Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fourierdlem86 Structured version   Visualization version   GIF version

Theorem fourierdlem86 42471
Description: Continuity of 𝑂 and its limits with respect to the 𝑆 partition. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
Hypotheses
Ref Expression
fourierdlem86.f (𝜑𝐹:ℝ⟶ℝ)
fourierdlem86.xre (𝜑𝑋 ∈ ℝ)
fourierdlem86.p 𝑃 = (𝑚 ∈ ℕ ↦ {𝑝 ∈ (ℝ ↑m (0...𝑚)) ∣ (((𝑝‘0) = (-π + 𝑋) ∧ (𝑝𝑚) = (π + 𝑋)) ∧ ∀𝑖 ∈ (0..^𝑚)(𝑝𝑖) < (𝑝‘(𝑖 + 1)))})
fourierdlem86.m (𝜑𝑀 ∈ ℕ)
fourierdlem86.v (𝜑𝑉 ∈ (𝑃𝑀))
fourierdlem86.fcn ((𝜑𝑖 ∈ (0..^𝑀)) → (𝐹 ↾ ((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))) ∈ (((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))–cn→ℂ))
fourierdlem86.r ((𝜑𝑖 ∈ (0..^𝑀)) → 𝑅 ∈ ((𝐹 ↾ ((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))) lim (𝑉𝑖)))
fourierdlem86.l ((𝜑𝑖 ∈ (0..^𝑀)) → 𝐿 ∈ ((𝐹 ↾ ((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))) lim (𝑉‘(𝑖 + 1))))
fourierdlem86.a (𝜑𝐴 ∈ ℝ)
fourierdlem86.b (𝜑𝐵 ∈ ℝ)
fourierdlem86.altb (𝜑𝐴 < 𝐵)
fourierdlem86.ab (𝜑 → (𝐴[,]𝐵) ⊆ (-π[,]π))
fourierdlem86.n0 (𝜑 → ¬ 0 ∈ (𝐴[,]𝐵))
fourierdlem86.c (𝜑𝐶 ∈ ℝ)
fourierdlem86.o 𝑂 = (𝑠 ∈ (𝐴[,]𝐵) ↦ ((((𝐹‘(𝑋 + 𝑠)) − 𝐶) / 𝑠) · (𝑠 / (2 · (sin‘(𝑠 / 2))))))
fourierdlem86.q 𝑄 = (𝑖 ∈ (0...𝑀) ↦ ((𝑉𝑖) − 𝑋))
fourierdlem86.t 𝑇 = ({𝐴, 𝐵} ∪ (ran 𝑄 ∩ (𝐴(,)𝐵)))
fourierdlem86.n 𝑁 = ((♯‘𝑇) − 1)
fourierdlem86.s 𝑆 = (℩𝑓𝑓 Isom < , < ((0...𝑁), 𝑇))
fourierdlem86.d 𝐷 = (((if((𝑆‘(𝑗 + 1)) = (𝑄‘(𝑈 + 1)), 𝑈 / 𝑖𝐿, (𝐹‘(𝑋 + (𝑆‘(𝑗 + 1))))) − 𝐶) / (𝑆‘(𝑗 + 1))) · ((𝑆‘(𝑗 + 1)) / (2 · (sin‘((𝑆‘(𝑗 + 1)) / 2)))))
fourierdlem86.e 𝐸 = (((if((𝑆𝑗) = (𝑄𝑈), 𝑈 / 𝑖𝑅, (𝐹‘(𝑋 + (𝑆𝑗)))) − 𝐶) / (𝑆𝑗)) · ((𝑆𝑗) / (2 · (sin‘((𝑆𝑗) / 2)))))
fourierdlem86.u 𝑈 = (𝑖 ∈ (0..^𝑀)((𝑆𝑗)(,)(𝑆‘(𝑗 + 1))) ⊆ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))))
Assertion
Ref Expression
fourierdlem86 ((𝜑𝑗 ∈ (0..^𝑁)) → ((𝐷 ∈ ((𝑂 ↾ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1)))) lim (𝑆‘(𝑗 + 1))) ∧ 𝐸 ∈ ((𝑂 ↾ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1)))) lim (𝑆𝑗))) ∧ (𝑂 ↾ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1)))) ∈ (((𝑆𝑗)(,)(𝑆‘(𝑗 + 1)))–cn→ℂ)))
Distinct variable groups:   𝐴,𝑠   𝐵,𝑠   𝐶,𝑖,𝑠   𝑖,𝐹,𝑠   𝐿,𝑠   𝑖,𝑀,𝑚,𝑝   𝑗,𝑀,𝑠,𝑖   𝑓,𝑁   𝑖,𝑁,𝑠   𝑖,𝑂   𝑄,𝑖,𝑠   𝑅,𝑠   𝑆,𝑓   𝑆,𝑖,𝑠   𝑇,𝑓   𝑈,𝑖   𝑖,𝑉,𝑝   𝑗,𝑉,𝑠   𝑖,𝑋,𝑚,𝑝   𝑗,𝑋,𝑠   𝑓,𝑗,𝜑   𝜑,𝑖,𝑠
Allowed substitution hints:   𝜑(𝑚,𝑝)   𝐴(𝑓,𝑖,𝑗,𝑚,𝑝)   𝐵(𝑓,𝑖,𝑗,𝑚,𝑝)   𝐶(𝑓,𝑗,𝑚,𝑝)   𝐷(𝑓,𝑖,𝑗,𝑚,𝑠,𝑝)   𝑃(𝑓,𝑖,𝑗,𝑚,𝑠,𝑝)   𝑄(𝑓,𝑗,𝑚,𝑝)   𝑅(𝑓,𝑖,𝑗,𝑚,𝑝)   𝑆(𝑗,𝑚,𝑝)   𝑇(𝑖,𝑗,𝑚,𝑠,𝑝)   𝑈(𝑓,𝑗,𝑚,𝑠,𝑝)   𝐸(𝑓,𝑖,𝑗,𝑚,𝑠,𝑝)   𝐹(𝑓,𝑗,𝑚,𝑝)   𝐿(𝑓,𝑖,𝑗,𝑚,𝑝)   𝑀(𝑓)   𝑁(𝑗,𝑚,𝑝)   𝑂(𝑓,𝑗,𝑚,𝑠,𝑝)   𝑉(𝑓,𝑚)   𝑋(𝑓)

Proof of Theorem fourierdlem86
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 fourierdlem86.d . . 3 𝐷 = (((if((𝑆‘(𝑗 + 1)) = (𝑄‘(𝑈 + 1)), 𝑈 / 𝑖𝐿, (𝐹‘(𝑋 + (𝑆‘(𝑗 + 1))))) − 𝐶) / (𝑆‘(𝑗 + 1))) · ((𝑆‘(𝑗 + 1)) / (2 · (sin‘((𝑆‘(𝑗 + 1)) / 2)))))
2 fourierdlem86.xre . . . . . . . . 9 (𝜑𝑋 ∈ ℝ)
32adantr 483 . . . . . . . 8 ((𝜑𝑗 ∈ (0..^𝑁)) → 𝑋 ∈ ℝ)
4 fourierdlem86.p . . . . . . . 8 𝑃 = (𝑚 ∈ ℕ ↦ {𝑝 ∈ (ℝ ↑m (0...𝑚)) ∣ (((𝑝‘0) = (-π + 𝑋) ∧ (𝑝𝑚) = (π + 𝑋)) ∧ ∀𝑖 ∈ (0..^𝑚)(𝑝𝑖) < (𝑝‘(𝑖 + 1)))})
5 fourierdlem86.m . . . . . . . . 9 (𝜑𝑀 ∈ ℕ)
65adantr 483 . . . . . . . 8 ((𝜑𝑗 ∈ (0..^𝑁)) → 𝑀 ∈ ℕ)
7 fourierdlem86.v . . . . . . . . 9 (𝜑𝑉 ∈ (𝑃𝑀))
