| Mathbox for Stefan O'Rear |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > aomclem7 | Structured version Visualization version GIF version | ||
| Description: Lemma for dfac11 43044. (𝑅1‘𝐴) is well-orderable. (Contributed by Stefan O'Rear, 20-Jan-2015.) |
| Ref | Expression |
|---|---|
| aomclem6.b | ⊢ 𝐵 = {〈𝑎, 𝑏〉 ∣ ∃𝑐 ∈ (𝑅1‘∪ dom 𝑧)((𝑐 ∈ 𝑏 ∧ ¬ 𝑐 ∈ 𝑎) ∧ ∀𝑑 ∈ (𝑅1‘∪ dom 𝑧)(𝑑(𝑧‘∪ dom 𝑧)𝑐 → (𝑑 ∈ 𝑎 ↔ 𝑑 ∈ 𝑏)))} |
| aomclem6.c | ⊢ 𝐶 = (𝑎 ∈ V ↦ sup((𝑦‘𝑎), (𝑅1‘dom 𝑧), 𝐵)) |
| aomclem6.d | ⊢ 𝐷 = recs((𝑎 ∈ V ↦ (𝐶‘((𝑅1‘dom 𝑧) ∖ ran 𝑎)))) |
| aomclem6.e | ⊢ 𝐸 = {〈𝑎, 𝑏〉 ∣ ∩ (◡𝐷 “ {𝑎}) ∈ ∩ (◡𝐷 “ {𝑏})} |
| aomclem6.f | ⊢ 𝐹 = {〈𝑎, 𝑏〉 ∣ ((rank‘𝑎) E (rank‘𝑏) ∨ ((rank‘𝑎) = (rank‘𝑏) ∧ 𝑎(𝑧‘suc (rank‘𝑎))𝑏))} |
| aomclem6.g | ⊢ 𝐺 = (if(dom 𝑧 = ∪ dom 𝑧, 𝐹, 𝐸) ∩ ((𝑅1‘dom 𝑧) × (𝑅1‘dom 𝑧))) |
| aomclem6.h | ⊢ 𝐻 = recs((𝑧 ∈ V ↦ 𝐺)) |
| aomclem6.a | ⊢ (𝜑 → 𝐴 ∈ On) |
| aomclem6.y | ⊢ (𝜑 → ∀𝑎 ∈ 𝒫 (𝑅1‘𝐴)(𝑎 ≠ ∅ → (𝑦‘𝑎) ∈ ((𝒫 𝑎 ∩ Fin) ∖ {∅}))) |
| Ref | Expression |
|---|---|
| aomclem7 | ⊢ (𝜑 → ∃𝑏 𝑏 We (𝑅1‘𝐴)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | aomclem6.b | . . 3 ⊢ 𝐵 = {〈𝑎, 𝑏〉 ∣ ∃𝑐 ∈ (𝑅1‘∪ dom 𝑧)((𝑐 ∈ 𝑏 ∧ ¬ 𝑐 ∈ 𝑎) ∧ ∀𝑑 ∈ (𝑅1‘∪ dom 𝑧)(𝑑(𝑧‘∪ dom 𝑧)𝑐 → (𝑑 ∈ 𝑎 ↔ 𝑑 ∈ 𝑏)))} | |
| 2 | aomclem6.c | . . 3 ⊢ 𝐶 = (𝑎 ∈ V ↦ sup((𝑦‘𝑎), (𝑅1‘dom 𝑧), 𝐵)) | |
| 3 | aomclem6.d | . . 3 ⊢ 𝐷 = recs((𝑎 ∈ V ↦ (𝐶‘((𝑅1‘dom 𝑧) ∖ ran 𝑎)))) | |
| 4 | aomclem6.e | . . 3 ⊢ 𝐸 = {〈𝑎, 𝑏〉 ∣ ∩ (◡𝐷 “ {𝑎}) ∈ ∩ (◡𝐷 “ {𝑏})} | |
| 5 | aomclem6.f | . . 3 ⊢ 𝐹 = {〈𝑎, 𝑏〉 ∣ ((rank‘𝑎) E (rank‘𝑏) ∨ ((rank‘𝑎) = (rank‘𝑏) ∧ 𝑎(𝑧‘suc (rank‘𝑎))𝑏))} | |
| 6 | aomclem6.g | . . 3 ⊢ 𝐺 = (if(dom 𝑧 = ∪ dom 𝑧, 𝐹, 𝐸) ∩ ((𝑅1‘dom 𝑧) × (𝑅1‘dom 𝑧))) | |
| 7 | aomclem6.h | . . 3 ⊢ 𝐻 = recs((𝑧 ∈ V ↦ 𝐺)) | |
| 8 | aomclem6.a | . . 3 ⊢ (𝜑 → 𝐴 ∈ On) | |
| 9 | aomclem6.y | . . 3 ⊢ (𝜑 → ∀𝑎 ∈ 𝒫 (𝑅1‘𝐴)(𝑎 ≠ ∅ → (𝑦‘𝑎) ∈ ((𝒫 𝑎 ∩ Fin) ∖ {∅}))) | |
| 10 | 1, 2, 3, 4, 5, 6, 7, 8, 9 | aomclem6 43041 | . 2 ⊢ (𝜑 → (𝐻‘𝐴) We (𝑅1‘𝐴)) |
