝑌 − (⌊‘𝑋)) − 1) · 𝑋 / 𝑥𝐵) ∈ ℝ)
252251, 42resubcld 11689 . . . . . . . 8 (𝜑 → ((((𝑌 − (⌊‘𝑋)) − 1) · 𝑋 / 𝑥𝐵) − 𝑌 / 𝑥𝐴) ∈ ℝ)
253250, 31remulcld 11289 . . . . . . . . 9 (𝜑 → (((𝑌 − (⌊‘𝑋)) − 1) · 𝑌 / 𝑥𝐵) ∈ ℝ)
254253, 42resubcld 11689 . . . . . . . 8 (𝜑 → ((((𝑌 − (⌊‘𝑋)) − 1) · 𝑌 / 𝑥𝐵) − 𝑌 / 𝑥𝐴) ∈ ℝ)
255247recnd 11287 . . . . . . . . . . . . . 14 (𝜑 → (((𝑋 − (⌊‘𝑋)) − 1) · 𝑋 / 𝑥𝐵) ∈ ℂ)
256251recnd 11287 . . . . . . . . . . . . . 14 (𝜑 → (((𝑌 − (⌊‘𝑋)) − 1) · 𝑋 / 𝑥𝐵) ∈ ℂ)
257255, 256subcld 11618 . . . . . . . . . . . . 13 (𝜑 → ((((𝑋 − (⌊‘𝑋)) − 1) · 𝑋 / 𝑥𝐵) − (((𝑌 − (⌊‘𝑋)) − 1) · 𝑋 / 𝑥𝐵)) ∈ ℂ)
258257, 198addcomd 11461 . . . . . . . . . . . 12 (𝜑 → (((((𝑋 − (⌊‘𝑋)) − 1) · 𝑋 / 𝑥𝐵) − (((𝑌 − (⌊‘𝑋)) − 1) · 𝑋 / 𝑥𝐵)) + 𝑌 / 𝑥𝐴) = (𝑌 / 𝑥𝐴 + ((((𝑋 − (⌊‘𝑋)) − 1) · 𝑋 / 𝑥𝐵) − (((𝑌 − (⌊‘𝑋)) − 1) · 𝑋 / 𝑥𝐵))))
259255, 256, 198subsubd 11646 . . . . . . . . . . . 12 (𝜑 → ((((𝑋 − (⌊‘𝑋)) − 1) · 𝑋 / 𝑥𝐵) − ((((𝑌 − (⌊‘𝑋)) − 1) · 𝑋 / 𝑥𝐵) − 𝑌 / 𝑥𝐴)) = (((((𝑋 − (⌊‘𝑋)) − 1) · 𝑋 / 𝑥𝐵) − (((𝑌 − (⌊‘𝑋)) − 1) · 𝑋 / 𝑥𝐵)) + 𝑌 / 𝑥𝐴))
260198, 256, 255subsub2d 11647 . . . . . . . . . . . 12 (𝜑 → (𝑌 / 𝑥𝐴 − ((((𝑌 − (⌊‘𝑋)) − 1) · 𝑋 / 𝑥𝐵) − (((𝑋 − (⌊‘𝑋)) − 1) · 𝑋 / 𝑥𝐵))) = (𝑌 / 𝑥𝐴 + ((((𝑋 − (⌊‘𝑋)) − 1) · 𝑋 / 𝑥𝐵) − (((𝑌 − (⌊‘𝑋)) − 1) · 𝑋 / 𝑥𝐵))))
261258, 259, 2603eqtr4d 2785 . . . . . . . . . . 11 (𝜑 → ((((𝑋 − (⌊‘𝑋)) − 1) · 𝑋 / 𝑥𝐵) − ((((𝑌 − (⌊‘𝑋)) − 1) · 𝑋 / 𝑥𝐵) − 𝑌 / 𝑥𝐴)) = (𝑌 / 𝑥𝐴 − ((((𝑌 − (⌊‘𝑋)) − 1) · 𝑋 / 𝑥𝐵) − (((𝑋 − (⌊‘𝑋)) − 1) · 𝑋 / 𝑥𝐵))))
262 1cnd 11254 . . . . . . . . . . . . . . . 16 (𝜑 → 1 ∈ ℂ)
263204, 205, 262nnncan2d 11653 . . . . . . . . . . . . . . 15 (𝜑 → (((𝑌 − (⌊‘𝑋)) − 1) − ((𝑋 − (⌊‘𝑋)) − 1)) = ((𝑌 − (⌊‘𝑋)) − (𝑋 − (⌊‘𝑋))))
264263, 202eqtrd 2775 . . . . . . . . . . . . . 14 (𝜑 → (((𝑌 − (⌊‘𝑋)) − 1) − ((𝑋 − (⌊‘𝑋)) − 1)) = (𝑌𝑋))
265264oveq1d 7446 . . . . . . . . . . . . 13 (𝜑 → ((((𝑌 − (⌊‘𝑋)) − 1) − ((𝑋 − (⌊‘𝑋)) − 1)) · 𝑋 / 𝑥𝐵) = ((𝑌𝑋) · 𝑋 / 𝑥𝐵))
266250recnd 11287 . . . . . . . . . . . . . 14 (𝜑 → ((𝑌 − (⌊‘𝑋)) − 1) ∈ ℂ)
267246recnd 11287 . . . . . . . . . . . . . 14 (𝜑 → ((𝑋 − (⌊‘𝑋)) − 1) ∈ ℂ)
26847recnd 11287 . . . . . . . . . . . . . 14 (𝜑𝑋 / 𝑥𝐵 ∈ ℂ)
