Mathbox for Glauco Siliprandi < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fourierdlem86 Structured version   Visualization version   GIF version

Theorem fourierdlem86 42625
 Description: Continuity of 𝑂 and its limits with respect to the 𝑆 partition. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
Hypotheses
Ref Expression
fourierdlem86.f (𝜑𝐹:ℝ⟶ℝ)
fourierdlem86.xre (𝜑𝑋 ∈ ℝ)
fourierdlem86.p 𝑃 = (𝑚 ∈ ℕ ↦ {𝑝 ∈ (ℝ ↑m (0...𝑚)) ∣ (((𝑝‘0) = (-π + 𝑋) ∧ (𝑝𝑚) = (π + 𝑋)) ∧ ∀𝑖 ∈ (0..^𝑚)(𝑝𝑖) < (𝑝‘(𝑖 + 1)))})
fourierdlem86.m (𝜑𝑀 ∈ ℕ)
fourierdlem86.v (𝜑𝑉 ∈ (𝑃𝑀))
fourierdlem86.fcn ((𝜑𝑖 ∈ (0..^𝑀)) → (𝐹 ↾ ((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))) ∈ (((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))–cn→ℂ))
fourierdlem86.r ((𝜑𝑖 ∈ (0..^𝑀)) → 𝑅 ∈ ((𝐹 ↾ ((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))) lim (𝑉𝑖)))
fourierdlem86.l ((𝜑𝑖 ∈ (0..^𝑀)) → 𝐿 ∈ ((𝐹 ↾ ((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))) lim (𝑉‘(𝑖 + 1))))
fourierdlem86.a (𝜑𝐴 ∈ ℝ)
fourierdlem86.b (𝜑𝐵 ∈ ℝ)
fourierdlem86.altb (𝜑𝐴 < 𝐵)
fourierdlem86.ab (𝜑 → (𝐴[,]𝐵) ⊆ (-π[,]π))
fourierdlem86.n0 (𝜑 → ¬ 0 ∈ (𝐴[,]𝐵))
fourierdlem86.c (𝜑𝐶 ∈ ℝ)
fourierdlem86.o 𝑂 = (𝑠 ∈ (𝐴[,]𝐵) ↦ ((((𝐹‘(𝑋 + 𝑠)) − 𝐶) / 𝑠) · (𝑠 / (2 · (sin‘(𝑠 / 2))))))
fourierdlem86.q 𝑄 = (𝑖 ∈ (0...𝑀) ↦ ((𝑉𝑖) − 𝑋))
fourierdlem86.t 𝑇 = ({𝐴, 𝐵} ∪ (ran 𝑄 ∩ (𝐴(,)𝐵)))
fourierdlem86.n 𝑁 = ((♯‘𝑇) − 1)
fourierdlem86.s 𝑆 = (℩𝑓𝑓 Isom < , < ((0...𝑁), 𝑇))
fourierdlem86.d 𝐷 = (((if((𝑆‘(𝑗 + 1)) = (𝑄‘(𝑈 + 1)), 𝑈 / 𝑖𝐿, (𝐹‘(𝑋 + (𝑆‘(𝑗 + 1))))) − 𝐶) / (𝑆‘(𝑗 + 1))) · ((𝑆‘(𝑗 + 1)) / (2 · (sin‘((𝑆‘(𝑗 + 1)) / 2)))))
fourierdlem86.e 𝐸 = (((if((𝑆𝑗) = (𝑄𝑈), 𝑈 / 𝑖𝑅, (𝐹‘(𝑋 + (𝑆𝑗)))) − 𝐶) / (𝑆𝑗)) · ((𝑆𝑗) / (2 · (sin‘((𝑆𝑗) / 2)))))
fourierdlem86.u 𝑈 = (𝑖 ∈ (0..^𝑀)((𝑆𝑗)(,)(𝑆‘(𝑗 + 1))) ⊆ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))))
Assertion
Ref Expression
fourierdlem86 ((𝜑𝑗 ∈ (0..^𝑁)) → ((𝐷 ∈ ((𝑂 ↾ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1)))) lim (𝑆‘(𝑗 + 1))) ∧ 𝐸 ∈ ((𝑂 ↾ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1)))) lim (𝑆𝑗))) ∧ (𝑂 ↾ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1)))) ∈ (((𝑆𝑗)(,)(𝑆‘(𝑗 + 1)))–cn→ℂ)))
Distinct variable groups:   𝐴,𝑠   𝐵,𝑠   𝐶,𝑖,𝑠   𝑖,𝐹,𝑠   𝐿,𝑠   𝑖,𝑀,𝑚,𝑝   𝑗,𝑀,𝑠,𝑖   𝑓,𝑁   𝑖,𝑁,𝑠   𝑖,𝑂   𝑄,𝑖,𝑠   𝑅,𝑠   𝑆,𝑓   𝑆,𝑖,𝑠   𝑇,𝑓   𝑈,𝑖   𝑖,𝑉,𝑝   𝑗,𝑉,𝑠   𝑖,𝑋,𝑚,𝑝   𝑗,𝑋,𝑠   𝑓,𝑗,𝜑   𝜑,𝑖,𝑠
Allowed substitution hints:   𝜑(𝑚,𝑝)   𝐴(𝑓,𝑖,𝑗,𝑚,𝑝)   𝐵(𝑓,𝑖,𝑗,𝑚,𝑝)   𝐶(𝑓,𝑗,𝑚,𝑝)   𝐷(𝑓,𝑖,𝑗,𝑚,𝑠,𝑝)   𝑃(𝑓,𝑖,𝑗,𝑚,𝑠,𝑝)   𝑄(𝑓,𝑗,𝑚,𝑝)   𝑅(𝑓,𝑖,𝑗,𝑚,𝑝)   𝑆(𝑗,𝑚,𝑝)   𝑇(𝑖,𝑗,𝑚,𝑠,𝑝)   𝑈(𝑓,𝑗,𝑚,𝑠,𝑝)   𝐸(𝑓,𝑖,𝑗,𝑚,𝑠,𝑝)   𝐹(𝑓,𝑗,𝑚,𝑝)   𝐿(𝑓,𝑖,𝑗,𝑚,𝑝)   𝑀(𝑓)   𝑁(𝑗,𝑚,𝑝)   𝑂(𝑓,𝑗,𝑚,𝑠,𝑝)   𝑉(𝑓,𝑚)   𝑋(𝑓)

Proof of Theorem fourierdlem86
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 fourierdlem86.d . . 3 𝐷 = (((if((𝑆‘(𝑗 + 1)) = (𝑄‘(𝑈 + 1)), 𝑈 / 𝑖𝐿, (𝐹‘(𝑋 + (𝑆‘(𝑗 + 1))))) − 𝐶) / (𝑆‘(𝑗 + 1))) · ((𝑆‘(𝑗 + 1)) / (2 · (sin‘((𝑆‘(𝑗 + 1)) / 2)))))
2 fourierdlem86.xre . . . . . . . . 9 (𝜑𝑋 ∈ ℝ)
32adantr 484 . . . . . . . 8 ((𝜑𝑗 ∈ (0..^𝑁)) → 𝑋 ∈ ℝ)
4 fourierdlem86.p . . . . . . . 8 𝑃 = (𝑚 ∈ ℕ ↦ {𝑝 ∈ (ℝ ↑m (0...𝑚)) ∣ (((𝑝‘0) = (-π + 𝑋) ∧ (𝑝𝑚) = (π + 𝑋)) ∧ ∀𝑖 ∈ (0..^𝑚)(𝑝𝑖) < (𝑝‘(𝑖 + 1)))})
5 fourierdlem86.m . . . . . . . . 9 (𝜑𝑀 ∈ ℕ)
65adantr 484 . . . . . . . 8 ((𝜑𝑗 ∈ (0..^𝑁)) → 𝑀 ∈ ℕ)
7 fourierdlem86.v . . . . . . . . 9 (𝜑𝑉 ∈ (𝑃𝑀))