| 11 | fvex 6873 | . . 3 ⊢ (𝐻‘𝐴) ∈ V | |
| 12 | weeq1 5627 | . . 3 ⊢ (𝑏 = (𝐻‘𝐴) → (𝑏 We (𝑅1‘𝐴) ↔ (𝐻‘𝐴) We (𝑅1‘𝐴))) | |
| 13 | 11, 12 | spcev 3575 | . 2 ⊢ ((𝐻‘𝐴) We (𝑅1‘𝐴) → ∃𝑏 𝑏 We (𝑅1‘𝐴)) |
| 14 | 10, 13 | syl 17 | 1 ⊢ (𝜑 → ∃𝑏 𝑏 We (𝑅1‘𝐴)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 ∨ wo 847 = wceq 1540 ∃wex 1779 ∈ wcel 2109 ≠ wne 2926 ∀wral 3045 ∃wrex 3054 Vcvv 3450 ∖ cdif 3913 ∩ cin 3915 ∅c0 4298 ifcif 4490 𝒫 cpw 4565 {csn 4591 ∪ cuni 4873 ∩ cint 4912 class class class wbr 5109 {copab 5171 ↦ cmpt 5190 E cep 5539 We wwe 5592 × cxp 5638 ◡ccnv 5639 dom cdm 5640 ran crn 5641 “ cima 5643 Oncon0 6334 suc csuc 6336 ‘cfv 6513 recscrecs 8341 Fincfn 8920 supcsup 9397 𝑅1cr1 9721 rankcrnk 9722 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-rep 5236 ax-sep 5253 ax-nul 5263 ax-pow 5322 ax-pr 5389 ax-un 7713 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-ral 3046 df-rex 3055 df-rmo 3356 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3756 df-csb 3865 df-dif 3919 df-un 3921 df-in 3923 df-ss 3933 df-pss 3936 df-nul 4299 df-if 4491 df-pw 4567 df-sn 4592 df-pr 4594 df-tp 4596 df-op 4598 df-uni 4874 df-int 4913 df-iun 4959 df-br 5110 df-opab 5172 df-mpt 5191 df-tr 5217 df-id 5535 df-eprel 5540 df-po 5548 df-so 5549 df-fr 5593 df-we 5595 df-xp 5646 df-rel 5647 df-cnv 5648 df-co 5649 df-dm 5650 df-rn 5651 df-res 5652 df-ima 5653 df-pred 6276 df-ord 6337 df-on 6338 df-lim 6339 df-suc 6340 df-iota 6466 df-fun 6515 df-fn 6516 df-f 6517 df-f1 6518 df-fo 6519 df-f1o 6520 df-fv 6521 df-isom 6522 df-riota 7346 df-ov 7392 df-oprab 7393 df-mpo 7394 df-om 7845 df-1st 7970 df-2nd 7971 df-frecs 8262 df-wrecs 8293 df-recs 8342 df-rdg 8380 df-1o 8436 df-2o 8437 df-map 8803 df-en 8921 df-fin 8924 df-sup 9399 df-r1 9723 df-rank 9724 |
| This theorem is referenced by: aomclem8 43043 |
| Copyright terms: Public domain | W3C validator |