269266, 267, 268subdird 11718 . . . . . . . . . . . . 13 (𝜑 → ((((𝑌 − (⌊‘𝑋)) − 1) − ((𝑋 − (⌊‘𝑋)) − 1)) · 𝑋 / 𝑥𝐵) = ((((𝑌 − (⌊‘𝑋)) − 1) · 𝑋 / 𝑥𝐵) − (((𝑋 − (⌊‘𝑋)) − 1) · 𝑋 / 𝑥𝐵)))
270207, 268mulcomd 11280 . . . . . . . . . . . . 13 (𝜑 → ((𝑌𝑋) · 𝑋 / 𝑥𝐵) = (𝑋 / 𝑥𝐵 · (𝑌𝑋)))
271265, 269, 2703eqtr3d 2783 . . . . . . . . . . . 12 (𝜑 → ((((𝑌 − (⌊‘𝑋)) − 1) · 𝑋 / 𝑥𝐵) − (((𝑋 − (⌊‘𝑋)) − 1) · 𝑋 / 𝑥𝐵)) = (𝑋 / 𝑥𝐵 · (𝑌𝑋)))
272271oveq2d 7447 . . . . . . . . . . 11 (𝜑 → (𝑌 / 𝑥𝐴 − ((((𝑌 − (⌊‘𝑋)) − 1) · 𝑋 / 𝑥𝐵) − (((𝑋 − (⌊‘𝑋)) − 1) · 𝑋 / 𝑥𝐵))) = (𝑌 / 𝑥𝐴 − (𝑋 / 𝑥𝐵 · (𝑌𝑋))))
273261, 272eqtrd 2775 . . . . . . . . . 10 (𝜑 → ((((𝑋 − (⌊‘𝑋)) − 1) · 𝑋 / 𝑥𝐵) − ((((𝑌 − (⌊‘𝑋)) − 1) · 𝑋 / 𝑥𝐵) − 𝑌 / 𝑥𝐴)) = (𝑌 / 𝑥𝐴 − (𝑋 / 𝑥𝐵 · (𝑌𝑋))))
27447, 66remulcld 11289 . . . . . . . . . . 11 (𝜑 → (𝑋 / 𝑥𝐵 · (𝑌𝑋)) ∈ ℝ)
275 cncfmptc 24952 . . . . . . . . . . . . . . 15 ((𝑋 / 𝑥𝐵 ∈ ℝ ∧ (𝑋[,]𝑌) ⊆ ℂ ∧ ℝ ⊆ ℂ) → (𝑦 ∈ (𝑋[,]𝑌) ↦ 𝑋 / 𝑥𝐵) ∈ ((𝑋[,]𝑌)–cn→ℝ))
27647, 82, 83, 275syl3anc 1370 . . . . . . . . . . . . . 14 (𝜑 → (𝑦 ∈ (𝑋[,]𝑌) ↦ 𝑋 / 𝑥𝐵) ∈ ((𝑋[,]𝑌)–cn→ℝ))
277 remulcl 11238 . . . . . . . . . . . . . 14 ((𝑋 / 𝑥𝐵 ∈ ℝ ∧ 𝑦 ∈ ℝ) → (𝑋 / 𝑥𝐵 · 𝑦) ∈ ℝ)
27872, 73, 276, 87, 81, 277cncfmpt2ss 24956 . . . . . . . . . . . . 13 (𝜑 → (𝑦 ∈ (𝑋[,]𝑌) ↦ (𝑋 / 𝑥𝐵 · 𝑦)) ∈ ((𝑋[,]𝑌)–cn→ℝ))
27991, 95, 96, 104, 268dvmptcmul 26017 . . . . . . . . . . . . . 14 (𝜑 → (ℝ D (𝑦 ∈ (𝑋(,)𝑌) ↦ (𝑋 / 𝑥𝐵 · 𝑦))) = (𝑦 ∈ (𝑋(,)𝑌) ↦ (𝑋 / 𝑥𝐵 · 1)))
280268mulridd 11276 . . . . . . . . . . . . . . 15 (𝜑 → (𝑋 / 𝑥𝐵 · 1) = 𝑋 / 𝑥𝐵)
281280mpteq2dv 5250 . . . . . . . . . . . . . 14 (𝜑 → (𝑦 ∈ (𝑋(,)𝑌) ↦ (𝑋 / 𝑥𝐵 · 1)) = (𝑦 ∈ (𝑋(,)𝑌) ↦ 𝑋 / 𝑥𝐵))
282279, 281eqtrd 2775 . . . . . . . . . . . . 13 (𝜑 → (ℝ D (𝑦 ∈ (𝑋(,)𝑌) ↦ (𝑋 / 𝑥𝐵 · 𝑦))) = (𝑦 ∈ (𝑋(,)𝑌) ↦ 𝑋 / 𝑥𝐵))
2836adantr 480 . . . . . . . . . . . . . . 15 ((𝜑𝑦 ∈ (𝑋[,]𝑌)) → 𝑋𝑆)
284144rexrd 11309 . . . . . . . . . . . . . . . 16 ((𝜑𝑦 ∈ (𝑋[,]𝑌)) → 𝑦 ∈ ℝ*)
285185adantr 480 . . . . . . . . . . . . . . . 16 ((𝜑𝑦 ∈ (𝑋[,]𝑌)) → 𝑌 ∈ ℝ*)
286233adantr 480 . . . . . . . . . . . . . . . 16 ((𝜑𝑦 ∈ (𝑋[,]𝑌)) → 𝑈 ∈ ℝ*)