87adantr 484 . . . . . . . 8 ((𝜑𝑗 ∈ (0..^𝑁)) → 𝑉 ∈ (𝑃𝑀))
9 fourierdlem86.a . . . . . . . . 9 (𝜑𝐴 ∈ ℝ)
109adantr 484 . . . . . . . 8 ((𝜑𝑗 ∈ (0..^𝑁)) → 𝐴 ∈ ℝ)
11 fourierdlem86.b . . . . . . . . 9 (𝜑𝐵 ∈ ℝ)
1211adantr 484 . . . . . . . 8 ((𝜑𝑗 ∈ (0..^𝑁)) → 𝐵 ∈ ℝ)
13 fourierdlem86.altb . . . . . . . . 9 (𝜑𝐴 < 𝐵)
1413adantr 484 . . . . . . . 8 ((𝜑𝑗 ∈ (0..^𝑁)) → 𝐴 < 𝐵)
15 fourierdlem86.ab . . . . . . . . 9 (𝜑 → (𝐴[,]𝐵) ⊆ (-π[,]π))
1615adantr 484 . . . . . . . 8 ((𝜑𝑗 ∈ (0..^𝑁)) → (𝐴[,]𝐵) ⊆ (-π[,]π))
17 fourierdlem86.q . . . . . . . 8 𝑄 = (𝑖 ∈ (0...𝑀) ↦ ((𝑉𝑖) − 𝑋))
18 fourierdlem86.t . . . . . . . 8 𝑇 = ({𝐴, 𝐵} ∪ (ran 𝑄 ∩ (𝐴(,)𝐵)))
19 fourierdlem86.n . . . . . . . 8 𝑁 = ((♯‘𝑇) − 1)
20 fourierdlem86.s . . . . . . . 8 𝑆 = (℩𝑓𝑓 Isom < , < ((0...𝑁), 𝑇))
21 simpr 488 . . . . . . . 8 ((𝜑𝑗 ∈ (0..^𝑁)) → 𝑗 ∈ (0..^𝑁))
22 fourierdlem86.u . . . . . . . 8 𝑈 = (𝑖 ∈ (0..^𝑀)((𝑆𝑗)(,)(𝑆‘(𝑗 + 1))) ⊆ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))))
23 biid 264 . . . . . . . 8 ((((((𝜑𝑗 ∈ (0..^𝑁)) ∧ 𝑖 ∈ (0..^𝑀)) ∧ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1))) ⊆ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) ∧ 𝑦 ∈ (0..^𝑀)) ∧ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1))) ⊆ ((𝑄𝑦)(,)(𝑄‘(𝑦 + 1)))) ↔ (((((𝜑𝑗 ∈ (0..^𝑁)) ∧ 𝑖 ∈ (0..^𝑀)) ∧ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1))) ⊆ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) ∧ 𝑦 ∈ (0..^𝑀)) ∧ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1))) ⊆ ((𝑄𝑦)(,)(𝑄‘(𝑦 + 1)))))
243, 4, 6, 8, 10, 12, 14, 16, 17, 18, 19, 20, 21, 22, 23fourierdlem50 42589 . . . . . . 7 ((𝜑𝑗 ∈ (0..^𝑁)) → (𝑈 ∈ (0..^𝑀) ∧ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1))) ⊆ ((𝑄𝑈)(,)(𝑄‘(𝑈 + 1)))))
2524simpld 498 . . . . . 6 ((𝜑𝑗 ∈ (0..^𝑁)) → 𝑈 ∈ (0..^𝑀))
26 id 22 . . . . . . 7 ((𝜑𝑗 ∈ (0..^𝑁)) → (𝜑𝑗 ∈ (0..^𝑁)))
2724simprd 499 . . . . . . 7 ((𝜑𝑗 ∈ (0..^𝑁)) → ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1))) ⊆ ((𝑄𝑈)(,)(𝑄‘(𝑈 + 1))))
2826, 25, 27jca31 518 . . . . . 6 ((𝜑𝑗 ∈ (0..^𝑁)) → (((𝜑𝑗 ∈ (0..^𝑁)) ∧ 𝑈 ∈ (0..^𝑀)) ∧ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1))) ⊆ ((𝑄𝑈)(,)(𝑄‘(𝑈 + 1)))))
29 nfv 1916 . . . . . . . 8 𝑖(((𝜑𝑗 ∈ (0..^𝑁)) ∧ 𝑈 ∈ (0..^𝑀)) ∧ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1))) ⊆ ((𝑄𝑈)(,)(𝑄‘(𝑈 + 1))))
30 nfv 1916 . . . . . . . . . . . . . . 15 𝑖(𝑆‘(𝑗 + 1)) = (𝑄‘(𝑈 + 1))
31 nfcsb1v 3881 . . . . . . . . . . . . . . 15 𝑖𝑈 / 𝑖𝐿
32 nfcv 2974 . . . . . . . . . . . . . . 15 𝑖(𝐹‘(𝑋 + (𝑆‘(𝑗 + 1))))
3330, 31, 32nfif 4469 . . . . . . . . . . . . . 14 𝑖if((𝑆‘(𝑗 + 1)) = (𝑄‘(𝑈 + 1)), 𝑈 / 𝑖𝐿, (𝐹‘(𝑋 + (𝑆‘(𝑗 + 1)))))
34 nfcv 2974 . . . . . . . . . . . . . 14 𝑖
35 nfcv 2974 . . . . . . . . . . . . . 14 𝑖𝐶
3633, 34, 35nfov 7160 . . . . . . . . . . . . 13 𝑖(if((𝑆‘(𝑗 + 1)) = (𝑄‘(𝑈 + 1)), 𝑈 / 𝑖𝐿, (𝐹‘(𝑋 + (𝑆‘(𝑗 + 1))))) − 𝐶)
37 nfcv 2974 . . . . . . . . . . . . 13 𝑖 /
38 nfcv 2974 . . . . . . . . . . . . 13 𝑖(𝑆‘(𝑗 + 1))
3936, 37, 38nfov 7160 . . . . . . . . . . . 12 𝑖((if((𝑆‘(𝑗 + 1)) = (𝑄‘(𝑈 + 1)), 𝑈 / 𝑖𝐿, (𝐹‘(𝑋 + (𝑆‘(𝑗 + 1))))) − 𝐶) / (𝑆‘(𝑗 + 1)))
40 nfcv 2974 . . . . . . . . . . . 12 𝑖 ·
41 nfcv 2974 . . . . . . . . . . . 12 𝑖((𝑆‘(𝑗 + 1)) / (2 · (sin‘((𝑆‘(𝑗 + 1)) / 2))))
4239, 40, 41nfov 7160 . . . . . . . . . . 11 𝑖(((if((𝑆‘(𝑗 + 1)) = (𝑄‘(𝑈 + 1)), 𝑈 / 𝑖𝐿, (𝐹‘(𝑋 + (𝑆‘(𝑗 + 1))))) − 𝐶) / (𝑆‘(𝑗 + 1))) · ((𝑆‘(𝑗 + 1)) / (2 · (sin‘((𝑆‘(𝑗 + 1)) / 2)))))
