Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fourierdlem86 Structured version   Visualization version   GIF version

Theorem fourierdlem86 46113
Description: Continuity of 𝑂 and its limits with respect to the 𝑆 partition. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
Hypotheses
Ref Expression
fourierdlem86.f (𝜑𝐹:ℝ⟶ℝ)
fourierdlem86.xre (𝜑𝑋 ∈ ℝ)
fourierdlem86.p 𝑃 = (𝑚 ∈ ℕ ↦ {𝑝 ∈ (ℝ ↑m (0...𝑚)) ∣ (((𝑝‘0) = (-π + 𝑋) ∧ (𝑝𝑚) = (π + 𝑋)) ∧ ∀𝑖 ∈ (0..^𝑚)(𝑝𝑖) < (𝑝‘(𝑖 + 1)))})
fourierdlem86.m (𝜑𝑀 ∈ ℕ)
fourierdlem86.v (𝜑𝑉 ∈ (𝑃𝑀))
fourierdlem86.fcn ((𝜑𝑖 ∈ (0..^𝑀)) → (𝐹 ↾ ((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))) ∈ (((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))–cn→ℂ))
fourierdlem86.r ((𝜑𝑖 ∈ (0..^𝑀)) → 𝑅 ∈ ((𝐹 ↾ ((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))) lim (𝑉𝑖)))
fourierdlem86.l ((𝜑𝑖 ∈ (0..^𝑀)) → 𝐿 ∈ ((𝐹 ↾ ((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))) lim (𝑉‘(𝑖 + 1))))
fourierdlem86.a (𝜑𝐴 ∈ ℝ)
fourierdlem86.b (𝜑𝐵 ∈ ℝ)
fourierdlem86.altb (𝜑𝐴 < 𝐵)
fourierdlem86.ab (𝜑 → (𝐴[,]𝐵) ⊆ (-π[,]π))
fourierdlem86.n0 (𝜑 → ¬ 0 ∈ (𝐴[,]𝐵))
fourierdlem86.c (𝜑𝐶 ∈ ℝ)
fourierdlem86.o 𝑂 = (𝑠 ∈ (𝐴[,]𝐵) ↦ ((((𝐹‘(𝑋 + 𝑠)) − 𝐶) / 𝑠) · (𝑠 / (2 · (sin‘(𝑠 / 2))))))
fourierdlem86.q 𝑄 = (𝑖 ∈ (0...𝑀) ↦ ((𝑉𝑖) − 𝑋))
fourierdlem86.t 𝑇 = ({𝐴, 𝐵} ∪ (ran 𝑄 ∩ (𝐴(,)𝐵)))
fourierdlem86.n 𝑁 = ((♯‘𝑇) − 1)
fourierdlem86.s 𝑆 = (℩𝑓𝑓 Isom < , < ((0...𝑁), 𝑇))
fourierdlem86.d 𝐷 = (((if((𝑆‘(𝑗 + 1)) = (𝑄‘(𝑈 + 1)), 𝑈 / 𝑖𝐿, (𝐹‘(𝑋 + (𝑆‘(𝑗 + 1))))) − 𝐶) / (𝑆‘(𝑗 + 1))) · ((𝑆‘(𝑗 + 1)) / (2 · (sin‘((𝑆‘(𝑗 + 1)) / 2)))))
fourierdlem86.e 𝐸 = (((if((𝑆𝑗) = (𝑄𝑈), 𝑈 / 𝑖𝑅, (𝐹‘(𝑋 + (𝑆𝑗)))) − 𝐶) / (𝑆𝑗)) · ((𝑆𝑗) / (2 · (sin‘((𝑆𝑗) / 2)))))
fourierdlem86.u 𝑈 = (𝑖 ∈ (0..^𝑀)((𝑆𝑗)(,)(𝑆‘(𝑗 + 1))) ⊆ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))))
Assertion
Ref Expression
fourierdlem86 ((𝜑𝑗 ∈ (0..^𝑁)) → ((𝐷 ∈ ((𝑂 ↾ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1)))) lim (𝑆‘(𝑗 + 1))) ∧ 𝐸 ∈ ((𝑂 ↾ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1)))) lim (𝑆𝑗))) ∧ (𝑂 ↾ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1)))) ∈ (((𝑆𝑗)(,)(𝑆‘(𝑗 + 1)))–cn→ℂ)))
Distinct variable groups:   𝐴,𝑠   𝐵,𝑠   𝐶,𝑖,𝑠   𝑖,𝐹,𝑠   𝐿,𝑠   𝑖,𝑀,𝑚,𝑝   𝑗,𝑀,𝑠,𝑖   𝑓,𝑁   𝑖,𝑁,𝑠   𝑖,𝑂   𝑄,𝑖,𝑠   𝑅,𝑠   𝑆,𝑓   𝑆,𝑖,𝑠   𝑇,𝑓   𝑈,𝑖   𝑖,𝑉,𝑝   𝑗,𝑉,𝑠   𝑖,𝑋,𝑚,𝑝   𝑗,𝑋,𝑠   𝑓,𝑗,𝜑   𝜑,𝑖,𝑠
Allowed substitution hints:   𝜑(𝑚,𝑝)   𝐴(𝑓,𝑖,𝑗,𝑚,𝑝)   𝐵(𝑓,𝑖,𝑗,𝑚,𝑝)   𝐶(𝑓,𝑗,𝑚,𝑝)   𝐷(𝑓,𝑖,𝑗,𝑚,𝑠,𝑝)   𝑃(𝑓,𝑖,𝑗,𝑚,𝑠,𝑝)   𝑄(𝑓,𝑗,𝑚,𝑝)   𝑅(𝑓,𝑖,𝑗,𝑚,𝑝)   𝑆(𝑗,𝑚,𝑝)   𝑇(𝑖,𝑗,𝑚,𝑠,𝑝)   𝑈(𝑓,𝑗,𝑚,𝑠,𝑝)   𝐸(𝑓,𝑖,𝑗,𝑚,𝑠,𝑝)   𝐹(𝑓,𝑗,𝑚,𝑝)   𝐿(𝑓,𝑖,𝑗,𝑚,𝑝)   𝑀(𝑓)   𝑁(𝑗,𝑚,𝑝)   𝑂(𝑓,𝑗,𝑚,𝑠,𝑝)   𝑉(𝑓,𝑚)   𝑋(𝑓)

Proof of Theorem fourierdlem86
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 fourierdlem86.d . . 3 𝐷 = (((if((𝑆‘(𝑗 + 1)) = (𝑄‘(𝑈 + 1)), 𝑈 / 𝑖𝐿, (𝐹‘(𝑋 + (𝑆‘(𝑗 + 1))))) − 𝐶) / (𝑆‘(𝑗 + 1))) · ((𝑆‘(𝑗 + 1)) / (2 · (sin‘((𝑆‘(𝑗 + 1)) / 2)))))
2 fourierdlem86.xre . . . . . . . . 9 (𝜑𝑋 ∈ ℝ)
32adantr 480 . . . . . . . 8 ((𝜑𝑗 ∈ (0..^𝑁)) → 𝑋 ∈ ℝ)
4 fourierdlem86.p . . . . . . . 8 𝑃 = (𝑚 ∈ ℕ ↦ {𝑝 ∈ (ℝ ↑m (0...𝑚)) ∣ (((𝑝‘0) = (-π + 𝑋) ∧ (𝑝𝑚) = (π + 𝑋)) ∧ ∀𝑖 ∈ (0..^𝑚)(𝑝𝑖) < (𝑝‘(𝑖 + 1)))})
5 fourierdlem86.m . . . . . . . . 9 (𝜑𝑀 ∈ ℕ)