87adantr 483 . . . . . . . 8 ((𝜑𝑗 ∈ (0..^𝑁)) → 𝑉 ∈ (𝑃𝑀))
9 fourierdlem86.a . . . . . . . . 9 (𝜑𝐴 ∈ ℝ)
109adantr 483 . . . . . . . 8 ((𝜑𝑗 ∈ (0..^𝑁)) → 𝐴 ∈ ℝ)
11 fourierdlem86.b . . . . . . . . 9 (𝜑𝐵 ∈ ℝ)
1211adantr 483 . . . . . . . 8 ((𝜑𝑗 ∈ (0..^𝑁)) → 𝐵 ∈ ℝ)
13 fourierdlem86.altb . . . . . . . . 9 (𝜑𝐴 < 𝐵)
1413adantr 483 . . . . . . . 8 ((𝜑𝑗 ∈ (0..^𝑁)) → 𝐴 < 𝐵)
15 fourierdlem86.ab . . . . . . . . 9 (𝜑 → (𝐴[,]𝐵) ⊆ (-π[,]π))
1615adantr 483 . . . . . . . 8 ((𝜑𝑗 ∈ (0..^𝑁)) → (𝐴[,]𝐵) ⊆ (-π[,]π))
17 fourierdlem86.q . . . . . . . 8 𝑄 = (𝑖 ∈ (0...𝑀) ↦ ((𝑉𝑖) − 𝑋))
18 fourierdlem86.t . . . . . . . 8 𝑇 = ({𝐴, 𝐵} ∪ (ran 𝑄 ∩ (𝐴(,)𝐵)))
19 fourierdlem86.n . . . . . . . 8 𝑁 = ((♯‘𝑇) − 1)
20 fourierdlem86.s . . . . . . . 8 𝑆 = (℩𝑓𝑓 Isom < , < ((0...𝑁), 𝑇))
21 simpr 487 . . . . . . . 8 ((𝜑𝑗 ∈ (0..^𝑁)) → 𝑗 ∈ (0..^𝑁))
22 fourierdlem86.u . . . . . . . 8 𝑈 = (𝑖 ∈ (0..^𝑀)((𝑆𝑗)(,)(𝑆‘(𝑗 + 1))) ⊆ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))))
23 biid 263 . . . . . . . 8 ((((((𝜑𝑗 ∈ (0..^𝑁)) ∧ 𝑖 ∈ (0..^𝑀)) ∧ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1))) ⊆ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) ∧ 𝑦 ∈ (0..^𝑀)) ∧ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1))) ⊆ ((𝑄𝑦)(,)(𝑄‘(𝑦 + 1)))) ↔ (((((𝜑𝑗 ∈ (0..^𝑁)) ∧ 𝑖 ∈ (0..^𝑀)) ∧ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1))) ⊆ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) ∧ 𝑦 ∈ (0..^𝑀)) ∧ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1))) ⊆ ((𝑄𝑦)(,)(𝑄‘(𝑦 + 1)))))
243, 4, 6, 8, 10, 12, 14, 16, 17, 18, 19, 20, 21, 22, 23fourierdlem50 42435 . . . . . . 7 ((𝜑𝑗 ∈ (0..^𝑁)) → (𝑈 ∈ (0..^𝑀) ∧ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1))) ⊆ ((𝑄𝑈)(,)(𝑄‘(𝑈 + 1)))))
2524simpld 497 . . . . . 6 ((𝜑𝑗 ∈ (0..^𝑁)) → 𝑈 ∈ (0..^𝑀))
26 id 22 . . . . . . 7 ((𝜑𝑗 ∈ (0..^𝑁)) → (𝜑𝑗 ∈ (0..^𝑁)))
2724simprd 498 . . . . . . 7 ((𝜑𝑗 ∈ (0..^𝑁)) → ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1))) ⊆ ((𝑄𝑈)(,)(𝑄‘(𝑈 + 1))))
2826, 25, 27jca31 517 . . . . . 6 ((𝜑𝑗 ∈ (0..^𝑁)) → (((𝜑𝑗 ∈ (0..^𝑁)) ∧ 𝑈 ∈ (0..^𝑀)) ∧ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1))) ⊆ ((𝑄𝑈)(,)(𝑄‘(𝑈 + 1)))))
29 nfv 1911 . . . . . . . 8 𝑖(((𝜑𝑗 ∈ (0..^𝑁)) ∧ 𝑈 ∈ (0..^𝑀)) ∧ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1))) ⊆ ((𝑄𝑈)(,)(𝑄‘(𝑈 + 1))))
30 nfv 1911 . . . . . . . . . . . . . . 15 𝑖(𝑆‘(𝑗 + 1)) = (𝑄‘(𝑈 + 1))
31 nfcsb1v 3906 . . . . . . . . . . . . . . 15 𝑖𝑈 / 𝑖𝐿
32 nfcv 2977 . . . . . . . . . . . . . . 15 𝑖(𝐹‘(𝑋 + (𝑆‘(𝑗 + 1))))
3330, 31, 32nfif 4495 . . . . . . . . . . . . . 14 𝑖if((𝑆‘(𝑗 + 1)) = (𝑄‘(𝑈 + 1)), 𝑈 / 𝑖𝐿, (𝐹‘(𝑋 + (𝑆‘(𝑗 + 1)))))
34 nfcv 2977 . . . . . . . . . . . . . 14 𝑖
35 nfcv 2977 . . . . . . . . . . . . . 14 𝑖𝐶
3633, 34, 35nfov 7180 . . . . . . . . . . . . 13 𝑖(if((𝑆‘(𝑗 + 1)) = (𝑄‘(𝑈 + 1)), 𝑈 / 𝑖𝐿, (𝐹‘(𝑋 + (𝑆‘(𝑗 + 1))))) − 𝐶)
37 nfcv 2977 . . . . . . . . . . . . 13 𝑖 /
38 nfcv 2977 . . . . . . . . . . . . 13 𝑖(𝑆‘(𝑗 + 1))
3936, 37, 38nfov 7180 . . . . . . . . . . . 12 𝑖((if((𝑆‘(𝑗 + 1)) = (𝑄‘(𝑈 + 1)), 𝑈 / 𝑖𝐿, (𝐹‘(𝑋 + (𝑆‘(𝑗 + 1))))) − 𝐶) / (𝑆‘(𝑗 + 1)))
40 nfcv 2977 . . . . . . . . . . . 12 𝑖 ·
41 nfcv 2977 . . . . . . . . . . . 12 𝑖((𝑆‘(𝑗 + 1)) / (2 · (sin‘((𝑆‘(𝑗 + 1)) / 2))))
4239, 40, 41nfov 7180 . . . . . . . . . . 11 𝑖(((if((𝑆‘(𝑗 + 1)) = (𝑄‘(𝑈 + 1)), 𝑈 / 𝑖𝐿, (𝐹‘(𝑋 + (𝑆‘(𝑗 + 1))))) − 𝐶) / (𝑆‘(𝑗 + 1))) · ((𝑆‘(𝑗 + 1)) / (2 · (sin‘((𝑆‘(𝑗 + 1)) / 2)))))