4342nfel1 2990 . . . . . . . . . 10 𝑖(((if((𝑆‘(𝑗 + 1)) = (𝑄‘(𝑈 + 1)), 𝑈 / 𝑖𝐿, (𝐹‘(𝑋 + (𝑆‘(𝑗 + 1))))) − 𝐶) / (𝑆‘(𝑗 + 1))) · ((𝑆‘(𝑗 + 1)) / (2 · (sin‘((𝑆‘(𝑗 + 1)) / 2))))) ∈ ((𝑂 ↾ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1)))) lim (𝑆‘(𝑗 + 1)))
44 nfv 1916 . . . . . . . . . . . . . . 15 𝑖(𝑆𝑗) = (𝑄𝑈)
45 nfcsb1v 3881 . . . . . . . . . . . . . . 15 𝑖𝑈 / 𝑖𝑅
46 nfcv 2974 . . . . . . . . . . . . . . 15 𝑖(𝐹‘(𝑋 + (𝑆𝑗)))
4744, 45, 46nfif 4469 . . . . . . . . . . . . . 14 𝑖if((𝑆𝑗) = (𝑄𝑈), 𝑈 / 𝑖𝑅, (𝐹‘(𝑋 + (𝑆𝑗))))
4847, 34, 35nfov 7160 . . . . . . . . . . . . 13 𝑖(if((𝑆𝑗) = (𝑄𝑈), 𝑈 / 𝑖𝑅, (𝐹‘(𝑋 + (𝑆𝑗)))) − 𝐶)
49 nfcv 2974 . . . . . . . . . . . . 13 𝑖(𝑆𝑗)
5048, 37, 49nfov 7160 . . . . . . . . . . . 12 𝑖((if((𝑆𝑗) = (𝑄𝑈), 𝑈 / 𝑖𝑅, (𝐹‘(𝑋 + (𝑆𝑗)))) − 𝐶) / (𝑆𝑗))
51 nfcv 2974 . . . . . . . . . . . 12 𝑖((𝑆𝑗) / (2 · (sin‘((𝑆𝑗) / 2))))
5250, 40, 51nfov 7160 . . . . . . . . . . 11 𝑖(((if((𝑆𝑗) = (𝑄𝑈), 𝑈 / 𝑖𝑅, (𝐹‘(𝑋 + (𝑆𝑗)))) − 𝐶) / (𝑆𝑗)) · ((𝑆𝑗) / (2 · (sin‘((𝑆𝑗) / 2)))))
5352nfel1 2990 . . . . . . . . . 10 𝑖(((if((𝑆𝑗) = (𝑄𝑈), 𝑈 / 𝑖𝑅, (𝐹‘(𝑋 + (𝑆𝑗)))) − 𝐶) / (𝑆𝑗)) · ((𝑆𝑗) / (2 · (sin‘((𝑆𝑗) / 2))))) ∈ ((𝑂 ↾ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1)))) lim (𝑆𝑗))
5443, 53nfan 1901 . . . . . . . . 9 𝑖((((if((𝑆‘(𝑗 + 1)) = (𝑄‘(𝑈 + 1)), 𝑈 / 𝑖𝐿, (𝐹‘(𝑋 + (𝑆‘(𝑗 + 1))))) − 𝐶) / (𝑆‘(𝑗 + 1))) · ((𝑆‘(𝑗 + 1)) / (2 · (sin‘((𝑆‘(𝑗 + 1)) / 2))))) ∈ ((𝑂 ↾ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1)))) lim (𝑆‘(𝑗 + 1))) ∧ (((if((𝑆𝑗) = (𝑄𝑈), 𝑈 / 𝑖𝑅, (𝐹‘(𝑋 + (𝑆𝑗)))) − 𝐶) / (𝑆𝑗)) · ((𝑆𝑗) / (2 · (sin‘((𝑆𝑗) / 2))))) ∈ ((𝑂 ↾ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1)))) lim (𝑆𝑗)))
55 nfv 1916 . . . . . . . . 9 𝑖(𝑂 ↾ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1)))) ∈ (((𝑆𝑗)(,)(𝑆‘(𝑗 + 1)))–cn→ℂ)
5654, 55nfan 1901 . . . . . . . 8 𝑖(((((if((𝑆‘(𝑗 + 1)) = (𝑄‘(𝑈 + 1)), 𝑈 / 𝑖𝐿, (𝐹‘(𝑋 + (𝑆‘(𝑗 + 1))))) − 𝐶) / (𝑆‘(𝑗 + 1))) · ((𝑆‘(𝑗 + 1)) / (2 · (sin‘((𝑆‘(𝑗 + 1)) / 2))))) ∈ ((𝑂 ↾ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1)))) lim (𝑆‘(𝑗 + 1))) ∧ (((if((𝑆𝑗) = (𝑄𝑈), 𝑈 / 𝑖𝑅, (𝐹‘(𝑋 + (𝑆𝑗)))) − 𝐶) / (𝑆𝑗)) · ((𝑆𝑗) / (2 · (sin‘((𝑆𝑗) / 2))))) ∈ ((𝑂 ↾ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1)))) lim (𝑆𝑗))) ∧ (𝑂 ↾ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1)))) ∈ (((𝑆𝑗)(,)(𝑆‘(𝑗 + 1)))–cn→ℂ))
5729, 56nfim 1898 . . . . . . 7 𝑖((((𝜑𝑗 ∈ (0..^𝑁)) ∧ 𝑈 ∈ (0..^𝑀)) ∧ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1))) ⊆ ((𝑄𝑈)(,)(𝑄‘(𝑈 + 1)))) → (((((if((𝑆‘(𝑗 + 1)) = (𝑄‘(𝑈 + 1)), 𝑈 / 𝑖𝐿, (𝐹‘(𝑋 + (𝑆‘(𝑗 + 1))))) − 𝐶) / (𝑆‘(𝑗 + 1))) · ((𝑆‘(𝑗 + 1)) / (2 · (sin‘((𝑆‘(𝑗 + 1)) / 2))))) ∈ ((𝑂 ↾ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1)))) lim (𝑆‘(𝑗 + 1))) ∧ (((if((𝑆𝑗) = (𝑄𝑈), 𝑈 / 𝑖𝑅, (𝐹‘(𝑋 + (𝑆𝑗)))) − 𝐶) / (𝑆𝑗)) · ((𝑆𝑗) / (2 · (sin‘((𝑆𝑗) / 2))))) ∈ ((𝑂 ↾ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1)))) lim (𝑆𝑗))) ∧ (𝑂 ↾ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1)))) ∈ (((𝑆𝑗)(,)(𝑆‘(𝑗 + 1)))–cn→ℂ)))
58 eleq1 2899 . . . . . . . . . 10 (𝑖 = 𝑈 → (𝑖 ∈ (0..^𝑀) ↔ 𝑈 ∈ (0..^𝑀)))
5958anbi2d 631 . . . . . . . . 9 (𝑖 = 𝑈 → (((𝜑𝑗 ∈ (0..^𝑁)) ∧ 𝑖 ∈ (0..^𝑀)) ↔ ((𝜑𝑗 ∈ (0..^𝑁)) ∧ 𝑈 ∈ (0..^𝑀))))
60 fveq2 6643 . . . . . . . . . . 11 (𝑖 = 𝑈 → (𝑄𝑖) = (𝑄𝑈))
61 oveq1 7137 . . . . . . . . . . . 12 (𝑖 = 𝑈 → (𝑖 + 1) = (𝑈 + 1))
6261fveq2d 6647 . . . . . . . . . . 11 (𝑖 = 𝑈 → (𝑄‘(𝑖 + 1)) = (𝑄‘(𝑈 + 1)))