65adantr 480 . . . . . . . 8 ((𝜑𝑗 ∈ (0..^𝑁)) → 𝑀 ∈ ℕ)
7 fourierdlem86.v . . . . . . . . 9 (𝜑𝑉 ∈ (𝑃𝑀))
87adantr 480 . . . . . . . 8 ((𝜑𝑗 ∈ (0..^𝑁)) → 𝑉 ∈ (𝑃𝑀))
9 fourierdlem86.a . . . . . . . . 9 (𝜑𝐴 ∈ ℝ)
109adantr 480 . . . . . . . 8 ((𝜑𝑗 ∈ (0..^𝑁)) → 𝐴 ∈ ℝ)
11 fourierdlem86.b . . . . . . . . 9 (𝜑𝐵 ∈ ℝ)
1211adantr 480 . . . . . . . 8 ((𝜑𝑗 ∈ (0..^𝑁)) → 𝐵 ∈ ℝ)
13 fourierdlem86.altb . . . . . . . . 9 (𝜑𝐴 < 𝐵)
1413adantr 480 . . . . . . . 8 ((𝜑𝑗 ∈ (0..^𝑁)) → 𝐴 < 𝐵)
15 fourierdlem86.ab . . . . . . . . 9 (𝜑 → (𝐴[,]𝐵) ⊆ (-π[,]π))
1615adantr 480 . . . . . . . 8 ((𝜑𝑗 ∈ (0..^𝑁)) → (𝐴[,]𝐵) ⊆ (-π[,]π))
17 fourierdlem86.q . . . . . . . 8 𝑄 = (𝑖 ∈ (0...𝑀) ↦ ((𝑉𝑖) − 𝑋))
18 fourierdlem86.t . . . . . . . 8 𝑇 = ({𝐴, 𝐵} ∪ (ran 𝑄 ∩ (𝐴(,)𝐵)))
19 fourierdlem86.n . . . . . . . 8 𝑁 = ((♯‘𝑇) − 1)
20 fourierdlem86.s . . . . . . . 8 𝑆 = (℩𝑓𝑓 Isom < , < ((0...𝑁), 𝑇))
21 simpr 484 . . . . . . . 8 ((𝜑𝑗 ∈ (0..^𝑁)) → 𝑗 ∈ (0..^𝑁))
22 fourierdlem86.u . . . . . . . 8 𝑈 = (𝑖 ∈ (0..^𝑀)((𝑆𝑗)(,)(𝑆‘(𝑗 + 1))) ⊆ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))))
23 biid 261 . . . . . . . 8 ((((((𝜑𝑗 ∈ (0..^𝑁)) ∧ 𝑖 ∈ (0..^𝑀)) ∧ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1))) ⊆ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) ∧ 𝑦 ∈ (0..^𝑀)) ∧ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1))) ⊆ ((𝑄𝑦)(,)(𝑄‘(𝑦 + 1)))) ↔ (((((𝜑𝑗 ∈ (0..^𝑁)) ∧ 𝑖 ∈ (0..^𝑀)) ∧ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1))) ⊆ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) ∧ 𝑦 ∈ (0..^𝑀)) ∧ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1))) ⊆ ((𝑄𝑦)(,)(𝑄‘(𝑦 + 1)))))
243, 4, 6, 8, 10, 12, 14, 16, 17, 18, 19, 20, 21, 22, 23fourierdlem50 46077 . . . . . . 7 ((𝜑𝑗 ∈ (0..^𝑁)) → (𝑈 ∈ (0..^𝑀) ∧ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1))) ⊆ ((𝑄𝑈)(,)(𝑄‘(𝑈 + 1)))))
2524simpld 494 . . . . . 6 ((𝜑𝑗 ∈ (0..^𝑁)) → 𝑈 ∈ (0..^𝑀))
26 id 22 . . . . . . 7 ((𝜑𝑗 ∈ (0..^𝑁)) → (𝜑𝑗 ∈ (0..^𝑁)))
2724simprd 495 . . . . . . 7 ((𝜑𝑗 ∈ (0..^𝑁)) → ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1))) ⊆ ((𝑄𝑈)(,)(𝑄‘(𝑈 + 1))))
2826, 25, 27jca31 514 . . . . . 6 ((𝜑𝑗 ∈ (0..^𝑁)) → (((𝜑𝑗 ∈ (0..^𝑁)) ∧ 𝑈 ∈ (0..^𝑀)) ∧ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1))) ⊆ ((𝑄𝑈)(,)(𝑄‘(𝑈 + 1)))))
29 nfv 1913 . . . . . . . 8 𝑖(((𝜑𝑗 ∈ (0..^𝑁)) ∧ 𝑈 ∈ (0..^𝑀)) ∧ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1))) ⊆ ((𝑄𝑈)(,)(𝑄‘(𝑈 + 1))))
30 nfv 1913 . . . . . . . . . . . . . . 15 𝑖(𝑆‘(𝑗 + 1)) = (𝑄‘(𝑈 + 1))
31 nfcsb1v 3946 . . . . . . . . . . . . . . 15 𝑖𝑈 / 𝑖𝐿
32 nfcv 2908 . . . . . . . . . . . . . . 15 𝑖(𝐹‘(𝑋 + (𝑆‘(𝑗 + 1))))
3330, 31, 32nfif 4578 . . . . . . . . . . . . . 14 𝑖if((𝑆‘(𝑗 + 1)) = (𝑄‘(𝑈 + 1)), 𝑈 / 𝑖𝐿, (𝐹‘(𝑋 + (𝑆‘(𝑗 + 1)))))
34 nfcv 2908 . . . . . . . . . . . . . 14 𝑖
35 nfcv 2908 . . . . . . . . . . . . . 14 𝑖𝐶
3633, 34, 35nfov 7478 . . . . . . . . . . . . 13 𝑖(if((𝑆‘(𝑗 + 1)) = (𝑄‘(𝑈 + 1)), 𝑈 / 𝑖𝐿, (𝐹‘(𝑋 + (𝑆‘(𝑗 + 1))))) − 𝐶)
37 nfcv 2908 . . . . . . . . . . . . 13 𝑖 /
38 nfcv 2908 . . . . . . . . . . . . 13 𝑖(𝑆‘(𝑗 + 1))
3936, 37, 38nfov 7478 . . . . . . . . . . . 12 𝑖((if((𝑆‘(𝑗 + 1)) = (𝑄‘(𝑈 + 1)), 𝑈 / 𝑖𝐿, (𝐹‘(𝑋 + (𝑆‘(𝑗 + 1))))) − 𝐶) / (𝑆‘(𝑗 + 1)))