4342nfel1 2994 . . . . . . . . . 10 𝑖(((if((𝑆‘(𝑗 + 1)) = (𝑄‘(𝑈 + 1)), 𝑈 / 𝑖𝐿, (𝐹‘(𝑋 + (𝑆‘(𝑗 + 1))))) − 𝐶) / (𝑆‘(𝑗 + 1))) · ((𝑆‘(𝑗 + 1)) / (2 · (sin‘((𝑆‘(𝑗 + 1)) / 2))))) ∈ ((𝑂 ↾ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1)))) lim (𝑆‘(𝑗 + 1)))
44 nfv 1911 . . . . . . . . . . . . . . 15 𝑖(𝑆𝑗) = (𝑄𝑈)
45 nfcsb1v 3906 . . . . . . . . . . . . . . 15 𝑖𝑈 / 𝑖𝑅
46 nfcv 2977 . . . . . . . . . . . . . . 15 𝑖(𝐹‘(𝑋 + (𝑆𝑗)))
4744, 45, 46nfif 4495 . . . . . . . . . . . . . 14 𝑖if((𝑆𝑗) = (𝑄𝑈), 𝑈 / 𝑖𝑅, (𝐹‘(𝑋 + (𝑆𝑗))))
4847, 34, 35nfov 7180 . . . . . . . . . . . . 13 𝑖(if((𝑆𝑗) = (𝑄𝑈), 𝑈 / 𝑖𝑅, (𝐹‘(𝑋 + (𝑆𝑗)))) − 𝐶)
49 nfcv 2977 . . . . . . . . . . . . 13 𝑖(𝑆𝑗)
5048, 37, 49nfov 7180 . . . . . . . . . . . 12 𝑖((if((𝑆𝑗) = (𝑄𝑈), 𝑈 / 𝑖𝑅, (𝐹‘(𝑋 + (𝑆𝑗)))) − 𝐶) / (𝑆𝑗))
51 nfcv 2977 . . . . . . . . . . . 12 𝑖((𝑆𝑗) / (2 · (sin‘((𝑆𝑗) / 2))))
5250, 40, 51nfov 7180 . . . . . . . . . . 11 𝑖(((if((𝑆𝑗) = (𝑄𝑈), 𝑈 / 𝑖𝑅, (𝐹‘(𝑋 + (𝑆𝑗)))) − 𝐶) / (𝑆𝑗)) · ((𝑆𝑗) / (2 · (sin‘((𝑆𝑗) / 2)))))
5352nfel1 2994 . . . . . . . . . 10 𝑖(((if((𝑆𝑗) = (𝑄𝑈), 𝑈 / 𝑖𝑅, (𝐹‘(𝑋 + (𝑆𝑗)))) − 𝐶) / (𝑆𝑗)) · ((𝑆𝑗) / (2 · (sin‘((𝑆𝑗) / 2))))) ∈ ((𝑂 ↾ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1)))) lim (𝑆𝑗))
5443, 53nfan 1896 . . . . . . . . 9 𝑖((((if((𝑆‘(𝑗 + 1)) = (𝑄‘(𝑈 + 1)), 𝑈 / 𝑖𝐿, (𝐹‘(𝑋 + (𝑆‘(𝑗 + 1))))) − 𝐶) / (𝑆‘(𝑗 + 1))) · ((𝑆‘(𝑗 + 1)) / (2 · (sin‘((𝑆‘(𝑗 + 1)) / 2))))) ∈ ((𝑂 ↾ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1)))) lim (𝑆‘(𝑗 + 1))) ∧ (((if((𝑆𝑗) = (𝑄𝑈), 𝑈 / 𝑖𝑅, (𝐹‘(𝑋 + (𝑆𝑗)))) − 𝐶) / (𝑆𝑗)) · ((𝑆𝑗) / (2 · (sin‘((𝑆𝑗) / 2))))) ∈ ((𝑂 ↾ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1)))) lim (𝑆𝑗)))
55 nfv 1911 . . . . . . . . 9 𝑖(𝑂 ↾ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1)))) ∈ (((𝑆𝑗)(,)(𝑆‘(𝑗 + 1)))–cn→ℂ)
5654, 55nfan 1896 . . . . . . . 8 𝑖(((((if((𝑆‘(𝑗 + 1)) = (𝑄‘(𝑈 + 1)), 𝑈 / 𝑖𝐿, (𝐹‘(𝑋 + (𝑆‘(𝑗 + 1))))) − 𝐶) / (𝑆‘(𝑗 + 1))) · ((𝑆‘(𝑗 + 1)) / (2 · (sin‘((𝑆‘(𝑗 + 1)) / 2))))) ∈ ((𝑂 ↾ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1)))) lim (𝑆‘(𝑗 + 1))) ∧ (((if((𝑆𝑗) = (𝑄𝑈), 𝑈 / 𝑖𝑅, (𝐹‘(𝑋 + (𝑆𝑗)))) − 𝐶) / (𝑆𝑗)) · ((𝑆𝑗) / (2 · (sin‘((𝑆𝑗) / 2))))) ∈ ((𝑂 ↾ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1)))) lim (𝑆𝑗))) ∧ (𝑂 ↾ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1)))) ∈ (((𝑆𝑗)(,)(𝑆‘(𝑗 + 1)))–cn→ℂ))
5729, 56nfim 1893 . . . . . . 7 𝑖((((𝜑𝑗 ∈ (0..^𝑁)) ∧ 𝑈 ∈ (0..^𝑀)) ∧ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1))) ⊆ ((𝑄𝑈)(,)(𝑄‘(𝑈 + 1)))) → (((((if((𝑆‘(𝑗 + 1)) = (𝑄‘(𝑈 + 1)), 𝑈 / 𝑖𝐿, (𝐹‘(𝑋 + (𝑆‘(𝑗 + 1))))) − 𝐶) / (𝑆‘(𝑗 + 1))) · ((𝑆‘(𝑗 + 1)) / (2 · (sin‘((𝑆‘(𝑗 + 1)) / 2))))) ∈ ((𝑂 ↾ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1)))) lim (𝑆‘(𝑗 + 1))) ∧ (((if((𝑆𝑗) = (𝑄𝑈), 𝑈 / 𝑖𝑅, (𝐹‘(𝑋 + (𝑆𝑗)))) − 𝐶) / (𝑆𝑗)) · ((𝑆𝑗) / (2 · (sin‘((𝑆𝑗) / 2))))) ∈ ((𝑂 ↾ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1)))) lim (𝑆𝑗))) ∧ (𝑂 ↾ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1)))) ∈ (((𝑆𝑗)(,)(𝑆‘(𝑗 + 1)))–cn→ℂ)))
58 eleq1 2900 . . . . . . . . . 10 (𝑖 = 𝑈 → (𝑖 ∈ (0..^𝑀) ↔ 𝑈 ∈ (0..^𝑀)))
5958anbi2d 630 . . . . . . . . 9 (𝑖 = 𝑈 → (((𝜑𝑗 ∈ (0..^𝑁)) ∧ 𝑖 ∈ (0..^𝑀)) ↔ ((𝜑𝑗 ∈ (0..^𝑁)) ∧ 𝑈 ∈ (0..^𝑀))))
60 fveq2 6664 . . . . . . . . . . 11 (𝑖 = 𝑈 → (𝑄𝑖) = (𝑄𝑈))
61 oveq1 7157 . . . . . . . . . . . 12 (𝑖 = 𝑈 → (𝑖 + 1) = (𝑈 + 1))