287284, 285, 286, 149, 151xrletrd 13201 . . . . . . . . . . . . . . 15 ((𝜑𝑦 ∈ (𝑋[,]𝑌)) → 𝑦𝑈)
288 vex 3482 . . . . . . . . . . . . . . . 16 𝑦 ∈ V
289 eleq1 2827 . . . . . . . . . . . . . . . . . . 19 (𝑘 = 𝑦 → (𝑘𝑆𝑦𝑆))
290289anbi2d 630 . . . . . . . . . . . . . . . . . 18 (𝑘 = 𝑦 → ((𝑋𝑆𝑘𝑆) ↔ (𝑋𝑆𝑦𝑆)))
291 breq2 5152 . . . . . . . . . . . . . . . . . . 19 (𝑘 = 𝑦 → (𝑋𝑘𝑋𝑦))
292 breq1 5151 . . . . . . . . . . . . . . . . . . 19 (𝑘 = 𝑦 → (𝑘𝑈𝑦𝑈))
293291, 2923anbi23d 1438 . . . . . . . . . . . . . . . . . 18 (𝑘 = 𝑦 → ((𝐷𝑋𝑋𝑘𝑘𝑈) ↔ (𝐷𝑋𝑋𝑦𝑦𝑈)))
294290, 2933anbi23d 1438 . . . . . . . . . . . . . . . . 17 (𝑘 = 𝑦 → ((𝜑 ∧ (𝑋𝑆𝑘𝑆) ∧ (𝐷𝑋𝑋𝑘𝑘𝑈)) ↔ (𝜑 ∧ (𝑋𝑆𝑦𝑆) ∧ (𝐷𝑋𝑋𝑦𝑦𝑈))))
295 csbeq1 3911 . . . . . . . . . . . . . . . . . . 19 (𝑘 = 𝑦𝑘 / 𝑥𝐵 = 𝑦 / 𝑥𝐵)
296160, 295eqtr3id 2789 . . . . . . . . . . . . . . . . . 18 (𝑘 = 𝑦𝐶 = 𝑦 / 𝑥𝐵)
297296breq1d 5158 . . . . . . . . . . . . . . . . 17 (𝑘 = 𝑦 → (𝐶𝑋 / 𝑥𝐵𝑦 / 𝑥𝐵𝑋 / 𝑥𝐵))
298294, 297imbi12d 344 . . . . . . . . . . . . . . . 16 (𝑘 = 𝑦 → (((𝜑 ∧ (𝑋𝑆𝑘𝑆) ∧ (𝐷𝑋𝑋𝑘𝑘𝑈)) → 𝐶𝑋 / 𝑥𝐵) ↔ ((𝜑 ∧ (𝑋𝑆𝑦𝑆) ∧ (𝐷𝑋𝑋𝑦𝑦𝑈)) → 𝑦 / 𝑥𝐵𝑋 / 𝑥𝐵)))
299 simp2l 1198 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ (𝑋𝑆𝑘𝑆) ∧ (𝐷𝑋𝑋𝑘𝑘𝑈)) → 𝑋𝑆)
300 nfv 1912 . . . . . . . . . . . . . . . . . . 19 𝑥(𝜑 ∧ (𝑋𝑆𝑘𝑆) ∧ (𝐷𝑋𝑋𝑘𝑘𝑈))
301 nfcsb1v 3933 . . . . . . . . . . . . . . . . . . . 20 𝑥𝑋 / 𝑥𝐵
302166, 167, 301nfbr 5195 . . . . . . . . . . . . . . . . . . 19 𝑥 𝐶𝑋 / 𝑥𝐵
303300, 302nfim 1894 . . . . . . . . . . . . . . . . . 18 𝑥((𝜑 ∧ (𝑋𝑆𝑘𝑆) ∧ (𝐷𝑋𝑋𝑘𝑘𝑈)) → 𝐶𝑋 / 𝑥𝐵)
304 eleq1 2827 . . . . . . . . . . . . . . . . . . . . 21 (𝑥 = 𝑋 → (𝑥𝑆𝑋𝑆))
305304anbi1d 631 . . . . . . . . . . . . . . . . . . . 20 (𝑥 = 𝑋 → ((𝑥𝑆𝑘𝑆) ↔ (𝑋𝑆𝑘𝑆)))
306 breq2 5152 . . . . . . . . . . . . . . . . . . . . 21 (𝑥 = 𝑋 → (𝐷𝑥𝐷𝑋))
307 breq1 5151 . . . . . . . . . . . . . . . . . . . . 21 (𝑥 = 𝑋 → (𝑥𝑘𝑋𝑘))
308306, 3073anbi12d 1436 . . . . . . . . . . . . . . . . . . . 20 (𝑥 = 𝑋 → ((𝐷𝑥𝑥𝑘𝑘𝑈) ↔ (𝐷𝑋𝑋𝑘𝑘𝑈)))
309305, 3083anbi23d 1438 . . . . . . . . . . . . . . . . . . 19 (𝑥 = 𝑋 → ((𝜑 ∧ (𝑥𝑆𝑘𝑆) ∧ (𝐷𝑥𝑥𝑘𝑘𝑈)) ↔ (𝜑 ∧ (𝑋𝑆𝑘𝑆) ∧ (𝐷𝑋𝑋𝑘𝑘𝑈))))
310 csbeq1a 3922 . . . . . . . . . . . . . . . . . . . 20 (𝑥 = 𝑋𝐵 = 𝑋 / 𝑥𝐵)