40 nfcv 2908 . . . . . . . . . . . 12 𝑖 ·
41 nfcv 2908 . . . . . . . . . . . 12 𝑖((𝑆‘(𝑗 + 1)) / (2 · (sin‘((𝑆‘(𝑗 + 1)) / 2))))
4239, 40, 41nfov 7478 . . . . . . . . . . 11 𝑖(((if((𝑆‘(𝑗 + 1)) = (𝑄‘(𝑈 + 1)), 𝑈 / 𝑖𝐿, (𝐹‘(𝑋 + (𝑆‘(𝑗 + 1))))) − 𝐶) / (𝑆‘(𝑗 + 1))) · ((𝑆‘(𝑗 + 1)) / (2 · (sin‘((𝑆‘(𝑗 + 1)) / 2)))))
4342nfel1 2925 . . . . . . . . . 10 𝑖(((if((𝑆‘(𝑗 + 1)) = (𝑄‘(𝑈 + 1)), 𝑈 / 𝑖𝐿, (𝐹‘(𝑋 + (𝑆‘(𝑗 + 1))))) − 𝐶) / (𝑆‘(𝑗 + 1))) · ((𝑆‘(𝑗 + 1)) / (2 · (sin‘((𝑆‘(𝑗 + 1)) / 2))))) ∈ ((𝑂 ↾ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1)))) lim (𝑆‘(𝑗 + 1)))
44 nfv 1913 . . . . . . . . . . . . . . 15 𝑖(𝑆𝑗) = (𝑄𝑈)
45 nfcsb1v 3946 . . . . . . . . . . . . . . 15 𝑖𝑈 / 𝑖𝑅
46 nfcv 2908 . . . . . . . . . . . . . . 15 𝑖(𝐹‘(𝑋 + (𝑆𝑗)))
4744, 45, 46nfif 4578 . . . . . . . . . . . . . 14 𝑖if((𝑆𝑗) = (𝑄𝑈), 𝑈 / 𝑖𝑅, (𝐹‘(𝑋 + (𝑆𝑗))))
4847, 34, 35nfov 7478 . . . . . . . . . . . . 13 𝑖(if((𝑆𝑗) = (𝑄𝑈), 𝑈 / 𝑖𝑅, (𝐹‘(𝑋 + (𝑆𝑗)))) − 𝐶)
49 nfcv 2908 . . . . . . . . . . . . 13 𝑖(𝑆𝑗)
5048, 37, 49nfov 7478 . . . . . . . . . . . 12 𝑖((if((𝑆𝑗) = (𝑄𝑈), 𝑈 / 𝑖𝑅, (𝐹‘(𝑋 + (𝑆𝑗)))) − 𝐶) / (𝑆𝑗))
51 nfcv 2908 . . . . . . . . . . . 12 𝑖((𝑆𝑗) / (2 · (sin‘((𝑆𝑗) / 2))))
5250, 40, 51nfov 7478 . . . . . . . . . . 11 𝑖(((if((𝑆𝑗) = (𝑄𝑈), 𝑈 / 𝑖𝑅, (𝐹‘(𝑋 + (𝑆𝑗)))) − 𝐶) / (𝑆𝑗)) · ((𝑆𝑗) / (2 · (sin‘((𝑆𝑗) / 2)))))
5352nfel1 2925 . . . . . . . . . 10 𝑖(((if((𝑆𝑗) = (𝑄𝑈), 𝑈 / 𝑖𝑅, (𝐹‘(𝑋 + (𝑆𝑗)))) − 𝐶) / (𝑆𝑗)) · ((𝑆𝑗) / (2 · (sin‘((𝑆𝑗) / 2))))) ∈ ((𝑂 ↾ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1)))) lim (𝑆𝑗))
5443, 53nfan 1898 . . . . . . . . 9 𝑖((((if((𝑆‘(𝑗 + 1)) = (𝑄‘(𝑈 + 1)), 𝑈 / 𝑖𝐿, (𝐹‘(𝑋 + (𝑆‘(𝑗 + 1))))) − 𝐶) / (𝑆‘(𝑗 + 1))) · ((𝑆‘(𝑗 + 1)) / (2 · (sin‘((𝑆‘(𝑗 + 1)) / 2))))) ∈ ((𝑂 ↾ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1)))) lim (𝑆‘(𝑗 + 1))) ∧ (((if((𝑆𝑗) = (𝑄𝑈), 𝑈 / 𝑖𝑅, (𝐹‘(𝑋 + (𝑆𝑗)))) − 𝐶) / (𝑆𝑗)) · ((𝑆𝑗) / (2 · (sin‘((𝑆𝑗) / 2))))) ∈ ((𝑂 ↾ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1)))) lim (𝑆𝑗)))
55 nfv 1913 . . . . . . . . 9 𝑖(𝑂 ↾ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1)))) ∈ (((𝑆𝑗)(,)(𝑆‘(𝑗 + 1)))–cn→ℂ)
5654, 55nfan 1898 . . . . . . . 8 𝑖(((((if((𝑆‘(𝑗 + 1)) = (𝑄‘(𝑈 + 1)), 𝑈 / 𝑖𝐿, (𝐹‘(𝑋 + (𝑆‘(𝑗 + 1))))) − 𝐶) / (𝑆‘(𝑗 + 1))) · ((𝑆‘(𝑗 + 1)) / (2 · (sin‘((𝑆‘(𝑗 + 1)) / 2))))) ∈ ((𝑂 ↾ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1)))) lim (𝑆‘(𝑗 + 1))) ∧ (((if((𝑆𝑗) = (𝑄𝑈), 𝑈 / 𝑖𝑅, (𝐹‘(𝑋 + (𝑆𝑗)))) − 𝐶) / (𝑆𝑗)) · ((𝑆𝑗) / (2 · (sin‘((𝑆𝑗) / 2))))) ∈ ((𝑂 ↾ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1)))) lim (𝑆𝑗))) ∧ (𝑂 ↾ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1)))) ∈ (((𝑆𝑗)(,)(𝑆‘(𝑗 + 1)))–cn→ℂ))
5729, 56nfim 1895 . . . . . . 7 𝑖((((𝜑𝑗 ∈ (0..^𝑁)) ∧ 𝑈 ∈ (0..^𝑀)) ∧ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1))) ⊆ ((𝑄𝑈)(,)(𝑄‘(𝑈 + 1)))) → (((((if((𝑆‘(𝑗 + 1)) = (𝑄‘(𝑈 + 1)), 𝑈 / 𝑖𝐿, (𝐹‘(𝑋 + (𝑆‘(𝑗 + 1))))) − 𝐶) / (𝑆‘(𝑗 + 1))) · ((𝑆‘(𝑗 + 1)) / (2 · (sin‘((𝑆‘(𝑗 + 1)) / 2))))) ∈ ((𝑂 ↾ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1)))) lim (𝑆‘(𝑗 + 1))) ∧ (((if((𝑆𝑗) = (𝑄𝑈), 𝑈 / 𝑖𝑅, (𝐹‘(𝑋 + (𝑆𝑗)))) − 𝐶) / (𝑆𝑗)) · ((𝑆𝑗) / (2 · (sin‘((𝑆𝑗) / 2))))) ∈ ((𝑂 ↾ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1)))) lim (𝑆𝑗))) ∧ (𝑂 ↾ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1)))) ∈ (((𝑆𝑗)(,)(𝑆‘(𝑗 + 1)))–cn→ℂ)))