6261fveq2d 6668 . . . . . . . . . . 11 (𝑖 = 𝑈 → (𝑄‘(𝑖 + 1)) = (𝑄‘(𝑈 + 1)))
6360, 62oveq12d 7168 . . . . . . . . . 10 (𝑖 = 𝑈 → ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) = ((𝑄𝑈)(,)(𝑄‘(𝑈 + 1))))
6463sseq2d 3998 . . . . . . . . 9 (𝑖 = 𝑈 → (((𝑆𝑗)(,)(𝑆‘(𝑗 + 1))) ⊆ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ↔ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1))) ⊆ ((𝑄𝑈)(,)(𝑄‘(𝑈 + 1)))))
6559, 64anbi12d 632 . . . . . . . 8 (𝑖 = 𝑈 → ((((𝜑𝑗 ∈ (0..^𝑁)) ∧ 𝑖 ∈ (0..^𝑀)) ∧ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1))) ⊆ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) ↔ (((𝜑𝑗 ∈ (0..^𝑁)) ∧ 𝑈 ∈ (0..^𝑀)) ∧ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1))) ⊆ ((𝑄𝑈)(,)(𝑄‘(𝑈 + 1))))))
6662eqeq2d 2832 . . . . . . . . . . . . . . 15 (𝑖 = 𝑈 → ((𝑆‘(𝑗 + 1)) = (𝑄‘(𝑖 + 1)) ↔ (𝑆‘(𝑗 + 1)) = (𝑄‘(𝑈 + 1))))
67 csbeq1a 3896 . . . . . . . . . . . . . . 15 (𝑖 = 𝑈𝐿 = 𝑈 / 𝑖𝐿)
6866, 67ifbieq1d 4489 . . . . . . . . . . . . . 14 (𝑖 = 𝑈 → if((𝑆‘(𝑗 + 1)) = (𝑄‘(𝑖 + 1)), 𝐿, (𝐹‘(𝑋 + (𝑆‘(𝑗 + 1))))) = if((𝑆‘(𝑗 + 1)) = (𝑄‘(𝑈 + 1)), 𝑈 / 𝑖𝐿, (𝐹‘(𝑋 + (𝑆‘(𝑗 + 1))))))
6968oveq1d 7165 . . . . . . . . . . . . 13 (𝑖 = 𝑈 → (if((𝑆‘(𝑗 + 1)) = (𝑄‘(𝑖 + 1)), 𝐿, (𝐹‘(𝑋 + (𝑆‘(𝑗 + 1))))) − 𝐶) = (if((𝑆‘(𝑗 + 1)) = (𝑄‘(𝑈 + 1)), 𝑈 / 𝑖𝐿, (𝐹‘(𝑋 + (𝑆‘(𝑗 + 1))))) − 𝐶))
7069oveq1d 7165 . . . . . . . . . . . 12 (𝑖 = 𝑈 → ((if((𝑆‘(𝑗 + 1)) = (𝑄‘(𝑖 + 1)), 𝐿, (𝐹‘(𝑋 + (𝑆‘(𝑗 + 1))))) − 𝐶) / (𝑆‘(𝑗 + 1))) = ((if((𝑆‘(𝑗 + 1)) = (𝑄‘(𝑈 + 1)), 𝑈 / 𝑖𝐿, (𝐹‘(𝑋 + (𝑆‘(𝑗 + 1))))) − 𝐶) / (𝑆‘(𝑗 + 1))))
7170oveq1d 7165 . . . . . . . . . . 11 (𝑖 = 𝑈 → (((if((𝑆‘(𝑗 + 1)) = (𝑄‘(𝑖 + 1)), 𝐿, (𝐹‘(𝑋 + (𝑆‘(𝑗 + 1))))) − 𝐶) / (𝑆‘(𝑗 + 1))) · ((𝑆‘(𝑗 + 1)) / (2 · (sin‘((𝑆‘(𝑗 + 1)) / 2))))) = (((if((𝑆‘(𝑗 + 1)) = (𝑄‘(𝑈 + 1)), 𝑈 / 𝑖𝐿, (𝐹‘(𝑋 + (𝑆‘(𝑗 + 1))))) − 𝐶) / (𝑆‘(𝑗 + 1))) · ((𝑆‘(𝑗 + 1)) / (2 · (sin‘((𝑆‘(𝑗 + 1)) / 2))))))
7271eleq1d 2897 . . . . . . . . . 10 (𝑖 = 𝑈 → ((((if((𝑆‘(𝑗 + 1)) = (𝑄‘(𝑖 + 1)), 𝐿, (𝐹‘(𝑋 + (𝑆‘(𝑗 + 1))))) − 𝐶) / (𝑆‘(𝑗 + 1))) · ((𝑆‘(𝑗 + 1)) / (2 · (sin‘((𝑆‘(𝑗 + 1)) / 2))))) ∈ ((𝑂 ↾ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1)))) lim (𝑆‘(𝑗 + 1))) ↔ (((if((𝑆‘(𝑗 + 1)) = (𝑄‘(𝑈 + 1)), 𝑈 / 𝑖𝐿, (𝐹‘(𝑋 + (𝑆‘(𝑗 + 1))))) − 𝐶) / (𝑆‘(𝑗 + 1))) · ((𝑆‘(𝑗 + 1)) / (2 · (sin‘((𝑆‘(𝑗 + 1)) / 2))))) ∈ ((𝑂 ↾ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1)))) lim (𝑆‘(𝑗 + 1)))))
7360eqeq2d 2832 . . . . . . . . . . . . . . 15 (𝑖 = 𝑈 → ((𝑆𝑗) = (𝑄𝑖) ↔ (𝑆𝑗) = (𝑄𝑈)))
74 csbeq1a 3896 . . . . . . . . . . . . . . 15 (𝑖 = 𝑈𝑅 = 𝑈 / 𝑖𝑅)
7573, 74ifbieq1d 4489 . . . . . . . . . . . . . 14 (𝑖 = 𝑈 → if((𝑆𝑗) = (𝑄𝑖), 𝑅, (𝐹‘(𝑋 + (𝑆𝑗)))) = if((𝑆𝑗) = (𝑄𝑈), 𝑈 / 𝑖𝑅, (𝐹‘(𝑋 + (𝑆𝑗)))))
7675oveq1d 7165 . . . . . . . . . . . . 13 (𝑖 = 𝑈 → (if((𝑆𝑗) = (𝑄𝑖), 𝑅, (𝐹‘(𝑋 + (𝑆𝑗)))) − 𝐶) = (if((𝑆𝑗) = (𝑄𝑈), 𝑈 / 𝑖𝑅, (𝐹‘(𝑋 + (𝑆𝑗)))) − 𝐶))
7776oveq1d 7165 . . . . . . . . . . . 12 (𝑖 = 𝑈 → ((if((𝑆𝑗) = (𝑄𝑖), 𝑅, (𝐹‘(𝑋 + (𝑆𝑗)))) − 𝐶) / (𝑆𝑗)) = ((if((𝑆𝑗) = (𝑄𝑈), 𝑈 / 𝑖𝑅, (𝐹‘(𝑋 + (𝑆𝑗)))) − 𝐶) / (𝑆𝑗)))
7877oveq1d 7165 . . . . . . . . . . 11 (𝑖 = 𝑈 → (((if((𝑆𝑗) = (𝑄𝑖), 𝑅, (𝐹‘(𝑋 + (𝑆𝑗)))) − 𝐶) / (𝑆𝑗)) · ((𝑆𝑗) / (2 · (sin‘((𝑆𝑗) / 2))))) = (((if((𝑆𝑗) = (𝑄𝑈), 𝑈 / 𝑖𝑅, (𝐹‘(𝑋 + (𝑆𝑗)))) − 𝐶) / (𝑆𝑗)) · ((𝑆𝑗) / (2 · (sin‘((𝑆𝑗) / 2))))))