6360, 62oveq12d 7148 . . . . . . . . . 10 (𝑖 = 𝑈 → ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) = ((𝑄𝑈)(,)(𝑄‘(𝑈 + 1))))
6463sseq2d 3975 . . . . . . . . 9 (𝑖 = 𝑈 → (((𝑆𝑗)(,)(𝑆‘(𝑗 + 1))) ⊆ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ↔ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1))) ⊆ ((𝑄𝑈)(,)(𝑄‘(𝑈 + 1)))))
6559, 64anbi12d 633 . . . . . . . 8 (𝑖 = 𝑈 → ((((𝜑𝑗 ∈ (0..^𝑁)) ∧ 𝑖 ∈ (0..^𝑀)) ∧ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1))) ⊆ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) ↔ (((𝜑𝑗 ∈ (0..^𝑁)) ∧ 𝑈 ∈ (0..^𝑀)) ∧ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1))) ⊆ ((𝑄𝑈)(,)(𝑄‘(𝑈 + 1))))))
6662eqeq2d 2832 . . . . . . . . . . . . . . 15 (𝑖 = 𝑈 → ((𝑆‘(𝑗 + 1)) = (𝑄‘(𝑖 + 1)) ↔ (𝑆‘(𝑗 + 1)) = (𝑄‘(𝑈 + 1))))
67 csbeq1a 3871 . . . . . . . . . . . . . . 15 (𝑖 = 𝑈𝐿 = 𝑈 / 𝑖𝐿)
6866, 67ifbieq1d 4463 . . . . . . . . . . . . . 14 (𝑖 = 𝑈 → if((𝑆‘(𝑗 + 1)) = (𝑄‘(𝑖 + 1)), 𝐿, (𝐹‘(𝑋 + (𝑆‘(𝑗 + 1))))) = if((𝑆‘(𝑗 + 1)) = (𝑄‘(𝑈 + 1)), 𝑈 / 𝑖𝐿, (𝐹‘(𝑋 + (𝑆‘(𝑗 + 1))))))
6968oveq1d 7145 . . . . . . . . . . . . 13 (𝑖 = 𝑈 → (if((𝑆‘(𝑗 + 1)) = (𝑄‘(𝑖 + 1)), 𝐿, (𝐹‘(𝑋 + (𝑆‘(𝑗 + 1))))) − 𝐶) = (if((𝑆‘(𝑗 + 1)) = (𝑄‘(𝑈 + 1)), 𝑈 / 𝑖𝐿, (𝐹‘(𝑋 + (𝑆‘(𝑗 + 1))))) − 𝐶))
7069oveq1d 7145 . . . . . . . . . . . 12 (𝑖 = 𝑈 → ((if((𝑆‘(𝑗 + 1)) = (𝑄‘(𝑖 + 1)), 𝐿, (𝐹‘(𝑋 + (𝑆‘(𝑗 + 1))))) − 𝐶) / (𝑆‘(𝑗 + 1))) = ((if((𝑆‘(𝑗 + 1)) = (𝑄‘(𝑈 + 1)), 𝑈 / 𝑖𝐿, (𝐹‘(𝑋 + (𝑆‘(𝑗 + 1))))) − 𝐶) / (𝑆‘(𝑗 + 1))))
7170oveq1d 7145 . . . . . . . . . . 11 (𝑖 = 𝑈 → (((if((𝑆‘(𝑗 + 1)) = (𝑄‘(𝑖 + 1)), 𝐿, (𝐹‘(𝑋 + (𝑆‘(𝑗 + 1))))) − 𝐶) / (𝑆‘(𝑗 + 1))) · ((𝑆‘(𝑗 + 1)) / (2 · (sin‘((𝑆‘(𝑗 + 1)) / 2))))) = (((if((𝑆‘(𝑗 + 1)) = (𝑄‘(𝑈 + 1)), 𝑈 / 𝑖𝐿, (𝐹‘(𝑋 + (𝑆‘(𝑗 + 1))))) − 𝐶) / (𝑆‘(𝑗 + 1))) · ((𝑆‘(𝑗 + 1)) / (2 · (sin‘((𝑆‘(𝑗 + 1)) / 2))))))
7271eleq1d 2896 . . . . . . . . . 10 (𝑖 = 𝑈 → ((((if((𝑆‘(𝑗 + 1)) = (𝑄‘(𝑖 + 1)), 𝐿, (𝐹‘(𝑋 + (𝑆‘(𝑗 + 1))))) − 𝐶) / (𝑆‘(𝑗 + 1))) · ((𝑆‘(𝑗 + 1)) / (2 · (sin‘((𝑆‘(𝑗 + 1)) / 2))))) ∈ ((𝑂 ↾ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1)))) lim (𝑆‘(𝑗 + 1))) ↔ (((if((𝑆‘(𝑗 + 1)) = (𝑄‘(𝑈 + 1)), 𝑈 / 𝑖𝐿, (𝐹‘(𝑋 + (𝑆‘(𝑗 + 1))))) − 𝐶) / (𝑆‘(𝑗 + 1))) · ((𝑆‘(𝑗 + 1)) / (2 · (sin‘((𝑆‘(𝑗 + 1)) / 2))))) ∈ ((𝑂 ↾ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1)))) lim (𝑆‘(𝑗 + 1)))))
7360eqeq2d 2832 . . . . . . . . . . . . . . 15 (𝑖 = 𝑈 → ((𝑆𝑗) = (𝑄𝑖) ↔ (𝑆𝑗) = (𝑄𝑈)))
74 csbeq1a 3871 . . . . . . . . . . . . . . 15 (𝑖 = 𝑈𝑅 = 𝑈 / 𝑖𝑅)
7573, 74ifbieq1d 4463 . . . . . . . . . . . . . 14 (𝑖 = 𝑈 → if((𝑆𝑗) = (𝑄𝑖), 𝑅, (𝐹‘(𝑋 + (𝑆𝑗)))) = if((𝑆𝑗) = (𝑄𝑈), 𝑈 / 𝑖𝑅, (𝐹‘(𝑋 + (𝑆𝑗)))))
7675oveq1d 7145 . . . . . . . . . . . . 13 (𝑖 = 𝑈 → (if((𝑆𝑗) = (𝑄𝑖), 𝑅, (𝐹‘(𝑋 + (𝑆𝑗)))) − 𝐶) = (if((𝑆𝑗) = (𝑄𝑈), 𝑈 / 𝑖𝑅, (𝐹‘(𝑋 + (𝑆𝑗)))) − 𝐶))
7776oveq1d 7145 . . . . . . . . . . . 12 (𝑖 = 𝑈 → ((if((𝑆𝑗) = (𝑄𝑖), 𝑅, (𝐹‘(𝑋 + (𝑆𝑗)))) − 𝐶) / (𝑆𝑗)) = ((if((𝑆𝑗) = (𝑄𝑈), 𝑈 / 𝑖𝑅, (𝐹‘(𝑋 + (𝑆𝑗)))) − 𝐶) / (𝑆𝑗)))
7877oveq1d 7145 . . . . . . . . . . 11 (𝑖 = 𝑈 → (((if((𝑆𝑗) = (𝑄𝑖), 𝑅, (𝐹‘(𝑋 + (𝑆𝑗)))) − 𝐶) / (𝑆𝑗)) · ((𝑆𝑗) / (2 · (sin‘((𝑆𝑗) / 2))))) = (((if((𝑆𝑗) = (𝑄𝑈), 𝑈 / 𝑖𝑅, (𝐹‘(𝑋 + (𝑆𝑗)))) − 𝐶) / (𝑆𝑗)) · ((𝑆𝑗) / (2 · (sin‘((𝑆𝑗) / 2))))))
7978eleq1d 2896 . . . . . . . . . 10 (𝑖 = 𝑈 → ((((if((𝑆𝑗) = (𝑄𝑖), 𝑅, (𝐹‘(𝑋 + (𝑆𝑗)))) − 𝐶) / (𝑆𝑗)) · ((𝑆𝑗) / (2 · (sin‘((𝑆𝑗) / 2))))) ∈ ((𝑂 ↾ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1)))) lim (𝑆𝑗)) ↔ (((if((𝑆𝑗) = (𝑄𝑈), 𝑈 / 𝑖𝑅, (𝐹‘(𝑋 + (𝑆𝑗)))) − 𝐶) / (𝑆𝑗)) · ((𝑆𝑗) / (2 · (sin‘((𝑆𝑗) / 2))))) ∈ ((𝑂 ↾ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1)))) lim (𝑆𝑗))))