58 eleq1 2832 . . . . . . . . . 10 (𝑖 = 𝑈 → (𝑖 ∈ (0..^𝑀) ↔ 𝑈 ∈ (0..^𝑀)))
5958anbi2d 629 . . . . . . . . 9 (𝑖 = 𝑈 → (((𝜑𝑗 ∈ (0..^𝑁)) ∧ 𝑖 ∈ (0..^𝑀)) ↔ ((𝜑𝑗 ∈ (0..^𝑁)) ∧ 𝑈 ∈ (0..^𝑀))))
60 fveq2 6920 . . . . . . . . . . 11 (𝑖 = 𝑈 → (𝑄𝑖) = (𝑄𝑈))
61 oveq1 7455 . . . . . . . . . . . 12 (𝑖 = 𝑈 → (𝑖 + 1) = (𝑈 + 1))
6261fveq2d 6924 . . . . . . . . . . 11 (𝑖 = 𝑈 → (𝑄‘(𝑖 + 1)) = (𝑄‘(𝑈 + 1)))
6360, 62oveq12d 7466 . . . . . . . . . 10 (𝑖 = 𝑈 → ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) = ((𝑄𝑈)(,)(𝑄‘(𝑈 + 1))))
6463sseq2d 4041 . . . . . . . . 9 (𝑖 = 𝑈 → (((𝑆𝑗)(,)(𝑆‘(𝑗 + 1))) ⊆ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ↔ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1))) ⊆ ((𝑄𝑈)(,)(𝑄‘(𝑈 + 1)))))
6559, 64anbi12d 631 . . . . . . . 8 (𝑖 = 𝑈 → ((((𝜑𝑗 ∈ (0..^𝑁)) ∧ 𝑖 ∈ (0..^𝑀)) ∧ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1))) ⊆ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) ↔ (((𝜑𝑗 ∈ (0..^𝑁)) ∧ 𝑈 ∈ (0..^𝑀)) ∧ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1))) ⊆ ((𝑄𝑈)(,)(𝑄‘(𝑈 + 1))))))
6662eqeq2d 2751 . . . . . . . . . . . . . . 15 (𝑖 = 𝑈 → ((𝑆‘(𝑗 + 1)) = (𝑄‘(𝑖 + 1)) ↔ (𝑆‘(𝑗 + 1)) = (𝑄‘(𝑈 + 1))))
67 csbeq1a 3935 . . . . . . . . . . . . . . 15 (𝑖 = 𝑈𝐿 = 𝑈 / 𝑖𝐿)
6866, 67ifbieq1d 4572 . . . . . . . . . . . . . 14 (𝑖 = 𝑈 → if((𝑆‘(𝑗 + 1)) = (𝑄‘(𝑖 + 1)), 𝐿, (𝐹‘(𝑋 + (𝑆‘(𝑗 + 1))))) = if((𝑆‘(𝑗 + 1)) = (𝑄‘(𝑈 + 1)), 𝑈 / 𝑖𝐿, (𝐹‘(𝑋 + (𝑆‘(𝑗 + 1))))))
6968oveq1d 7463 . . . . . . . . . . . . 13 (𝑖 = 𝑈 → (if((𝑆‘(𝑗 + 1)) = (𝑄‘(𝑖 + 1)), 𝐿, (𝐹‘(𝑋 + (𝑆‘(𝑗 + 1))))) − 𝐶) = (if((𝑆‘(𝑗 + 1)) = (𝑄‘(𝑈 + 1)), 𝑈 / 𝑖𝐿, (𝐹‘(𝑋 + (𝑆‘(𝑗 + 1))))) − 𝐶))
7069oveq1d 7463 . . . . . . . . . . . 12 (𝑖 = 𝑈 → ((if((𝑆‘(𝑗 + 1)) = (𝑄‘(𝑖 + 1)), 𝐿, (𝐹‘(𝑋 + (𝑆‘(𝑗 + 1))))) − 𝐶) / (𝑆‘(𝑗 + 1))) = ((if((𝑆‘(𝑗 + 1)) = (𝑄‘(𝑈 + 1)), 𝑈 / 𝑖𝐿, (𝐹‘(𝑋 + (𝑆‘(𝑗 + 1))))) − 𝐶) / (𝑆‘(𝑗 + 1))))
7170oveq1d 7463 . . . . . . . . . . 11 (𝑖 = 𝑈 → (((if((𝑆‘(𝑗 + 1)) = (𝑄‘(𝑖 + 1)), 𝐿, (𝐹‘(𝑋 + (𝑆‘(𝑗 + 1))))) − 𝐶) / (𝑆‘(𝑗 + 1))) · ((𝑆‘(𝑗 + 1)) / (2 · (sin‘((𝑆‘(𝑗 + 1)) / 2))))) = (((if((𝑆‘(𝑗 + 1)) = (𝑄‘(𝑈 + 1)), 𝑈 / 𝑖𝐿, (𝐹‘(𝑋 + (𝑆‘(𝑗 + 1))))) − 𝐶) / (𝑆‘(𝑗 + 1))) · ((𝑆‘(𝑗 + 1)) / (2 · (sin‘((𝑆‘(𝑗 + 1)) / 2))))))
7271eleq1d 2829 . . . . . . . . . 10 (𝑖 = 𝑈 → ((((if((𝑆‘(𝑗 + 1)) = (𝑄‘(𝑖 + 1)), 𝐿, (𝐹‘(𝑋 + (𝑆‘(𝑗 + 1))))) − 𝐶) / (𝑆‘(𝑗 + 1))) · ((𝑆‘(𝑗 + 1)) / (2 · (sin‘((𝑆‘(𝑗 + 1)) / 2))))) ∈ ((𝑂 ↾ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1)))) lim (𝑆‘(𝑗 + 1))) ↔ (((if((𝑆‘(𝑗 + 1)) = (𝑄‘(𝑈 + 1)), 𝑈 / 𝑖𝐿, (𝐹‘(𝑋 + (𝑆‘(𝑗 + 1))))) − 𝐶) / (𝑆‘(𝑗 + 1))) · ((𝑆‘(𝑗 + 1)) / (2 · (sin‘((𝑆‘(𝑗 + 1)) / 2))))) ∈ ((𝑂 ↾ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1)))) lim (𝑆‘(𝑗 + 1)))))
7360eqeq2d 2751 . . . . . . . . . . . . . . 15 (𝑖 = 𝑈 → ((𝑆𝑗) = (𝑄𝑖) ↔ (𝑆𝑗) = (𝑄𝑈)))
74 csbeq1a 3935 . . . . . . . . . . . . . . 15 (𝑖 = 𝑈𝑅 = 𝑈 / 𝑖𝑅)
7573, 74ifbieq1d 4572 . . . . . . . . . . . . . 14 (𝑖 = 𝑈 → if((𝑆𝑗) = (𝑄𝑖), 𝑅, (𝐹‘(𝑋 + (𝑆𝑗)))) = if((𝑆𝑗) = (𝑄𝑈), 𝑈 / 𝑖𝑅, (𝐹‘(𝑋 + (𝑆𝑗)))))
7675oveq1d 7463 . . . . . . . . . . . . 13 (𝑖 = 𝑈 → (if((𝑆𝑗) = (𝑄𝑖), 𝑅, (𝐹‘(𝑋 + (𝑆𝑗)))) − 𝐶) = (if((𝑆𝑗) = (𝑄𝑈), 𝑈 / 𝑖𝑅, (𝐹‘(𝑋 + (𝑆𝑗)))) − 𝐶))