7978eleq1d 2897 . . . . . . . . . 10 (𝑖 = 𝑈 → ((((if((𝑆𝑗) = (𝑄𝑖), 𝑅, (𝐹‘(𝑋 + (𝑆𝑗)))) − 𝐶) / (𝑆𝑗)) · ((𝑆𝑗) / (2 · (sin‘((𝑆𝑗) / 2))))) ∈ ((𝑂 ↾ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1)))) lim (𝑆𝑗)) ↔ (((if((𝑆𝑗) = (𝑄𝑈), 𝑈 / 𝑖𝑅, (𝐹‘(𝑋 + (𝑆𝑗)))) − 𝐶) / (𝑆𝑗)) · ((𝑆𝑗) / (2 · (sin‘((𝑆𝑗) / 2))))) ∈ ((𝑂 ↾ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1)))) lim (𝑆𝑗))))
8072, 79anbi12d 632 . . . . . . . . 9 (𝑖 = 𝑈 → (((((if((𝑆‘(𝑗 + 1)) = (𝑄‘(𝑖 + 1)), 𝐿, (𝐹‘(𝑋 + (𝑆‘(𝑗 + 1))))) − 𝐶) / (𝑆‘(𝑗 + 1))) · ((𝑆‘(𝑗 + 1)) / (2 · (sin‘((𝑆‘(𝑗 + 1)) / 2))))) ∈ ((𝑂 ↾ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1)))) lim (𝑆‘(𝑗 + 1))) ∧ (((if((𝑆𝑗) = (𝑄𝑖), 𝑅, (𝐹‘(𝑋 + (𝑆𝑗)))) − 𝐶) / (𝑆𝑗)) · ((𝑆𝑗) / (2 · (sin‘((𝑆𝑗) / 2))))) ∈ ((𝑂 ↾ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1)))) lim (𝑆𝑗))) ↔ ((((if((𝑆‘(𝑗 + 1)) = (𝑄‘(𝑈 + 1)), 𝑈 / 𝑖𝐿, (𝐹‘(𝑋 + (𝑆‘(𝑗 + 1))))) − 𝐶) / (𝑆‘(𝑗 + 1))) · ((𝑆‘(𝑗 + 1)) / (2 · (sin‘((𝑆‘(𝑗 + 1)) / 2))))) ∈ ((𝑂 ↾ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1)))) lim (𝑆‘(𝑗 + 1))) ∧ (((if((𝑆𝑗) = (𝑄𝑈), 𝑈 / 𝑖𝑅, (𝐹‘(𝑋 + (𝑆𝑗)))) − 𝐶) / (𝑆𝑗)) · ((𝑆𝑗) / (2 · (sin‘((𝑆𝑗) / 2))))) ∈ ((𝑂 ↾ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1)))) lim (𝑆𝑗)))))
8180anbi1d 631 . . . . . . . 8 (𝑖 = 𝑈 → ((((((if((𝑆‘(𝑗 + 1)) = (𝑄‘(𝑖 + 1)), 𝐿, (𝐹‘(𝑋 + (𝑆‘(𝑗 + 1))))) − 𝐶) / (𝑆‘(𝑗 + 1))) · ((𝑆‘(𝑗 + 1)) / (2 · (sin‘((𝑆‘(𝑗 + 1)) / 2))))) ∈ ((𝑂 ↾ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1)))) lim (𝑆‘(𝑗 + 1))) ∧ (((if((𝑆𝑗) = (𝑄𝑖), 𝑅, (𝐹‘(𝑋 + (𝑆𝑗)))) − 𝐶) / (𝑆𝑗)) · ((𝑆𝑗) / (2 · (sin‘((𝑆𝑗) / 2))))) ∈ ((𝑂 ↾ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1)))) lim (𝑆𝑗))) ∧ (𝑂 ↾ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1)))) ∈ (((𝑆𝑗)(,)(𝑆‘(𝑗 + 1)))–cn→ℂ)) ↔ (((((if((𝑆‘(𝑗 + 1)) = (𝑄‘(𝑈 + 1)), 𝑈 / 𝑖𝐿, (𝐹‘(𝑋 + (𝑆‘(𝑗 + 1))))) − 𝐶) / (𝑆‘(𝑗 + 1))) · ((𝑆‘(𝑗 + 1)) / (2 · (sin‘((𝑆‘(𝑗 + 1)) / 2))))) ∈ ((𝑂 ↾ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1)))) lim (𝑆‘(𝑗 + 1))) ∧ (((if((𝑆𝑗) = (𝑄𝑈), 𝑈 / 𝑖𝑅, (𝐹‘(𝑋 + (𝑆𝑗)))) − 𝐶) / (𝑆𝑗)) · ((𝑆𝑗) / (2 · (sin‘((𝑆𝑗) / 2))))) ∈ ((𝑂 ↾ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1)))) lim (𝑆𝑗))) ∧ (𝑂 ↾ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1)))) ∈ (((𝑆𝑗)(,)(𝑆‘(𝑗 + 1)))–cn→ℂ))))
8265, 81imbi12d 347 . . . . . . 7 (𝑖 = 𝑈 → (((((𝜑𝑗 ∈ (0..^𝑁)) ∧ 𝑖 ∈ (0..^𝑀)) ∧ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1))) ⊆ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) → (((((if((𝑆‘(𝑗 + 1)) = (𝑄‘(𝑖 + 1)), 𝐿, (𝐹‘(𝑋 + (𝑆‘(𝑗 + 1))))) − 𝐶) / (𝑆‘(𝑗 + 1))) · ((𝑆‘(𝑗 + 1)) / (2 · (sin‘((𝑆‘(𝑗 + 1)) / 2))))) ∈ ((𝑂 ↾ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1)))) lim (𝑆‘(𝑗 + 1))) ∧ (((if((𝑆𝑗) = (𝑄𝑖), 𝑅, (𝐹‘(𝑋 + (𝑆𝑗)))) − 𝐶) / (𝑆𝑗)) · ((𝑆𝑗) / (2 · (sin‘((𝑆𝑗) / 2))))) ∈ ((𝑂 ↾ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1)))) lim (𝑆𝑗))) ∧ (𝑂 ↾ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1)))) ∈ (((𝑆𝑗)(,)(𝑆‘(𝑗 + 1)))–cn→ℂ))) ↔ ((((𝜑𝑗 ∈ (0..^𝑁)) ∧ 𝑈 ∈ (0..^𝑀)) ∧ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1))) ⊆ ((𝑄𝑈)(,)(𝑄‘(𝑈 + 1)))) → (((((if((𝑆‘(𝑗 + 1)) = (𝑄‘(𝑈 + 1)), 𝑈 / 𝑖𝐿, (𝐹‘(𝑋 + (𝑆‘(𝑗 + 1))))) − 𝐶) / (𝑆‘(𝑗 + 1))) · ((𝑆‘(𝑗 + 1)) / (2 · (sin‘((𝑆‘(𝑗 + 1)) / 2))))) ∈ ((𝑂 ↾ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1)))) lim (𝑆‘(𝑗 + 1))) ∧ (((if((𝑆𝑗) = (𝑄𝑈), 𝑈 / 𝑖𝑅, (𝐹‘(𝑋 + (𝑆𝑗)))) − 𝐶) / (𝑆𝑗)) · ((𝑆𝑗) / (2 · (sin‘((𝑆𝑗) / 2))))) ∈ ((𝑂 ↾ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1)))) lim (𝑆𝑗))) ∧ (𝑂 ↾ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1)))) ∈ (((𝑆𝑗)(,)(𝑆‘(𝑗 + 1)))–cn→ℂ)))))