8072, 79anbi12d 633 . . . . . . . . 9 (𝑖 = 𝑈 → (((((if((𝑆‘(𝑗 + 1)) = (𝑄‘(𝑖 + 1)), 𝐿, (𝐹‘(𝑋 + (𝑆‘(𝑗 + 1))))) − 𝐶) / (𝑆‘(𝑗 + 1))) · ((𝑆‘(𝑗 + 1)) / (2 · (sin‘((𝑆‘(𝑗 + 1)) / 2))))) ∈ ((𝑂 ↾ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1)))) lim (𝑆‘(𝑗 + 1))) ∧ (((if((𝑆𝑗) = (𝑄𝑖), 𝑅, (𝐹‘(𝑋 + (𝑆𝑗)))) − 𝐶) / (𝑆𝑗)) · ((𝑆𝑗) / (2 · (sin‘((𝑆𝑗) / 2))))) ∈ ((𝑂 ↾ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1)))) lim (𝑆𝑗))) ↔ ((((if((𝑆‘(𝑗 + 1)) = (𝑄‘(𝑈 + 1)), 𝑈 / 𝑖𝐿, (𝐹‘(𝑋 + (𝑆‘(𝑗 + 1))))) − 𝐶) / (𝑆‘(𝑗 + 1))) · ((𝑆‘(𝑗 + 1)) / (2 · (sin‘((𝑆‘(𝑗 + 1)) / 2))))) ∈ ((𝑂 ↾ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1)))) lim (𝑆‘(𝑗 + 1))) ∧ (((if((𝑆𝑗) = (𝑄𝑈), 𝑈 / 𝑖𝑅, (𝐹‘(𝑋 + (𝑆𝑗)))) − 𝐶) / (𝑆𝑗)) · ((𝑆𝑗) / (2 · (sin‘((𝑆𝑗) / 2))))) ∈ ((𝑂 ↾ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1)))) lim (𝑆𝑗)))))
8180anbi1d 632 . . . . . . . 8 (𝑖 = 𝑈 → ((((((if((𝑆‘(𝑗 + 1)) = (𝑄‘(𝑖 + 1)), 𝐿, (𝐹‘(𝑋 + (𝑆‘(𝑗 + 1))))) − 𝐶) / (𝑆‘(𝑗 + 1))) · ((𝑆‘(𝑗 + 1)) / (2 · (sin‘((𝑆‘(𝑗 + 1)) / 2))))) ∈ ((𝑂 ↾ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1)))) lim (𝑆‘(𝑗 + 1))) ∧ (((if((𝑆𝑗) = (𝑄𝑖), 𝑅, (𝐹‘(𝑋 + (𝑆𝑗)))) − 𝐶) / (𝑆𝑗)) · ((𝑆𝑗) / (2 · (sin‘((𝑆𝑗) / 2))))) ∈ ((𝑂 ↾ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1)))) lim (𝑆𝑗))) ∧ (𝑂 ↾ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1)))) ∈ (((𝑆𝑗)(,)(𝑆‘(𝑗 + 1)))–cn→ℂ)) ↔ (((((if((𝑆‘(𝑗 + 1)) = (𝑄‘(𝑈 + 1)), 𝑈 / 𝑖𝐿, (𝐹‘(𝑋 + (𝑆‘(𝑗 + 1))))) − 𝐶) / (𝑆‘(𝑗 + 1))) · ((𝑆‘(𝑗 + 1)) / (2 · (sin‘((𝑆‘(𝑗 + 1)) / 2))))) ∈ ((𝑂 ↾ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1)))) lim (𝑆‘(𝑗 + 1))) ∧ (((if((𝑆𝑗) = (𝑄𝑈), 𝑈 / 𝑖𝑅, (𝐹‘(𝑋 + (𝑆𝑗)))) − 𝐶) / (𝑆𝑗)) · ((𝑆𝑗) / (2 · (sin‘((𝑆𝑗) / 2))))) ∈ ((𝑂 ↾ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1)))) lim (𝑆𝑗))) ∧ (𝑂 ↾ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1)))) ∈ (((𝑆𝑗)(,)(𝑆‘(𝑗 + 1)))–cn→ℂ))))
8265, 81imbi12d 348 . . . . . . 7 (𝑖 = 𝑈 → (((((𝜑𝑗 ∈ (0..^𝑁)) ∧ 𝑖 ∈ (0..^𝑀)) ∧ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1))) ⊆ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) → (((((if((𝑆‘(𝑗 + 1)) = (𝑄‘(𝑖 + 1)), 𝐿, (𝐹‘(𝑋 + (𝑆‘(𝑗 + 1))))) − 𝐶) / (𝑆‘(𝑗 + 1))) · ((𝑆‘(𝑗 + 1)) / (2 · (sin‘((𝑆‘(𝑗 + 1)) / 2))))) ∈ ((𝑂 ↾ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1)))) lim (𝑆‘(𝑗 + 1))) ∧ (((if((𝑆𝑗) = (𝑄𝑖), 𝑅, (𝐹‘(𝑋 + (𝑆𝑗)))) − 𝐶) / (𝑆𝑗)) · ((𝑆𝑗) / (2 · (sin‘((𝑆𝑗) / 2))))) ∈ ((𝑂 ↾ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1)))) lim (𝑆𝑗))) ∧ (𝑂 ↾ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1)))) ∈ (((𝑆𝑗)(,)(𝑆‘(𝑗 + 1)))–cn→ℂ))) ↔ ((((𝜑𝑗 ∈ (0..^𝑁)) ∧ 𝑈 ∈ (0..^𝑀)) ∧ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1))) ⊆ ((𝑄𝑈)(,)(𝑄‘(𝑈 + 1)))) → (((((if((𝑆‘(𝑗 + 1)) = (𝑄‘(𝑈 + 1)), 𝑈 / 𝑖𝐿, (𝐹‘(𝑋 + (𝑆‘(𝑗 + 1))))) − 𝐶) / (𝑆‘(𝑗 + 1))) · ((𝑆‘(𝑗 + 1)) / (2 · (sin‘((𝑆‘(𝑗 + 1)) / 2))))) ∈ ((𝑂 ↾ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1)))) lim (𝑆‘(𝑗 + 1))) ∧ (((if((𝑆𝑗) = (𝑄𝑈), 𝑈 / 𝑖𝑅, (𝐹‘(𝑋 + (𝑆𝑗)))) − 𝐶) / (𝑆𝑗)) · ((𝑆𝑗) / (2 · (sin‘((𝑆𝑗) / 2))))) ∈ ((𝑂 ↾ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1)))) lim (𝑆𝑗))) ∧ (𝑂 ↾ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1)))) ∈ (((𝑆𝑗)(,)(𝑆‘(𝑗 + 1)))–cn→ℂ)))))