311310breq2d 5160 . . . . . . . . . . . . . . . . . . 19 (𝑥 = 𝑋 → (𝐶𝐵𝐶𝑋 / 𝑥𝐵))
312309, 311imbi12d 344 . . . . . . . . . . . . . . . . . 18 (𝑥 = 𝑋 → (((𝜑 ∧ (𝑥𝑆𝑘𝑆) ∧ (𝐷𝑥𝑥𝑘𝑘𝑈)) → 𝐶𝐵) ↔ ((𝜑 ∧ (𝑋𝑆𝑘𝑆) ∧ (𝐷𝑋𝑋𝑘𝑘𝑈)) → 𝐶𝑋 / 𝑥𝐵)))
313303, 312, 178vtoclg1f 3570 . . . . . . . . . . . . . . . . 17 (𝑋𝑆 → ((𝜑 ∧ (𝑋𝑆𝑘𝑆) ∧ (𝐷𝑋𝑋𝑘𝑘𝑈)) → 𝐶𝑋 / 𝑥𝐵))
314299, 313mpcom 38 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ (𝑋𝑆𝑘𝑆) ∧ (𝐷𝑋𝑋𝑘𝑘𝑈)) → 𝐶𝑋 / 𝑥𝐵)
315288, 298, 314vtocl 3558 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑋𝑆𝑦𝑆) ∧ (𝐷𝑋𝑋𝑦𝑦𝑈)) → 𝑦 / 𝑥𝐵𝑋 / 𝑥𝐵)
316135, 283, 136, 146, 147, 287, 315syl123anc 1386 . . . . . . . . . . . . . 14 ((𝜑𝑦 ∈ (𝑋[,]𝑌)) → 𝑦 / 𝑥𝐵𝑋 / 𝑥𝐵)
317134, 316sylan2 593 . . . . . . . . . . . . 13 ((𝜑𝑦 ∈ (𝑋(,)𝑌)) → 𝑦 / 𝑥𝐵𝑋 / 𝑥𝐵)
318 oveq2 7439 . . . . . . . . . . . . 13 (𝑦 = 𝑋 → (𝑋 / 𝑥𝐵 · 𝑦) = (𝑋 / 𝑥𝐵 · 𝑋))
319 oveq2 7439 . . . . . . . . . . . . 13 (𝑦 = 𝑌 → (𝑋 / 𝑥𝐵 · 𝑦) = (𝑋 / 𝑥𝐵 · 𝑌))
32013, 5, 126, 133, 278, 282, 317, 188, 190, 186, 49, 318, 33, 319dvle 26061 . . . . . . . . . . . 12 (𝜑 → (𝑌 / 𝑥𝐴𝑋 / 𝑥𝐴) ≤ ((𝑋 / 𝑥𝐵 · 𝑌) − (𝑋 / 𝑥𝐵 · 𝑋)))
321268, 69, 70subdid 11717 . . . . . . . . . . . 12 (𝜑 → (𝑋 / 𝑥𝐵 · (𝑌𝑋)) = ((𝑋 / 𝑥𝐵 · 𝑌) − (𝑋 / 𝑥𝐵 · 𝑋)))
322320, 321breqtrrd 5176 . . . . . . . . . . 11 (𝜑 → (𝑌 / 𝑥𝐴𝑋 / 𝑥𝐴) ≤ (𝑋 / 𝑥𝐵 · (𝑌𝑋)))
32342, 51, 274, 322subled 11864 . . . . . . . . . 10 (𝜑 → (𝑌 / 𝑥𝐴 − (𝑋 / 𝑥𝐵 · (𝑌𝑋))) ≤ 𝑋 / 𝑥𝐴)
324273, 323eqbrtrd 5170 . . . . . . . . 9 (𝜑 → ((((𝑋 − (⌊‘𝑋)) − 1) · 𝑋 / 𝑥𝐵) − ((((𝑌 − (⌊‘𝑋)) − 1) · 𝑋 / 𝑥𝐵) − 𝑌 / 𝑥𝐴)) ≤ 𝑋 / 𝑥𝐴)
325247, 252, 51, 324subled 11864 . . . . . . . 8 (𝜑 → ((((𝑋 − (⌊‘𝑋)) − 1) · 𝑋 / 𝑥𝐵) − 𝑋 / 𝑥𝐴) ≤ ((((𝑌 − (⌊‘𝑋)) − 1) · 𝑋 / 𝑥𝐵) − 𝑌 / 𝑥𝐴))
326250renegcld 11688 . . . . . . . . . . . 12 (𝜑 → -((𝑌 − (⌊‘𝑋)) − 1) ∈ ℝ)
327 1red 11260 . . . . . . . . . . . . . . . 16 (𝜑 → 1 ∈ ℝ)
3285, 15, 327lesubadd2d 11860 . . . . . . . . . . . . . . 15 (𝜑 → ((𝑌 − (⌊‘𝑋)) ≤ 1 ↔ 𝑌 ≤ ((⌊‘𝑋) + 1)))
329235, 328mpbird 257 . . . . . . . . . . . . . 14 (𝜑 → (𝑌 − (⌊‘𝑋)) ≤ 1)
33016, 327suble0d 11852 . . . . . . . . . . . . . 14 (𝜑 → (((𝑌 − (⌊‘𝑋)) − 1) ≤ 0 ↔ (𝑌 − (⌊‘𝑋)) ≤ 1))