7776oveq1d 7463 . . . . . . . . . . . 12 (𝑖 = 𝑈 → ((if((𝑆𝑗) = (𝑄𝑖), 𝑅, (𝐹‘(𝑋 + (𝑆𝑗)))) − 𝐶) / (𝑆𝑗)) = ((if((𝑆𝑗) = (𝑄𝑈), 𝑈 / 𝑖𝑅, (𝐹‘(𝑋 + (𝑆𝑗)))) − 𝐶) / (𝑆𝑗)))
7877oveq1d 7463 . . . . . . . . . . 11 (𝑖 = 𝑈 → (((if((𝑆𝑗) = (𝑄𝑖), 𝑅, (𝐹‘(𝑋 + (𝑆𝑗)))) − 𝐶) / (𝑆𝑗)) · ((𝑆𝑗) / (2 · (sin‘((𝑆𝑗) / 2))))) = (((if((𝑆𝑗) = (𝑄𝑈), 𝑈 / 𝑖𝑅, (𝐹‘(𝑋 + (𝑆𝑗)))) − 𝐶) / (𝑆𝑗)) · ((𝑆𝑗) / (2 · (sin‘((𝑆𝑗) / 2))))))
7978eleq1d 2829 . . . . . . . . . 10 (𝑖 = 𝑈 → ((((if((𝑆𝑗) = (𝑄𝑖), 𝑅, (𝐹‘(𝑋 + (𝑆𝑗)))) − 𝐶) / (𝑆𝑗)) · ((𝑆𝑗) / (2 · (sin‘((𝑆𝑗) / 2))))) ∈ ((𝑂 ↾ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1)))) lim (𝑆𝑗)) ↔ (((if((𝑆𝑗) = (𝑄𝑈), 𝑈 / 𝑖𝑅, (𝐹‘(𝑋 + (𝑆𝑗)))) − 𝐶) / (𝑆𝑗)) · ((𝑆𝑗) / (2 · (sin‘((𝑆𝑗) / 2))))) ∈ ((𝑂 ↾ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1)))) lim (𝑆𝑗))))
8072, 79anbi12d 631 . . . . . . . . 9 (𝑖 = 𝑈 → (((((if((𝑆‘(𝑗 + 1)) = (𝑄‘(𝑖 + 1)), 𝐿, (𝐹‘(𝑋 + (𝑆‘(𝑗 + 1))))) − 𝐶) / (𝑆‘(𝑗 + 1))) · ((𝑆‘(𝑗 + 1)) / (2 · (sin‘((𝑆‘(𝑗 + 1)) / 2))))) ∈ ((𝑂 ↾ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1)))) lim (𝑆‘(𝑗 + 1))) ∧ (((if((𝑆𝑗) = (𝑄𝑖), 𝑅, (𝐹‘(𝑋 + (𝑆𝑗)))) − 𝐶) / (𝑆𝑗)) · ((𝑆𝑗) / (2 · (sin‘((𝑆𝑗) / 2))))) ∈ ((𝑂 ↾ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1)))) lim (𝑆𝑗))) ↔ ((((if((𝑆‘(𝑗 + 1)) = (𝑄‘(𝑈 + 1)), 𝑈 / 𝑖𝐿, (𝐹‘(𝑋 + (𝑆‘(𝑗 + 1))))) − 𝐶) / (𝑆‘(𝑗 + 1))) · ((𝑆‘(𝑗 + 1)) / (2 · (sin‘((𝑆‘(𝑗 + 1)) / 2))))) ∈ ((𝑂 ↾ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1)))) lim (𝑆‘(𝑗 + 1))) ∧ (((if((𝑆𝑗) = (𝑄𝑈), 𝑈 / 𝑖𝑅, (𝐹‘(𝑋 + (𝑆𝑗)))) − 𝐶) / (𝑆𝑗)) · ((𝑆𝑗) / (2 · (sin‘((𝑆𝑗) / 2))))) ∈ ((𝑂 ↾ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1)))) lim (𝑆𝑗)))))
8180anbi1d 630 . . . . . . . 8 (𝑖 = 𝑈 → ((((((if((𝑆‘(𝑗 + 1)) = (𝑄‘(𝑖 + 1)), 𝐿, (𝐹‘(𝑋 + (𝑆‘(𝑗 + 1))))) − 𝐶) / (𝑆‘(𝑗 + 1))) · ((𝑆‘(𝑗 + 1)) / (2 · (sin‘((𝑆‘(𝑗 + 1)) / 2))))) ∈ ((𝑂 ↾ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1)))) lim (𝑆‘(𝑗 + 1))) ∧ (((if((𝑆𝑗) = (𝑄𝑖), 𝑅, (𝐹‘(𝑋 + (𝑆𝑗)))) − 𝐶) / (𝑆𝑗)) · ((𝑆𝑗) / (2 · (sin‘((𝑆𝑗) / 2))))) ∈ ((𝑂 ↾ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1)))) lim (𝑆𝑗))) ∧ (𝑂 ↾ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1)))) ∈ (((𝑆𝑗)(,)(𝑆‘(𝑗 + 1)))–cn→ℂ)) ↔ (((((if((𝑆‘(𝑗 + 1)) = (𝑄‘(𝑈 + 1)), 𝑈 / 𝑖𝐿, (𝐹‘(𝑋 + (𝑆‘(𝑗 + 1))))) − 𝐶) / (𝑆‘(𝑗 + 1))) · ((𝑆‘(𝑗 + 1)) / (2 · (sin‘((𝑆‘(𝑗 + 1)) / 2))))) ∈ ((𝑂 ↾ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1)))) lim (𝑆‘(𝑗 + 1))) ∧ (((if((𝑆𝑗) = (𝑄𝑈), 𝑈 / 𝑖𝑅, (𝐹‘(𝑋 + (𝑆𝑗)))) − 𝐶) / (𝑆𝑗)) · ((𝑆𝑗) / (2 · (sin‘((𝑆𝑗) / 2))))) ∈ ((𝑂 ↾ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1)))) lim (𝑆𝑗))) ∧ (𝑂 ↾ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1)))) ∈ (((𝑆𝑗)(,)(𝑆‘(𝑗 + 1)))–cn→ℂ))))
8265, 81imbi12d 344 . . . . . . 7 (𝑖 = 𝑈 → (((((𝜑𝑗 ∈ (0..^𝑁)) ∧ 𝑖 ∈ (0..^𝑀)) ∧ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1))) ⊆ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) → (((((if((𝑆‘(𝑗 + 1)) = (𝑄‘(𝑖 + 1)), 𝐿, (𝐹‘(𝑋 + (𝑆‘(𝑗 + 1))))) − 𝐶) / (𝑆‘(𝑗 + 1))) · ((𝑆‘(𝑗 + 1)) / (2 · (sin‘((𝑆‘(𝑗 + 1)) / 2))))) ∈ ((𝑂 ↾ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1)))) lim (𝑆‘(𝑗 + 1))) ∧ (((if((𝑆𝑗) = (𝑄𝑖), 𝑅, (𝐹‘(𝑋 + (𝑆𝑗)))) − 𝐶) / (𝑆𝑗)) · ((𝑆𝑗) / (2 · (sin‘((𝑆𝑗) / 2))))) ∈ ((𝑂 ↾ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1)))) lim (𝑆𝑗))) ∧ (𝑂 ↾ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1)))) ∈ (((𝑆𝑗)(,)(𝑆‘(𝑗 + 1)))–cn→ℂ))) ↔ ((((𝜑𝑗 ∈ (0..