83 fourierdlem86.f . . . . . . . 8 (𝜑𝐹:ℝ⟶ℝ)
84 fourierdlem86.fcn . . . . . . . 8 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝐹 ↾ ((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))) ∈ (((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))–cn→ℂ))
85 fourierdlem86.r . . . . . . . 8 ((𝜑𝑖 ∈ (0..^𝑀)) → 𝑅 ∈ ((𝐹 ↾ ((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))) lim (𝑉𝑖)))
86 fourierdlem86.l . . . . . . . 8 ((𝜑𝑖 ∈ (0..^𝑀)) → 𝐿 ∈ ((𝐹 ↾ ((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))) lim (𝑉‘(𝑖 + 1))))
87 fourierdlem86.n0 . . . . . . . 8 (𝜑 → ¬ 0 ∈ (𝐴[,]𝐵))
88 fourierdlem86.c . . . . . . . 8 (𝜑𝐶 ∈ ℝ)
89 fourierdlem86.o . . . . . . . 8 𝑂 = (𝑠 ∈ (𝐴[,]𝐵) ↦ ((((𝐹‘(𝑋 + 𝑠)) − 𝐶) / 𝑠) · (𝑠 / (2 · (sin‘(𝑠 / 2))))))
90 eqid 2821 . . . . . . . 8 (((if((𝑆‘(𝑗 + 1)) = (𝑄‘(𝑖 + 1)), 𝐿, (𝐹‘(𝑋 + (𝑆‘(𝑗 + 1))))) − 𝐶) / (𝑆‘(𝑗 + 1))) · ((𝑆‘(𝑗 + 1)) / (2 · (sin‘((𝑆‘(𝑗 + 1)) / 2))))) = (((if((𝑆‘(𝑗 + 1)) = (𝑄‘(𝑖 + 1)), 𝐿, (𝐹‘(𝑋 + (𝑆‘(𝑗 + 1))))) − 𝐶) / (𝑆‘(𝑗 + 1))) · ((𝑆‘(𝑗 + 1)) / (2 · (sin‘((𝑆‘(𝑗 + 1)) / 2)))))
91 eqid 2821 . . . . . . . 8 (((if((𝑆𝑗) = (𝑄𝑖), 𝑅, (𝐹‘(𝑋 + (𝑆𝑗)))) − 𝐶) / (𝑆𝑗)) · ((𝑆𝑗) / (2 · (sin‘((𝑆𝑗) / 2))))) = (((if((𝑆𝑗) = (𝑄𝑖), 𝑅, (𝐹‘(𝑋 + (𝑆𝑗)))) − 𝐶) / (𝑆𝑗)) · ((𝑆𝑗) / (2 · (sin‘((𝑆𝑗) / 2)))))
92 biid 264 . . . . . . . 8 ((((𝜑𝑗 ∈ (0..^𝑁)) ∧ 𝑖 ∈ (0..^𝑀)) ∧ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1))) ⊆ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) ↔ (((𝜑𝑗 ∈ (0..^𝑁)) ∧ 𝑖 ∈ (0..^𝑀)) ∧ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1))) ⊆ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))))
9383, 2, 4, 5, 7, 84, 85, 86, 9, 11, 13, 15, 87, 88, 89, 17, 18, 19, 20, 90, 91, 92fourierdlem76 42615 . . . . . . 7 ((((𝜑𝑗 ∈ (0..^𝑁)) ∧ 𝑖 ∈ (0..^𝑀)) ∧ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1))) ⊆ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) → (((((if((𝑆‘(𝑗 + 1)) = (𝑄‘(𝑖 + 1)), 𝐿, (𝐹‘(𝑋 + (𝑆‘(𝑗 + 1))))) − 𝐶) / (𝑆‘(𝑗 + 1))) · ((𝑆‘(𝑗 + 1)) / (2 · (sin‘((𝑆‘(𝑗 + 1)) / 2))))) ∈ ((𝑂 ↾ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1)))) lim (𝑆‘(𝑗 + 1))) ∧ (((if((𝑆𝑗) = (𝑄𝑖), 𝑅, (𝐹‘(𝑋 + (𝑆𝑗)))) − 𝐶) / (𝑆𝑗)) · ((𝑆𝑗) / (2 · (sin‘((𝑆𝑗) / 2))))) ∈ ((𝑂 ↾ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1)))) lim (𝑆𝑗))) ∧ (𝑂 ↾ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1)))) ∈ (((𝑆𝑗)(,)(𝑆‘(𝑗 + 1)))–cn→ℂ)))
9457, 82, 93vtoclg1f 3543 . . . . . 6 (𝑈 ∈ (0..^𝑀) → ((((𝜑𝑗 ∈ (0..^𝑁)) ∧ 𝑈 ∈ (0..^𝑀)) ∧ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1))) ⊆ ((𝑄𝑈)(,)(𝑄‘(𝑈 + 1)))) → (((((if((𝑆‘(𝑗 + 1)) = (𝑄‘(𝑈 + 1)), 𝑈 / 𝑖𝐿, (𝐹‘(𝑋 + (𝑆‘(𝑗 + 1))))) − 𝐶) / (𝑆‘(𝑗 + 1))) · ((𝑆‘(𝑗 + 1)) / (2 · (sin‘((𝑆‘(𝑗 + 1)) / 2))))) ∈ ((𝑂 ↾ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1)))) lim (𝑆‘(𝑗 + 1))) ∧ (((if((𝑆𝑗) = (𝑄𝑈), 𝑈 / 𝑖𝑅, (𝐹‘(𝑋 + (𝑆𝑗)))) − 𝐶) / (𝑆𝑗)) · ((𝑆𝑗) / (2 · (sin‘((𝑆𝑗) / 2))))) ∈ ((𝑂 ↾ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1)))) lim (𝑆𝑗))) ∧ (𝑂 ↾ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1)))) ∈ (((𝑆𝑗)(,)(𝑆‘(𝑗 + 1)))–cn→ℂ))))
9525, 28, 94sylc 65 . . . . 5 ((𝜑𝑗 ∈ (0..^𝑁)) → (((((if((𝑆‘(𝑗 + 1)) = (𝑄‘(𝑈 + 1)), 𝑈 / 𝑖𝐿, (𝐹‘(𝑋 + (𝑆‘(𝑗 + 1))))) − 𝐶) / (𝑆‘(𝑗 + 1))) · ((𝑆‘(𝑗 + 1)) / (2 · (sin‘((𝑆‘(𝑗 + 1)) / 2))))) ∈ ((𝑂 ↾ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1)))) lim (𝑆‘(𝑗 + 1))) ∧ (((if((𝑆𝑗) = (𝑄𝑈), 𝑈 / 𝑖𝑅, (𝐹‘(𝑋 + (𝑆𝑗)))) − 𝐶) / (𝑆𝑗)) · ((𝑆𝑗) / (2 · (sin‘((𝑆𝑗) / 2))))) ∈ ((𝑂 ↾ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1)))) lim (𝑆𝑗))) ∧ (𝑂 ↾ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1)))) ∈ (((𝑆𝑗)(,)(𝑆‘(𝑗 + 1)))–cn→ℂ)))