331329, 330mpbird 257 . . . . . . . . . . . . 13 (𝜑 → ((𝑌 − (⌊‘𝑋)) − 1) ≤ 0)
332250le0neg1d 11832 . . . . . . . . . . . . 13 (𝜑 → (((𝑌 − (⌊‘𝑋)) − 1) ≤ 0 ↔ 0 ≤ -((𝑌 − (⌊‘𝑋)) − 1)))
333331, 332mpbid 232 . . . . . . . . . . . 12 (𝜑 → 0 ≤ -((𝑌 − (⌊‘𝑋)) − 1))
33431, 47, 326, 333, 226lemul2ad 12206 . . . . . . . . . . 11 (𝜑 → (-((𝑌 − (⌊‘𝑋)) − 1) · 𝑌 / 𝑥𝐵) ≤ (-((𝑌 − (⌊‘𝑋)) − 1) · 𝑋 / 𝑥𝐵))
335266, 68mulneg1d 11714 . . . . . . . . . . 11 (𝜑 → (-((𝑌 − (⌊‘𝑋)) − 1) · 𝑌 / 𝑥𝐵) = -(((𝑌 − (⌊‘𝑋)) − 1) · 𝑌 / 𝑥𝐵))
336266, 268mulneg1d 11714 . . . . . . . . . . 11 (𝜑 → (-((𝑌 − (⌊‘𝑋)) − 1) · 𝑋 / 𝑥𝐵) = -(((𝑌 − (⌊‘𝑋)) − 1) · 𝑋 / 𝑥𝐵))
337334, 335, 3363brtr3d 5179 . . . . . . . . . 10 (𝜑 → -(((𝑌 − (⌊‘𝑋)) − 1) · 𝑌 / 𝑥𝐵) ≤ -(((𝑌 − (⌊‘𝑋)) − 1) · 𝑋 / 𝑥𝐵))
338251, 253lenegd 11840 . . . . . . . . . 10 (𝜑 → ((((𝑌 − (⌊‘𝑋)) − 1) · 𝑋 / 𝑥𝐵) ≤ (((𝑌 − (⌊‘𝑋)) − 1) · 𝑌 / 𝑥𝐵) ↔ -(((𝑌 − (⌊‘𝑋)) − 1) · 𝑌 / 𝑥𝐵) ≤ -(((𝑌 − (⌊‘𝑋)) − 1) · 𝑋 / 𝑥𝐵)))
339337, 338mpbird 257 . . . . . . . . 9 (𝜑 → (((𝑌 − (⌊‘𝑋)) − 1) · 𝑋 / 𝑥𝐵) ≤ (((𝑌 − (⌊‘𝑋)) − 1) · 𝑌 / 𝑥𝐵))
340251, 253, 42, 339lesub1dd 11877 . . . . . . . 8 (𝜑 → ((((𝑌 − (⌊‘𝑋)) − 1) · 𝑋 / 𝑥𝐵) − 𝑌 / 𝑥𝐴) ≤ ((((𝑌 − (⌊‘𝑋)) − 1) · 𝑌 / 𝑥𝐵) − 𝑌 / 𝑥𝐴))
341248, 252, 254, 325, 340letrd 11416 . . . . . . 7 (𝜑 → ((((𝑋 − (⌊‘𝑋)) − 1) · 𝑋 / 𝑥𝐵) − 𝑋 / 𝑥𝐴) ≤ ((((𝑌 − (⌊‘𝑋)) − 1) · 𝑌 / 𝑥𝐵) − 𝑌 / 𝑥𝐴))
342205, 262, 268subdird 11718 . . . . . . . . 9 (𝜑 → (((𝑋 − (⌊‘𝑋)) − 1) · 𝑋 / 𝑥𝐵) = (((𝑋 − (⌊‘𝑋)) · 𝑋 / 𝑥𝐵) − (1 · 𝑋 / 𝑥𝐵)))
343268mullidd 11277 . . . . . . . . . 10 (𝜑 → (1 · 𝑋 / 𝑥𝐵) = 𝑋 / 𝑥𝐵)
344343oveq2d 7447 . . . . . . . . 9 (𝜑 → (((𝑋 − (⌊‘𝑋)) · 𝑋 / 𝑥𝐵) − (1 · 𝑋 / 𝑥𝐵)) = (((𝑋 − (⌊‘𝑋)) · 𝑋 / 𝑥𝐵) − 𝑋 / 𝑥𝐵))
345342, 344eqtrd 2775 . . . . . . . 8 (𝜑 → (((𝑋 − (⌊‘𝑋)) − 1) · 𝑋 / 𝑥𝐵) = (((𝑋 − (⌊‘𝑋)) · 𝑋 / 𝑥𝐵) − 𝑋 / 𝑥𝐵))
346345oveq1d 7446 . . . . . . 7 (𝜑 → ((((𝑋 − (⌊‘𝑋)) − 1) · 𝑋 / 𝑥𝐵) − 𝑋 / 𝑥𝐴) = ((((𝑋 − (⌊‘𝑋)) · 𝑋 / 𝑥𝐵) − 𝑋 / 𝑥𝐵) − 𝑋 / 𝑥𝐴))
347204, 262, 68subdird 11718 . . . . . . . . 9 (𝜑 → (((𝑌 − (⌊‘𝑋)) − 1) · 𝑌 / 𝑥𝐵) = (((𝑌 − (⌊‘𝑋)) · 𝑌 / 𝑥𝐵) − (1 · 𝑌 / 𝑥𝐵)))
34868mullidd 11277 . . . . . . . . . 10 (𝜑 → (1 · 𝑌 / 𝑥𝐵) = 𝑌 / 𝑥𝐵)