^𝑁)) ∧ 𝑈 ∈ (0..^𝑀)) ∧ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1))) ⊆ ((𝑄𝑈)(,)(𝑄‘(𝑈 + 1)))) → (((((if((𝑆‘(𝑗 + 1)) = (𝑄‘(𝑈 + 1)), 𝑈 / 𝑖𝐿, (𝐹‘(𝑋 + (𝑆‘(𝑗 + 1))))) − 𝐶) / (𝑆‘(𝑗 + 1))) · ((𝑆‘(𝑗 + 1)) / (2 · (sin‘((𝑆‘(𝑗 + 1)) / 2))))) ∈ ((𝑂 ↾ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1)))) lim (𝑆‘(𝑗 + 1))) ∧ (((if((𝑆𝑗) = (𝑄𝑈), 𝑈 / 𝑖𝑅, (𝐹‘(𝑋 + (𝑆𝑗)))) − 𝐶) / (𝑆𝑗)) · ((𝑆𝑗) / (2 · (sin‘((𝑆𝑗) / 2))))) ∈ ((𝑂 ↾ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1)))) lim (𝑆𝑗))) ∧ (𝑂 ↾ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1)))) ∈ (((𝑆𝑗)(,)(𝑆‘(𝑗 + 1)))–cn→ℂ)))))
83 fourierdlem86.f . . . . . . . 8 (𝜑𝐹:ℝ⟶ℝ)
84 fourierdlem86.fcn . . . . . . . 8 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝐹 ↾ ((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))) ∈ (((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))–cn→ℂ))
85 fourierdlem86.r . . . . . . . 8 ((𝜑𝑖 ∈ (0..^𝑀)) → 𝑅 ∈ ((𝐹 ↾ ((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))) lim (𝑉𝑖)))
86 fourierdlem86.l . . . . . . . 8 ((𝜑𝑖 ∈ (0..^𝑀)) → 𝐿 ∈ ((𝐹 ↾ ((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))) lim (𝑉‘(𝑖 + 1))))
87 fourierdlem86.n0 . . . . . . . 8 (𝜑 → ¬ 0 ∈ (𝐴[,]𝐵))
88 fourierdlem86.c . . . . . . . 8 (𝜑𝐶 ∈ ℝ)
89 fourierdlem86.o . . . . . . . 8 𝑂 = (𝑠 ∈ (𝐴[,]𝐵) ↦ ((((𝐹‘(𝑋 + 𝑠)) − 𝐶) / 𝑠) · (𝑠 / (2 · (sin‘(𝑠 / 2))))))
90 eqid 2740 . . . . . . . 8 (((if((𝑆‘(𝑗 + 1)) = (𝑄‘(𝑖 + 1)), 𝐿, (𝐹‘(𝑋 + (𝑆‘(𝑗 + 1))))) − 𝐶) / (𝑆‘(𝑗 + 1))) · ((𝑆‘(𝑗 + 1)) / (2 · (sin‘((𝑆‘(𝑗 + 1)) / 2))))) = (((if((𝑆‘(𝑗 + 1)) = (𝑄‘(𝑖 + 1)), 𝐿, (𝐹‘(𝑋 + (𝑆‘(𝑗 + 1))))) − 𝐶) / (𝑆‘(𝑗 + 1))) · ((𝑆‘(𝑗 + 1)) / (2 · (sin‘((𝑆‘(𝑗 + 1)) / 2)))))
91 eqid 2740 . . . . . . . 8 (((if((𝑆𝑗) = (𝑄𝑖), 𝑅, (𝐹‘(𝑋 + (𝑆𝑗)))) − 𝐶) / (𝑆𝑗)) · ((𝑆𝑗) / (2 · (sin‘((𝑆𝑗) / 2))))) = (((if((𝑆𝑗) = (𝑄𝑖), 𝑅, (𝐹‘(𝑋 + (𝑆𝑗)))) − 𝐶) / (𝑆𝑗)) · ((𝑆𝑗) / (2 · (sin‘((𝑆𝑗) / 2)))))
92 biid 261 . . . . . . . 8 ((((𝜑𝑗 ∈ (0..^𝑁)) ∧ 𝑖 ∈ (0..^𝑀)) ∧ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1))) ⊆ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) ↔ (((𝜑𝑗 ∈ (0..^𝑁)) ∧ 𝑖 ∈ (0..^𝑀)) ∧ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1))) ⊆ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))))
9383, 2, 4, 5, 7, 84, 85, 86, 9, 11, 13, 15, 87, 88, 89, 17, 18, 19, 20, 90, 91, 92fourierdlem76 46103 . . . . . . 7 ((((𝜑𝑗 ∈ (0..^𝑁)) ∧ 𝑖 ∈ (0..^𝑀)) ∧ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1))) ⊆ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) → (((((if((𝑆‘(𝑗 + 1)) = (𝑄‘(𝑖 + 1)), 𝐿, (𝐹‘(𝑋 + (𝑆‘(𝑗 + 1))))) − 𝐶) / (𝑆‘(𝑗 + 1))) · ((𝑆‘(𝑗 + 1)) / (2 · (sin‘((𝑆‘(𝑗 + 1)) / 2))))) ∈ ((𝑂 ↾ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1)))) lim (𝑆‘(𝑗 + 1))) ∧ (((if((𝑆𝑗) = (𝑄𝑖), 𝑅, (𝐹‘(𝑋 + (𝑆𝑗)))) − 𝐶) / (𝑆𝑗)) · ((𝑆𝑗) / (2 · (sin‘((𝑆𝑗) / 2))))) ∈ ((𝑂 ↾ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1)))) lim (𝑆𝑗))) ∧ (𝑂 ↾ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1)))) ∈ (((𝑆𝑗)(,)(𝑆‘(𝑗 + 1)))–cn→ℂ)))