9695simpld 498 . . . 4 ((𝜑𝑗 ∈ (0..^𝑁)) → ((((if((𝑆‘(𝑗 + 1)) = (𝑄‘(𝑈 + 1)), 𝑈 / 𝑖𝐿, (𝐹‘(𝑋 + (𝑆‘(𝑗 + 1))))) − 𝐶) / (𝑆‘(𝑗 + 1))) · ((𝑆‘(𝑗 + 1)) / (2 · (sin‘((𝑆‘(𝑗 + 1)) / 2))))) ∈ ((𝑂 ↾ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1)))) lim (𝑆‘(𝑗 + 1))) ∧ (((if((𝑆𝑗) = (𝑄𝑈), 𝑈 / 𝑖𝑅, (𝐹‘(𝑋 + (𝑆𝑗)))) − 𝐶) / (𝑆𝑗)) · ((𝑆𝑗) / (2 · (sin‘((𝑆𝑗) / 2))))) ∈ ((𝑂 ↾ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1)))) lim (𝑆𝑗))))
9796simpld 498 . . 3 ((𝜑𝑗 ∈ (0..^𝑁)) → (((if((𝑆‘(𝑗 + 1)) = (𝑄‘(𝑈 + 1)), 𝑈 / 𝑖𝐿, (𝐹‘(𝑋 + (𝑆‘(𝑗 + 1))))) − 𝐶) / (𝑆‘(𝑗 + 1))) · ((𝑆‘(𝑗 + 1)) / (2 · (sin‘((𝑆‘(𝑗 + 1)) / 2))))) ∈ ((𝑂 ↾ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1)))) lim (𝑆‘(𝑗 + 1))))
981, 97eqeltrid 2916 . 2 ((𝜑𝑗 ∈ (0..^𝑁)) → 𝐷 ∈ ((𝑂 ↾ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1)))) lim (𝑆‘(𝑗 + 1))))
99 fourierdlem86.e . . 3 𝐸 = (((if((𝑆𝑗) = (𝑄𝑈), 𝑈 / 𝑖𝑅, (𝐹‘(𝑋 + (𝑆𝑗)))) − 𝐶) / (𝑆𝑗)) · ((𝑆𝑗) / (2 · (sin‘((𝑆𝑗) / 2)))))
10096simprd 499 . . 3 ((𝜑𝑗 ∈ (0..^𝑁)) → (((if((𝑆𝑗) = (𝑄𝑈), 𝑈 / 𝑖𝑅, (𝐹‘(𝑋 + (𝑆𝑗)))) − 𝐶) / (𝑆𝑗)) · ((𝑆𝑗) / (2 · (sin‘((𝑆𝑗) / 2))))) ∈ ((𝑂 ↾ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1)))) lim (𝑆𝑗)))
10199, 100eqeltrid 2916 . 2 ((𝜑𝑗 ∈ (0..^𝑁)) → 𝐸 ∈ ((𝑂 ↾ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1)))) lim (𝑆𝑗)))
10295simprd 499 . 2 ((𝜑𝑗 ∈ (0..^𝑁)) → (𝑂 ↾ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1)))) ∈ (((𝑆𝑗)(,)(𝑆‘(𝑗 + 1)))–cn→ℂ))
10398, 101, 102jca31 518 1 ((𝜑𝑗 ∈ (0..^𝑁)) → ((𝐷 ∈ ((𝑂 ↾ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1)))) lim (𝑆‘(𝑗 + 1))) ∧ 𝐸 ∈ ((𝑂 ↾ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1)))) lim (𝑆𝑗))) ∧ (𝑂 ↾ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1)))) ∈ (((𝑆𝑗)(,)(𝑆‘(𝑗 + 1)))–cn→ℂ)))
 Colors of variables: wff setvar class Syntax hints:  ¬ wn 3   → wi 4   ∧ wa 399   = wceq 1538   ∈ wcel 2115  ∀wral 3126  {crab 3130  ⦋csb 3857   ∪ cun 3908   ∩ cin 3909   ⊆ wss 3910  ifcif 4440  {cpr 4542   class class class wbr 5039   ↦ cmpt 5119  ran crn 5529   ↾ cres 5530  ℩cio 6285  ⟶wf 6324  ‘cfv 6328   Isom wiso 6329  ℩crio 7087  (class class class)co 7130   ↑m cmap 8381  ℂcc 10512  ℝcr 10513  0cc0 10514  1c1 10515   + caddc 10517   · cmul 10519   < clt 10652   − cmin 10847  -cneg 10848   / cdiv 11274  ℕcn 11615  2c2 11670  (,)cioo 12716  [,]cicc 12719  ...cfz 12875  ..^cfzo 13016  ♯chash 13674  sincsin 15396  πcpi 15399  –cn→ccncf 23459   limℂ climc 24443 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1912  ax-6 1971  ax-7 2016  ax-8 2117  ax-9 2125  ax-10 2146  ax-11 2162  ax-12 2178  ax-ext 2793  ax-rep 5163  ax-sep 5176  ax-nul 5183  ax-pow 5239  ax-pr 5303  ax-un 7436  ax-inf2 9080  ax-cnex 10570  ax-resscn 10571  ax-1cn 10572  ax-icn 10573  ax-addcl 10574  ax-addrcl 10575  ax-mulcl 10576  ax-mulrcl 10577  ax-mulcom 10578  ax-addass 10579  ax-mulass 10580  ax-distr 10581  ax-i2m1 10582  ax-1ne0 10583  ax-1rid 10584  ax-rnegex 10585  ax-rrecex 10586  ax-cnre 10587  ax-pre-lttri 10588  ax-pre-lttrn 10589  ax-pre-ltadd 10590  ax-pre-mulgt0 