349348oveq2d 7447 . . . . . . . . 9 (𝜑 → (((𝑌 − (⌊‘𝑋)) · 𝑌 / 𝑥𝐵) − (1 · 𝑌 / 𝑥𝐵)) = (((𝑌 − (⌊‘𝑋)) · 𝑌 / 𝑥𝐵) − 𝑌 / 𝑥𝐵))
350347, 349eqtrd 2775 . . . . . . . 8 (𝜑 → (((𝑌 − (⌊‘𝑋)) − 1) · 𝑌 / 𝑥𝐵) = (((𝑌 − (⌊‘𝑋)) · 𝑌 / 𝑥𝐵) − 𝑌 / 𝑥𝐵))
351350oveq1d 7446 . . . . . . 7 (𝜑 → ((((𝑌 − (⌊‘𝑋)) − 1) · 𝑌 / 𝑥𝐵) − 𝑌 / 𝑥𝐴) = ((((𝑌 − (⌊‘𝑋)) · 𝑌 / 𝑥𝐵) − 𝑌 / 𝑥𝐵) − 𝑌 / 𝑥𝐴))
352341, 346, 3513brtr3d 5179 . . . . . 6 (𝜑 → ((((𝑋 − (⌊‘𝑋)) · 𝑋 / 𝑥𝐵) − 𝑋 / 𝑥𝐵) − 𝑋 / 𝑥𝐴) ≤ ((((𝑌 − (⌊‘𝑋)) · 𝑌 / 𝑥𝐵) − 𝑌 / 𝑥𝐵) − 𝑌 / 𝑥𝐴))
35348recnd 11287 . . . . . . 7 (𝜑 → ((𝑋 − (⌊‘𝑋)) · 𝑋 / 𝑥𝐵) ∈ ℂ)
35451recnd 11287 . . . . . . 7 (𝜑𝑋 / 𝑥𝐴 ∈ ℂ)
355353, 354, 268sub32d 11650 . . . . . 6 (𝜑 → ((((𝑋 − (⌊‘𝑋)) · 𝑋 / 𝑥𝐵) − 𝑋 / 𝑥𝐴) − 𝑋 / 𝑥𝐵) = ((((𝑋 − (⌊‘𝑋)) · 𝑋 / 𝑥𝐵) − 𝑋 / 𝑥𝐵) − 𝑋 / 𝑥𝐴))
356197, 198, 68sub32d 11650 . . . . . 6 (𝜑 → ((((𝑌 − (⌊‘𝑋)) · 𝑌 / 𝑥𝐵) − 𝑌 / 𝑥𝐴) − 𝑌 / 𝑥𝐵) = ((((𝑌 − (⌊‘𝑋)) · 𝑌 / 𝑥𝐵) − 𝑌 / 𝑥𝐵) − 𝑌 / 𝑥𝐴))
357352, 355, 3563brtr4d 5180 . . . . 5 (𝜑 → ((((𝑋 − (⌊‘𝑋)) · 𝑋 / 𝑥𝐵) − 𝑋 / 𝑥𝐴) − 𝑋 / 𝑥𝐵) ≤ ((((𝑌 − (⌊‘𝑋)) · 𝑌 / 𝑥𝐵) − 𝑌 / 𝑥𝐴) − 𝑌 / 𝑥𝐵))
358243, 244, 63, 357leadd1dd 11875 . . . 4 (𝜑 → (((((𝑋 − (⌊‘𝑋)) · 𝑋 / 𝑥𝐵) − 𝑋 / 𝑥𝐴) − 𝑋 / 𝑥𝐵) + Σ𝑘 ∈ (𝑀...(⌊‘𝑋))𝐶) ≤ (((((𝑌 − (⌊‘𝑋)) · 𝑌 / 𝑥𝐵) − 𝑌 / 𝑥𝐴) − 𝑌 / 𝑥𝐵) + Σ𝑘 ∈ (𝑀...(⌊‘𝑋))𝐶))
35952recnd 11287 . . . . 5 (𝜑 → (((𝑋 − (⌊‘𝑋)) · 𝑋 / 𝑥𝐵) − 𝑋 / 𝑥𝐴) ∈ ℂ)
36063recnd 11287 . . . . 5 (𝜑 → Σ𝑘 ∈ (𝑀...(⌊‘𝑋))𝐶 ∈ ℂ)
361359, 360, 268addsubd 11639 . . . 4 (𝜑 → (((((𝑋 − (⌊‘𝑋)) · 𝑋 / 𝑥𝐵) − 𝑋 / 𝑥𝐴) + Σ𝑘 ∈ (𝑀...(⌊‘𝑋))𝐶) − 𝑋 / 𝑥𝐵) = (((((𝑋 − (⌊‘𝑋)) · 𝑋 / 𝑥𝐵) − 𝑋 / 𝑥𝐴) − 𝑋 / 𝑥𝐵) + Σ𝑘 ∈ (𝑀...(⌊‘𝑋))𝐶))
36243recnd 11287 . . . . 5 (𝜑 → (((𝑌 − (⌊‘𝑋)) · 𝑌 / 𝑥𝐵) − 𝑌 / 𝑥𝐴) ∈ ℂ)
363362, 360, 68addsubd 11639 . . . 4 (𝜑 → (((((𝑌 − (⌊‘𝑋)) · 𝑌 / 𝑥𝐵) − 𝑌 / 𝑥𝐴) + Σ𝑘 ∈ (𝑀...(⌊‘𝑋))𝐶) − 𝑌 / 𝑥𝐵) = (((((𝑌 − (⌊‘𝑋)) · 𝑌 / 𝑥𝐵) − 𝑌 / 𝑥𝐴) − 𝑌 / 𝑥𝐵) + Σ𝑘 ∈ (𝑀...(⌊‘𝑋))𝐶))
364358, 361, 3633brtr4d 5180 . . 3 (𝜑 → (((((𝑋 − (⌊‘𝑋)) · 𝑋 / 𝑥𝐵) − 𝑋 / 𝑥𝐴) + Σ𝑘 ∈ (𝑀...(⌊‘𝑋))𝐶) − 𝑋 / 𝑥𝐵) ≤ (((((𝑌 − (⌊‘𝑋)) · 𝑌 / 𝑥𝐵) − 𝑌 / 𝑥𝐴) + Σ𝑘 ∈ (𝑀...(⌊‘𝑋))𝐶) − 𝑌 / 𝑥𝐵))
365241oveq1d 7446 . . 3 (𝜑 → ((𝐻𝑋) − 𝑋 / 𝑥𝐵) = (((((𝑋 − (⌊‘𝑋)) · 𝑋 / 𝑥𝐵) − 𝑋 / 𝑥𝐴) + Σ𝑘 ∈ (𝑀...(⌊‘𝑋))𝐶) − 𝑋 / 𝑥𝐵))