9457, 82, 93vtoclg1f 3582 . . . . . 6 (𝑈 ∈ (0..^𝑀) → ((((𝜑𝑗 ∈ (0..^𝑁)) ∧ 𝑈 ∈ (0..^𝑀)) ∧ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1))) ⊆ ((𝑄𝑈)(,)(𝑄‘(𝑈 + 1)))) → (((((if((𝑆‘(𝑗 + 1)) = (𝑄‘(𝑈 + 1)), 𝑈 / 𝑖𝐿, (𝐹‘(𝑋 + (𝑆‘(𝑗 + 1))))) − 𝐶) / (𝑆‘(𝑗 + 1))) · ((𝑆‘(𝑗 + 1)) / (2 · (sin‘((𝑆‘(𝑗 + 1)) / 2))))) ∈ ((𝑂 ↾ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1)))) lim (𝑆‘(𝑗 + 1))) ∧ (((if((𝑆𝑗) = (𝑄𝑈), 𝑈 / 𝑖𝑅, (𝐹‘(𝑋 + (𝑆𝑗)))) − 𝐶) / (𝑆𝑗)) · ((𝑆𝑗) / (2 · (sin‘((𝑆𝑗) / 2))))) ∈ ((𝑂 ↾ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1)))) lim (𝑆𝑗))) ∧ (𝑂 ↾ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1)))) ∈ (((𝑆𝑗)(,)(𝑆‘(𝑗 + 1)))–cn→ℂ))))
9525, 28, 94sylc 65 . . . . 5 ((𝜑𝑗 ∈ (0..^𝑁)) → (((((if((𝑆‘(𝑗 + 1)) = (𝑄‘(𝑈 + 1)), 𝑈 / 𝑖𝐿, (𝐹‘(𝑋 + (𝑆‘(𝑗 + 1))))) − 𝐶) / (𝑆‘(𝑗 + 1))) · ((𝑆‘(𝑗 + 1)) / (2 · (sin‘((𝑆‘(𝑗 + 1)) / 2))))) ∈ ((𝑂 ↾ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1)))) lim (𝑆‘(𝑗 + 1))) ∧ (((if((𝑆𝑗) = (𝑄𝑈), 𝑈 / 𝑖𝑅, (𝐹‘(𝑋 + (𝑆𝑗)))) − 𝐶) / (𝑆𝑗)) · ((𝑆𝑗) / (2 · (sin‘((𝑆𝑗) / 2))))) ∈ ((𝑂 ↾ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1)))) lim (𝑆𝑗))) ∧ (𝑂 ↾ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1)))) ∈ (((𝑆𝑗)(,)(𝑆‘(𝑗 + 1)))–cn→ℂ)))
9695simpld 494 . . . 4 ((𝜑𝑗 ∈ (0..^𝑁)) → ((((if((𝑆‘(𝑗 + 1)) = (𝑄‘(𝑈 + 1)), 𝑈 / 𝑖𝐿, (𝐹‘(𝑋 + (𝑆‘(𝑗 + 1))))) − 𝐶) / (𝑆‘(𝑗 + 1))) · ((𝑆‘(𝑗 + 1)) / (2 · (sin‘((𝑆‘(𝑗 + 1)) / 2))))) ∈ ((𝑂 ↾ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1)))) lim (𝑆‘(𝑗 + 1))) ∧ (((if((𝑆𝑗) = (𝑄𝑈), 𝑈 / 𝑖𝑅, (𝐹‘(𝑋 + (𝑆𝑗)))) − 𝐶) / (𝑆𝑗)) · ((𝑆𝑗) / (2 · (sin‘((𝑆𝑗) / 2))))) ∈ ((𝑂 ↾ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1)))) lim (𝑆𝑗))))
9796simpld 494 . . 3 ((𝜑𝑗 ∈ (0..^𝑁)) → (((if((𝑆‘(𝑗 + 1)) = (𝑄‘(𝑈 + 1)), 𝑈 / 𝑖𝐿, (𝐹‘(𝑋 + (𝑆‘(𝑗 + 1))))) − 𝐶) / (𝑆‘(𝑗 + 1))) · ((𝑆‘(𝑗 + 1)) / (2 · (sin‘((𝑆‘(𝑗 + 1)) / 2))))) ∈ ((𝑂 ↾ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1)))) lim (𝑆‘(𝑗 + 1))))
981, 97eqeltrid 2848 . 2 ((𝜑𝑗 ∈ (0..^𝑁)) → 𝐷 ∈ ((𝑂 ↾ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1)))) lim (𝑆‘(𝑗 + 1))))
99 fourierdlem86.e . . 3 𝐸 = (((if((𝑆𝑗) = (𝑄𝑈), 𝑈 / 𝑖𝑅, (𝐹‘(𝑋 + (𝑆𝑗)))) − 𝐶) / (𝑆𝑗)) · ((𝑆𝑗) / (2 · (sin‘((𝑆𝑗) / 2)))))
10096simprd 495 . . 3 ((𝜑𝑗 ∈ (0..^𝑁)) → (((if((𝑆𝑗) = (𝑄𝑈), 𝑈 / 𝑖𝑅, (𝐹‘(𝑋 + (𝑆𝑗)))) − 𝐶) / (𝑆𝑗)) · ((𝑆𝑗) / (2 · (sin‘((𝑆𝑗) / 2))))) ∈ ((𝑂 ↾ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1)))) lim (𝑆𝑗)))
10199, 100eqeltrid 2848 . 2 ((𝜑𝑗 ∈ (0..^𝑁)) → 𝐸 ∈ ((𝑂 ↾ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1)))) lim (𝑆𝑗)))
10295simprd 495 . 2 ((𝜑𝑗 ∈ (0..^𝑁)) → (𝑂 ↾ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1)))) ∈ (((𝑆𝑗)(,)(𝑆‘(𝑗 + 1)))–cn→ℂ))
10398, 101, 102jca31 514 1 ((𝜑𝑗 ∈ (0..^𝑁)) → ((𝐷 ∈ ((𝑂 ↾ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1)))) lim (𝑆‘(𝑗 + 1))) ∧ 𝐸 ∈ ((𝑂 ↾ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1)))) lim (𝑆𝑗))) ∧ (𝑂 ↾ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1)))) ∈ (((𝑆𝑗)(,)(𝑆‘(𝑗 + 1)))–cn→ℂ)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395   = wceq 1537  wcel 2108  wral 3067  {crab 3443  csb 3921  cun 3974  cin 3975  wss 3976  ifcif 4548  {cpr 4650   class class class wbr 5166  cmpt 5249  ran crn 5701  cres 5702  cio 6523  wf 6569  cfv 6573   Isom wiso 6574  crio 7403  (class class class)co 7448  m cmap 8884  cc 11182  cr 11183  0cc0 11184  1c1 11185   + caddc 11187   · cmul 11189   < clt 11324  cmin 11520  -cneg 11521   / cdiv 11947  cn 12293  2c2 12348  (,)cioo 13407  [,]cicc 13410  ...cfz 13567  ..^cfzo 13711  chash 14379  sincsin 16111  πcpi 16114  cnccncf 24921   lim climc 25917