10591  ax-pre-sup 10592  ax-addf 10593  ax-mulf 10594 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-fal 1551  df-ex 1782  df-nf 1786  df-sb 2071  df-mo 2623  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2892  df-nfc 2960  df-ne 3008  df-nel 3112  df-ral 3131  df-rex 3132  df-reu 3133  df-rmo 3134  df-rab 3135  df-v 3473  df-sbc 3750  df-csb 3858  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-pss 3929  df-nul 4267  df-if 4441  df-pw 4514  df-sn 4541  df-pr 4543  df-tp 4545  df-op 4547  df-uni 4812  df-int 4850  df-iun 4894  df-iin 4895  df-br 5040  df-opab 5102  df-mpt 5120  df-tr 5146  df-id 5433  df-eprel 5438  df-po 5447  df-so 5448  df-fr 5487  df-se 5488  df-we 5489  df-xp 5534  df-rel 5535  df-cnv 5536  df-co 5537  df-dm 5538  df-rn 5539  df-res 5540  df-ima 5541  df-pred 6121  df-ord 6167  df-on 6168  df-lim 6169  df-suc 6170  df-iota 6287  df-fun 6330  df-fn 6331  df-f 6332  df-f1 6333  df-fo 6334  df-f1o 6335  df-fv 6336  df-isom 6337  df-riota 7088  df-ov 7133  df-oprab 7134  df-mpo 7135  df-of 7384  df-om 7556  df-1st 7664  df-2nd 7665  df-supp 7806  df-wrecs 7922  df-recs 7983  df-rdg 8021  df-1o 8077  df-2o 8078  df-oadd 8081  df-er 8264  df-map 8383  df-pm 8384  df-ixp 8437  df-en 8485  df-dom 8486  df-sdom 8487  df-fin 8488  df-fsupp 8810  df-fi 8851  df-sup 8882  df-inf 8883  df-oi 8950  df-card 9344  df-pnf 10654  df-mnf 10655  df-xr 10656  df-ltxr 10657  df-le 10658  df-sub 10849  df-neg 10850  df-div 11275  df-nn 11616  df-2 11678  df-3 11679  df-4 11680  df-5 11681  df-6 11682  df-7 11683  df-8 11684  df-9 11685  df-n0 11876  df-z 11960  df-dec 12077  df-uz 12222  df-q 12327  df-rp 12368  df-xneg 12485  df-xadd 12486  df-xmul 12487  df-ioo 12720  df-ioc 12721  df-ico 12722  df-icc 12723  df-fz 12876  df-fzo 13017  df-fl 13145  df-mod 13221  df-seq 13353  df-exp 13414  df-fac 13618  df-bc 13647  df-hash 13675  df-shft 14405  df-cj 14437  df-re 14438  df-im 14439  df-sqrt 14573  df-abs 14574  df-limsup 14807  df-clim 14824  df-rlim 14825  df-sum 15022  df-ef 15400  df-sin 15402  df-cos 15403  df-pi 15405  df-struct 16463  df-ndx 16464  df-slot 16465  df-base 16467  df-sets 16468  df-ress 16469  df-plusg 16556  df-mulr 16557  df-starv 16558  df-sca 16559  df-vsca 16560  df-ip 16561  df-tset 16562  df-ple 16563  df-ds 16565  df-unif 16566  df-hom 16567  df-cco 16568  df-rest 16674  df-topn 16675  df-0g 16693  df-gsum 16694  df-topgen 16695  df-pt 16696  df-prds 16699  df-xrs 16753  df-qtop 16758  df-imas 16759  df-xps 16761  df-mre 16835  df-mrc 16836  df-acs 16838  df-mgm 17830  df-sgrp 17879  df-mnd 17890  df-submnd 17935  df-mulg 18203  df-cntz 18425  df-cmn 18886  df-psmet 20512  df-xmet 20513  df-met 20514  df-bl 20515  df-mopn 20516  df-fbas 20517  df-fg 20518  df-cnfld 20521  df-top 21477  df-topon 21494  df-topsp 21516  df-bases 21529  df-cld 21602  df-ntr 21603  df-cls 21604  df-nei 21681  df-lp 21719  df-perf 21720  df-cn 21810  df-cnp 21811  df-haus 21898  df-tx 22145  df-hmeo 22338  df-fil 22429  df-fm 22521  df-flim 22522  df-flf 22523  df-xms 22905  df-ms 22906  df-tms 22907  df-cncf 23461  df-limc 24447  df-dv 24448 This theorem is referenced by:  fourierdlem103  42642  fourierdlem104  42643
 Copyright terms: Public domain W3C validator