83 fourierdlem86.f . . . . . . . 8 (𝜑𝐹:ℝ⟶ℝ)
84 fourierdlem86.fcn . . . . . . . 8 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝐹 ↾ ((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))) ∈ (((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))–cn→ℂ))
85 fourierdlem86.r . . . . . . . 8 ((𝜑𝑖 ∈ (0..^𝑀)) → 𝑅 ∈ ((𝐹 ↾ ((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))) lim (𝑉𝑖)))
86 fourierdlem86.l . . . . . . . 8 ((𝜑𝑖 ∈ (0..^𝑀)) → 𝐿 ∈ ((𝐹 ↾ ((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))) lim (𝑉‘(𝑖 + 1))))
87 fourierdlem86.n0 . . . . . . . 8 (𝜑 → ¬ 0 ∈ (𝐴[,]𝐵))
88 fourierdlem86.c . . . . . . . 8 (𝜑𝐶 ∈ ℝ)
89 fourierdlem86.o . . . . . . . 8 𝑂 = (𝑠 ∈ (𝐴[,]𝐵) ↦ ((((𝐹‘(𝑋 + 𝑠)) − 𝐶) / 𝑠) · (𝑠 / (2 · (sin‘(𝑠 / 2))))))
90 eqid 2821 . . . . . . . 8 (((if((𝑆‘(𝑗 + 1)) = (𝑄‘(𝑖 + 1)), 𝐿, (𝐹‘(𝑋 + (𝑆‘(𝑗 + 1))))) − 𝐶) / (𝑆‘(𝑗 + 1))) · ((𝑆‘(𝑗 + 1)) / (2 · (sin‘((𝑆‘(𝑗 + 1)) / 2))))) = (((if((𝑆‘(𝑗 + 1)) = (𝑄‘(𝑖 + 1)), 𝐿, (𝐹‘(𝑋 + (𝑆‘(𝑗 + 1))))) − 𝐶) / (𝑆‘(𝑗 + 1))) · ((𝑆‘(𝑗 + 1)) / (2 · (sin‘((𝑆‘(𝑗 + 1)) / 2)))))
91 eqid 2821 . . . . . . . 8 (((if((𝑆𝑗) = (𝑄𝑖), 𝑅, (𝐹‘(𝑋 + (𝑆𝑗)))) − 𝐶) / (𝑆𝑗)) · ((𝑆𝑗) / (2 · (sin‘((𝑆𝑗) / 2))))) = (((if((𝑆𝑗) = (𝑄𝑖), 𝑅, (𝐹‘(𝑋 + (𝑆𝑗)))) − 𝐶) / (𝑆𝑗)) · ((𝑆𝑗) / (2 · (sin‘((𝑆𝑗) / 2)))))
92 biid 263 . . . . . . . 8 ((((𝜑𝑗 ∈ (0..^𝑁)) ∧ 𝑖 ∈ (0..^𝑀)) ∧ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1))) ⊆ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) ↔ (((𝜑𝑗 ∈ (0..^𝑁)) ∧ 𝑖 ∈ (0..^𝑀)) ∧ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1))) ⊆ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))))
9383, 2, 4, 5, 7, 84, 85, 86, 9, 11, 13, 15, 87, 88, 89, 17, 18, 19, 20, 90, 91, 92fourierdlem76 42461 . . . . . . 7 ((((𝜑𝑗 ∈ (0..^𝑁)) ∧ 𝑖 ∈ (0..^𝑀)) ∧ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1))) ⊆ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) → (((((if((𝑆‘(𝑗 + 1)) = (𝑄‘(𝑖 + 1)), 𝐿, (𝐹‘(𝑋 + (𝑆‘(𝑗 + 1))))) − 𝐶) / (𝑆‘(𝑗 + 1))) · ((𝑆‘(𝑗 + 1)) / (2 · (sin‘((𝑆‘(𝑗 + 1)) / 2))))) ∈ ((𝑂 ↾ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1)))) lim (𝑆‘(𝑗 + 1))) ∧ (((if((𝑆𝑗) = (𝑄𝑖), 𝑅, (𝐹‘(𝑋 + (𝑆𝑗)))) − 𝐶) / (𝑆𝑗)) · ((𝑆𝑗) / (2 · (sin‘((𝑆𝑗) / 2))))) ∈ ((𝑂 ↾ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1)))) lim (𝑆𝑗))) ∧ (𝑂 ↾ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1)))) ∈ (((𝑆𝑗)(,)(𝑆‘(𝑗 + 1)))–cn→ℂ)))
9457, 82, 93vtoclg1f 3566 . . . . . 6 (𝑈 ∈ (0..^𝑀) → ((((𝜑𝑗 ∈ (0..^𝑁)) ∧ 𝑈 ∈ (0..^𝑀)) ∧ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1))) ⊆ ((𝑄𝑈)(,)(𝑄‘(𝑈 + 1)))) → (((((if((𝑆‘(𝑗 + 1)) = (𝑄‘(𝑈 + 1)), 𝑈 / 𝑖𝐿, (𝐹‘(𝑋 + (𝑆‘(𝑗 + 1))))) − 𝐶) / (𝑆‘(𝑗 + 1))) · ((𝑆‘(𝑗 + 1)) / (2 · (sin‘((𝑆‘(𝑗 + 1)) / 2))))) ∈ ((𝑂 ↾ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1)))) lim (𝑆‘(𝑗 + 1))) ∧ (((if((𝑆𝑗) = (𝑄𝑈), 𝑈 / 𝑖𝑅, (𝐹‘(𝑋 + (𝑆𝑗)))) − 𝐶) / (𝑆𝑗)) · ((𝑆𝑗) / (2 · (sin‘((𝑆𝑗) / 2))))) ∈ ((𝑂 ↾ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1)))) lim (𝑆𝑗))) ∧ (𝑂 ↾ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1)))) ∈ (((𝑆𝑗)(,)(𝑆‘(𝑗 + 1)))–cn→ℂ))))