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-inf2 9710  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261  ax-pre-sup 11262  ax-addf 11263
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-tp 4653  df-op 4655  df-uni 4932  df-int 4971  df-iun 5017  df-iin 5018  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-se 5653  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-isom 6582  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-of 7714  df-om 7904  df-1st 8030  df-2nd 8031  df-supp 8202  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-1o 8522  df-2o 8523  df-er 8763  df-map 8886  df-pm 8887  df-ixp 8956  df-en 9004  df-dom 9005  df-sdom 9006  df-fin 9007  df-fsupp 9432  df-fi 9480  df-sup 9511  df-inf 9512  df-oi 9579  df-card 10008  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-div 11948  df-nn 12294  df-2 12356  df-3 12357  df-4 12358  df-5 12359  df-6 12360  df-7 12361  df-8 12362  df-9 12363  df-n0 12554  df-z 12640  df-dec 12759  df-uz 12904  df-q 13014  df-rp 13058  df-xneg 13175  df-xadd 13176  df-xmul 13177  df-ioo 13411  df-ioc 13412  df-ico 13413  df-icc 13414  df-fz 13568  df-fzo 13712  df-fl 13843  df-mod 13921  df-seq 14053  df-exp 14113  df-fac 14323  df-bc 14352  df-hash 14380  df-shft 15116  df-cj 15148  df-re 15149  df-im 15150  df-sqrt 15284  df-abs 15285  df-limsup 15517  df-clim 15534  df-rlim 15535  df-sum 15735  df-ef 16115  df-sin 16117  df-cos 16118  df-pi 16120  df-struct 17194  df-sets 17211  df-slot 17229  df-ndx 17241  df-base 17259  df-ress 17288  df-plusg 17324  df-mulr 17325  df-starv 17326  df-sca 17327  df-vsca 17328  df-ip 17329  df-tset 17330  df-ple 17331  df-ds 17333  df-unif 17334  df-hom 17335  df-cco 17336  df-rest 17482  df-topn 17483  df-0g 17501  df-gsum 17502  df-topgen 17503  df-pt 17504  df-prds 17507  df-xrs 17562  df-qtop 17567  df-imas 17568  df-xps 17570  df-mre 17644  df-mrc 17645  df-acs 17647  df-mgm 18678  df-sgrp 18757  df-mnd 18773  df-submnd 18819  df-mulg 19108  df-cntz 19357  df-cmn 19824  df-psmet 21379  df-xmet 21380  df-met 21381  df-bl 21382  df-mopn 21383  df-fbas 21384  df-fg 21385  df-cnfld 21388  df-top 22921  df-topon 22938  df-topsp 22960  df-bases 22974  df-cld 23048  df-ntr 23049  df-cls 23050  df-nei 23127  df-lp 23165  df-perf 23166  df-cn 23256  df-cnp 23257  df-haus 23344  df-tx 23591  df-hmeo 23784  df-fil 23875  df-fm 23967  df-flim 23968  df-flf 23969  df-xms 24351  df-ms 24352  df-tms 24353  df-cncf 24923  df-limc 25921  df-dv 25922
This theorem is referenced by:  fourierdlem103  46130  fourierdlem104  46131
  Copyright terms: Public domain W3C validator