366236oveq1d 7446 . . 3 (𝜑 → ((𝐻𝑌) − 𝑌 / 𝑥𝐵) = (((((𝑌 − (⌊‘𝑋)) · 𝑌 / 𝑥𝐵) − 𝑌 / 𝑥𝐴) + Σ𝑘 ∈ (𝑀...(⌊‘𝑋))𝐶) − 𝑌 / 𝑥𝐵))
367364, 365, 3663brtr4d 5180 . 2 (𝜑 → ((𝐻𝑋) − 𝑋 / 𝑥𝐵) ≤ ((𝐻𝑌) − 𝑌 / 𝑥𝐵))
368242, 367jca 511 1 (𝜑 → ((𝐻𝑌) ≤ (𝐻𝑋) ∧ ((𝐻𝑋) − 𝑋 / 𝑥𝐵) ≤ ((𝐻𝑌) − 𝑌 / 𝑥𝐵)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1537  wcel 2106  wral 3059  csb 3908  wss 3963  {cpr 4633   class class class wbr 5148  cmpt 5231  dom cdm 5689  ran crn 5690  cres 5691  wf 6559  cfv 6563  (class class class)co 7431  cc 11151  cr 11152  0cc0 11153  1c1 11154   + caddc 11156   · cmul 11158  +∞cpnf 11290  *cxr 11292   < clt 11293  cle 11294  cmin 11490  -cneg 11491  cz 12611  cuz 12876  (,)cioo 13384  [,]cicc 13387  ...cfz 13544  cfl 13827  Σcsu 15719  TopOpenctopn 17468  topGenctg 17484  fldccnfld 21382  cnccncf 24916   D cdv 25913
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-rep 5285  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754  ax-inf2 9679  ax-cnex 11209  ax-resscn 11210  ax-1cn 11211  ax-icn 11212  ax-addcl 11213  ax-addrcl 11214  ax-mulcl 11215  ax-mulrcl 11216  ax-mulcom 11217  ax-addass 11218  ax-mulass 11219  ax-distr 11220  ax-i2m1 11221  ax-1ne0 11222  ax-1rid 11223  ax-rnegex 11224  ax-rrecex 11225  ax-cnre 11226  ax-pre-lttri 11227  ax-pre-lttrn 11228  ax-pre-ltadd 11229  ax-pre-mulgt0 11230  ax-pre-sup 11231  ax-addf 11232  ax-mulf 11233
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-nel 3045  df-ral 3060  df-rex 3069  df-rmo 3378  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-pss 3983  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-tp 4636  df-op 4638  df-uni 4913  df-int 4952  df-iun 4998  df-iin 4999  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5583  df-eprel 5589  df-po 5597  df-so 5598  df-fr 5641  df-se 5642  df-we 5643  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-pred 6323  df-ord 6389  df-on 6390  df-lim 6391  df-suc 6392  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-isom 6572  