9525, 28, 94sylc 65 . . . . 5 ((𝜑𝑗 ∈ (0..^𝑁)) → (((((if((𝑆‘(𝑗 + 1)) = (𝑄‘(𝑈 + 1)), 𝑈 / 𝑖𝐿, (𝐹‘(𝑋 + (𝑆‘(𝑗 + 1))))) − 𝐶) / (𝑆‘(𝑗 + 1))) · ((𝑆‘(𝑗 + 1)) / (2 · (sin‘((𝑆‘(𝑗 + 1)) / 2))))) ∈ ((𝑂 ↾ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1)))) lim (𝑆‘(𝑗 + 1))) ∧ (((if((𝑆𝑗) = (𝑄𝑈), 𝑈 / 𝑖𝑅, (𝐹‘(𝑋 + (𝑆𝑗)))) − 𝐶) / (𝑆𝑗)) · ((𝑆𝑗) / (2 · (sin‘((𝑆𝑗) / 2))))) ∈ ((𝑂 ↾ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1)))) lim (𝑆𝑗))) ∧ (𝑂 ↾ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1)))) ∈ (((𝑆𝑗)(,)(𝑆‘(𝑗 + 1)))–cn→ℂ)))
9695simpld 497 . . . 4 ((𝜑𝑗 ∈ (0..^𝑁)) → ((((if((𝑆‘(𝑗 + 1)) = (𝑄‘(𝑈 + 1)), 𝑈 / 𝑖𝐿, (𝐹‘(𝑋 + (𝑆‘(𝑗 + 1))))) − 𝐶) / (𝑆‘(𝑗 + 1))) · ((𝑆‘(𝑗 + 1)) / (2 · (sin‘((𝑆‘(𝑗 + 1)) / 2))))) ∈ ((𝑂 ↾ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1)))) lim (𝑆‘(𝑗 + 1))) ∧ (((if((𝑆𝑗) = (𝑄𝑈), 𝑈 / 𝑖𝑅, (𝐹‘(𝑋 + (𝑆𝑗)))) − 𝐶) / (𝑆𝑗)) · ((𝑆𝑗) / (2 · (sin‘((𝑆𝑗) / 2))))) ∈ ((𝑂 ↾ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1)))) lim (𝑆𝑗))))
9796simpld 497 . . 3 ((𝜑𝑗 ∈ (0..^𝑁)) → (((if((𝑆‘(𝑗 + 1)) = (𝑄‘(𝑈 + 1)), 𝑈 / 𝑖𝐿, (𝐹‘(𝑋 + (𝑆‘(𝑗 + 1))))) − 𝐶) / (𝑆‘(𝑗 + 1))) · ((𝑆‘(𝑗 + 1)) / (2 · (sin‘((𝑆‘(𝑗 + 1)) / 2))))) ∈ ((𝑂 ↾ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1)))) lim (𝑆‘(𝑗 + 1))))
981, 97eqeltrid 2917 . 2 ((𝜑𝑗 ∈ (0..^𝑁)) → 𝐷 ∈ ((𝑂 ↾ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1)))) lim (𝑆‘(𝑗 + 1))))
99 fourierdlem86.e . . 3 𝐸 = (((if((𝑆𝑗) = (𝑄𝑈), 𝑈 / 𝑖𝑅, (𝐹‘(𝑋 + (𝑆𝑗)))) − 𝐶) / (𝑆𝑗)) · ((𝑆𝑗) / (2 · (sin‘((𝑆𝑗) / 2)))))
10096simprd 498 . . 3 ((𝜑𝑗 ∈ (0..^𝑁)) → (((if((𝑆𝑗) = (𝑄𝑈), 𝑈 / 𝑖𝑅, (𝐹‘(𝑋 + (𝑆𝑗)))) − 𝐶) / (𝑆𝑗)) · ((𝑆𝑗) / (2 · (sin‘((𝑆𝑗) / 2))))) ∈ ((𝑂 ↾ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1)))) lim (𝑆𝑗)))
10199, 100eqeltrid 2917 . 2 ((𝜑𝑗 ∈ (0..^𝑁)) → 𝐸 ∈ ((𝑂 ↾ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1)))) lim (𝑆𝑗)))
10295simprd 498 . 2 ((𝜑𝑗 ∈ (0..^𝑁)) → (𝑂 ↾ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1)))) ∈ (((𝑆𝑗)(,)(𝑆‘(𝑗 + 1)))–cn→ℂ))
10398, 101, 102jca31 517 1 ((𝜑𝑗 ∈ (0..^𝑁)) → ((𝐷 ∈ ((𝑂 ↾ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1)))) lim (𝑆‘(𝑗 + 1))) ∧ 𝐸 ∈ ((𝑂 ↾ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1)))) lim (𝑆𝑗))) ∧ (𝑂 ↾ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1)))) ∈ (((𝑆𝑗)(,)(𝑆‘(𝑗 + 1)))–cn→ℂ)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 398   = wceq 1533  wcel 2110  wral 3138  {crab 3142  csb 3882  cun 3933  cin 3934  wss 3935  ifcif 4466  {cpr 4562   class class class wbr 5058  cmpt 5138  ran crn 5550  cres 5551  cio 6306  wf 6345  cfv 6349   Isom wiso 6350  crio 7107  (class class class)co 7150  m cmap 8400  cc 10529  cr 10530  0cc0 10531  1c1 10532   + caddc 10534   · cmul 10536   < clt 10669  cmin 10864  -cneg 10865   / cdiv 11291  cn 11632  2c2 11686  (,)cioo 12732  [,]cicc 12735  ...cfz 12886  ..^cfzo 13027  chash 13684  sincsin 15411  πcpi 15414  cnccncf 23478   lim climc 24454
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2157  ax-12 2173  ax-ext 2793  ax-rep 5182  ax-sep 5195  ax-nul 5202  ax-pow 5258  ax-pr 5321  ax-un 7455  ax-inf2 9098  ax-cnex 10587  ax-resscn 10588  ax-1cn 10589  ax-icn 10590  ax-addcl 10591  ax-addrcl 10592  ax-mulcl 10593  ax-mulrcl 10594  ax-mulcom 10595  ax-addass 10596  ax-mulass 10597  ax-distr 10598  ax-i2m1 10599  ax-1ne0 10600  ax-1rid 10601  ax-rnegex 10602  ax-rrecex 10603  ax-cnre 10604  ax-pre-lttri 10605  ax-pre-lttrn 10606  ax-pre-ltadd 10607  ax-pre-mulgt0 10608  ax-pre-sup 10609  ax-addf 10610  ax-mulf 10611
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1536  df-fal 1546  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3496  df-sbc 3772  df-csb 3883  df-dif 3938  df-un 3940  df-in 3942  df-ss 3951  df-pss 3953  df-nul 4291  df-if 4467  df-pw 4540  df-sn 4561  df-pr 4563  df-tp 4565  df-op 4567  df-uni 4832  df-int 4869  df-iun 4913  df-iin 4914  df-br 5059  df-opab 5121  df-mpt 5139  df-tr 5165  df-id 5454  df-eprel 5459  df-po 5468  df-so 5469  df-fr 5508  df-se 5509  df-we 5510  df-xp 5555  df-rel 5556  df-cnv 5557  df-co 5558  df-dm 5559  df-rn 5560  df-res 5561  df-ima 5562  df-pred 6142  df-ord 6188  df-on 6189  df-lim 6190  df-suc 6191  df-iota 6308  df-fun 6351  df-fn 6352  df-f 6353  df-f1 6354  df-fo 6355  df-f1o 6356  df-fv 6357  df-isom 6358  df-riota 7108  df-ov 7153  df-oprab 7154  df-mpo 7155  df-of 7403  df-om 7575  df-1st 7683  df-2nd 7684  df-supp 7825  df-wrecs 7941  df-recs 8002  df-rdg 8040  df-1o 8096  df-2o 8097  df-oadd 8100  df-er 8283  df-map 8402  df-pm 8403  df-ixp 8456  df-en 8504  df-dom 8505  df-sdom 8506  df-fin 8507  df-fsupp 8828  df-fi 8869  df-sup 8900  df-inf 8901  df-oi 8968  df-card 9362  df-pnf 10671  df-mnf 10672  df-xr 10673  df-ltxr 10674  df-le 10675  df-sub 10866  df-neg 10867  df-div 11292  df-nn 11633  df-2 11694  df-3 11695  df-4 11696  df-5 11697  df-6 11698  df-7 11699  df-8 11700  df-9 11701  df-n0 11892  df-z 11976  df-dec 12093  df-uz 12238  df-q 12343  df-rp 12384  df-xneg 12501  df-xadd 12502  df-xmul 12503  df-ioo 12736  df-ioc 12737  df-ico 12738  df-icc 12739  df-fz 12887  df-fzo 13028  df-fl 13156  df-mod 13232  df-seq 13364  df-exp 13424  df-fac 13628  df-bc 13657  df-hash 13685  df-shft 14420  df-cj 14452  df-re 14453  df-im 14454  df-sqrt 14588  df-abs 14589  df-limsup 14822  df-clim 14839  df-rlim 14840  df-sum 15037  df-ef 15415  df-sin 15417  df-cos 15418  df-pi 15420  df-struct 16479  df-ndx 16480  df-slot 16481  df-base 16483  df-sets 16484  df-ress 16485  df-plusg 16572  df-mulr 16573  df-starv 16574  df-sca 16575  df-vsca 16576  df-ip 16577  df-tset 16578  df-ple 16579  df-ds 16581  df-unif 16582  df-hom 16583  df-cco 16584  df-rest 16690  df-topn 16691  df-0g 16709  df-gsum 16710  df-topgen 16711  df-pt 16712  df-prds 16715  df-xrs 16769  df-qtop 16774  df-imas 16775  df-xps 16777  df-mre 16851  df-mrc 16852  df-acs 16854  df-mgm 17846  df-sgrp 17895  df-mnd 17906  df-submnd 17951  df-mulg 18219  df-cntz 18441  df-cmn 18902  df-psmet 20531  df-xmet 20532  df-met 20533  df-bl 20534  df-mopn 20535  df-fbas 20536  df-fg 20537  df-cnfld 20540  df-top 21496  df-topon 21513  df-topsp 21535  df-bases 21548  df-cld 21621  df-ntr 21622  df-cls 21623  df-nei 21700  df-lp 21738  df-perf 21739  df-cn 21829  df-cnp 21830  df-haus 21917  df-tx 22164  df-hmeo 22357  df-fil 22448  df-fm 22540  df-flim 22541  df-flf 22542  df-xms 22924  df-ms 22925  df-tms 22926  df-cncf 23480  df-limc 24458  df-dv 24459
This theorem is referenced by:  fourierdlem103  42488  fourierdlem104  42489
  Copyright terms: Public domain W3C validator