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-of 7697  df-om 7888  df-1st 8013  df-2nd 8014  df-supp 8185  df-frecs 8305  df-wrecs 8336  df-recs 8410  df-rdg 8449  df-1o 8505  df-2o 8506  df-er 8744  df-map 8867  df-pm 8868  df-ixp 8937  df-en 8985  df-dom 8986  df-sdom 8987  df-fin 8988  df-fsupp 9400  df-fi 9449  df-sup 9480  df-inf 9481  df-oi 9548  df-card 9977  df-pnf 11295  df-mnf 11296  df-xr 11297  df-ltxr 11298  df-le 11299  df-sub 11492  df-neg 11493  df-div 11919  df-nn 12265  df-2 12327  df-3 12328  df-4 12329  df-5 12330  df-6 12331  df-7 12332  df-8 12333  df-9 12334  df-n0 12525  df-z 12612  df-dec 12732  df-uz 12877  df-q 12989  df-rp 13033  df-xneg 13152  df-xadd 13153  df-xmul 13154  df-ioo 13388  df-ico 13390  df-icc 13391  df-fz 13545  df-fzo 13692  df-fl 13829  df-seq 14040  df-exp 14100  df-hash 14367  df-cj 15135  df-re 15136  df-im 15137  df-sqrt 15271  df-abs 15272  df-clim 15521  df-sum 15720  df-struct 17181  df-sets 17198  df-slot 17216  df-ndx 17228  df-base 17246  df-ress 17275  df-plusg 17311  df-mulr 17312  df-starv 17313  df-sca 17314  df-vsca 17315  df-ip 17316  df-tset 17317  df-ple 17318  df-ds 17320  df-unif 17321  df-hom 17322  df-cco 17323  df-rest 17469  df-topn 17470  df-0g 17488  df-gsum 17489  df-topgen 17490  df-pt 17491  df-prds 17494  df-xrs 17549  df-qtop 17554  df-imas 17555  df-xps 17557  df-mre 17631  df-mrc 17632  df-acs 17634  df-mgm 18666  df-sgrp 18745  df-mnd 18761  df-submnd 18810  df-mulg 19099  df-cntz 19348  df-cmn 19815  df-psmet 21374  df-xmet 21375  df-met 21376  df-bl 21377  df-mopn 21378  df-fbas 21379  df-fg 21380  df-cnfld 21383  df-top 22916  df-topon 22933  df-topsp 22955  df-bases 22969  df-cld 23043  df-ntr 23044  df-cls 23045  df-nei 23122  df-lp 23160  df-perf 23161  df-cn 23251  df-cnp 23252  df-haus 23339  df-cmp 23411  df-tx 23586  df-hmeo 23779  df-fil 23870  df-fm 23962  df-flim 23963  df-flf 23964  df-xms 24346  df-ms 24347  df-tms 24348  df-cncf 24918  df-limc 25916  df-dv 25917
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator