![]() |
Mathbox for Stefan O'Rear |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > aomclem7 | Structured version Visualization version GIF version |
Description: Lemma for dfac11 41737. (𝑅1‘𝐴) is well-orderable. (Contributed by Stefan O'Rear, 20-Jan-2015.) |
Ref | Expression |
---|---|
aomclem6.b | ⊢ 𝐵 = {〈𝑎, 𝑏〉 ∣ ∃𝑐 ∈ (𝑅1‘∪ dom 𝑧)((𝑐 ∈ 𝑏 ∧ ¬ 𝑐 ∈ 𝑎) ∧ ∀𝑑 ∈ (𝑅1‘∪ dom 𝑧)(𝑑(𝑧‘∪ dom 𝑧)𝑐 → (𝑑 ∈ 𝑎 ↔ 𝑑 ∈ 𝑏)))} |
aomclem6.c | ⊢ 𝐶 = (𝑎 ∈ V ↦ sup((𝑦‘𝑎), (𝑅1‘dom 𝑧), 𝐵)) |
aomclem6.d | ⊢ 𝐷 = recs((𝑎 ∈ V ↦ (𝐶‘((𝑅1‘dom 𝑧) ∖ ran 𝑎)))) |
aomclem6.e | ⊢ 𝐸 = {〈𝑎, 𝑏〉 ∣ ∩ (◡𝐷 “ {𝑎}) ∈ ∩ (◡𝐷 “ {𝑏})} |
aomclem6.f | ⊢ 𝐹 = {〈𝑎, 𝑏〉 ∣ ((rank‘𝑎) E (rank‘𝑏) ∨ ((rank‘𝑎) = (rank‘𝑏) ∧ 𝑎(𝑧‘suc (rank‘𝑎))𝑏))} |
aomclem6.g | ⊢ 𝐺 = (if(dom 𝑧 = ∪ dom 𝑧, 𝐹, 𝐸) ∩ ((𝑅1‘dom 𝑧) × (𝑅1‘dom 𝑧))) |
aomclem6.h | ⊢ 𝐻 = recs((𝑧 ∈ V ↦ 𝐺)) |
aomclem6.a | ⊢ (𝜑 → 𝐴 ∈ On) |
aomclem6.y | ⊢ (𝜑 → ∀𝑎 ∈ 𝒫 (𝑅1‘𝐴)(𝑎 ≠ ∅ → (𝑦‘𝑎) ∈ ((𝒫 𝑎 ∩ Fin) ∖ {∅}))) |
Ref | Expression |
---|---|
aomclem7 | ⊢ (𝜑 → ∃𝑏 𝑏 We (𝑅1‘𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | aomclem6.b | . . 3 ⊢ 𝐵 = {〈𝑎, 𝑏〉 ∣ ∃𝑐 ∈ (𝑅1‘∪ dom 𝑧)((𝑐 ∈ 𝑏 ∧ ¬ 𝑐 ∈ 𝑎) ∧ ∀𝑑 ∈ (𝑅1‘∪ dom 𝑧)(𝑑(𝑧‘∪ dom 𝑧)𝑐 → (𝑑 ∈ 𝑎 ↔ 𝑑 ∈ 𝑏)))} | |
2 | aomclem6.c | . . 3 ⊢ 𝐶 = (𝑎 ∈ V ↦ sup((𝑦‘𝑎), (𝑅1‘dom 𝑧), 𝐵)) | |
3 | aomclem6.d | . . 3 ⊢ 𝐷 = recs((𝑎 ∈ V ↦ (𝐶‘((𝑅1‘dom 𝑧) ∖ ran 𝑎)))) | |
4 | aomclem6.e | . . 3 ⊢ 𝐸 = {〈𝑎, 𝑏〉 ∣ ∩ (◡𝐷 “ {𝑎}) ∈ ∩ (◡𝐷 “ {𝑏})} | |
5 | aomclem6.f | . . 3 ⊢ 𝐹 = {〈𝑎, 𝑏〉 ∣ ((rank‘𝑎) E (rank‘𝑏) ∨ ((rank‘𝑎) = (rank‘𝑏) ∧ 𝑎(𝑧‘suc (rank‘𝑎))𝑏))} | |
6 | aomclem6.g | . . 3 ⊢ 𝐺 = (if(dom 𝑧 = ∪ dom 𝑧, 𝐹, 𝐸) ∩ ((𝑅1‘dom 𝑧) × (𝑅1‘dom 𝑧))) | |
7 | aomclem6.h | . . 3 ⊢ 𝐻 = recs((𝑧 ∈ V ↦ 𝐺)) | |
8 | aomclem6.a | . . 3 ⊢ (𝜑 → 𝐴 ∈ On) | |
9 | aomclem6.y | . . 3 ⊢ (𝜑 → ∀𝑎 ∈ 𝒫 (𝑅1‘𝐴)(𝑎 ≠ ∅ → (𝑦‘𝑎) ∈ ((𝒫 𝑎 ∩ Fin) ∖ {∅}))) | |
10 | 1, 2, 3, 4, 5, 6, 7, 8, 9 | aomclem6 41734 | . 2 ⊢ (𝜑 → (𝐻‘𝐴) We (𝑅1‘𝐴)) |
11 | fvex 6901 | . . 3 ⊢ (𝐻‘𝐴) ∈ V | |
12 | weeq1 5663 | . . 3 ⊢ (𝑏 = (𝐻‘𝐴) → (𝑏 We (𝑅1‘𝐴) ↔ (𝐻‘𝐴) We (𝑅1‘𝐴))) | |
13 | 11, 12 | spcev 3596 | . 2 ⊢ ((𝐻‘𝐴) We (𝑅1‘𝐴) → ∃𝑏 𝑏 We (𝑅1‘𝐴)) |
14 | 10, 13 | syl 17 | 1 ⊢ (𝜑 → ∃𝑏 𝑏 We (𝑅1‘𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 205 ∧ wa 397 ∨ wo 846 = wceq 1542 ∃wex 1782 ∈ wcel 2107 ≠ wne 2941 ∀wral 3062 ∃wrex 3071 Vcvv 3475 ∖ cdif 3944 ∩ cin 3946 ∅c0 4321 ifcif 4527 𝒫 cpw 4601 {csn 4627 ∪ cuni 4907 ∩ cint 4949 class class class wbr 5147 {copab 5209 ↦ cmpt 5230 E cep 5578 We wwe 5629 × cxp 5673 ◡ccnv 5674 dom cdm 5675 ran crn 5676 “ cima 5678 Oncon0 6361 suc csuc 6363 ‘cfv 6540 recscrecs 8365 Fincfn 8935 supcsup 9431 𝑅1cr1 9753 rankcrnk 9754 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-rep 5284 ax-sep 5298 ax-nul 5305 ax-pow 5362 ax-pr 5426 ax-un 7720 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3or 1089 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-ne 2942 df-ral 3063 df-rex 3072 df-rmo 3377 df-reu 3378 df-rab 3434 df-v 3477 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-pss 3966 df-nul 4322 df-if 4528 df-pw 4603 df-sn 4628 df-pr 4630 df-tp 4632 df-op 4634 df-uni 4908 df-int 4950 df-iun 4998 df-br 5148 df-opab 5210 df-mpt 5231 df-tr 5265 df-id 5573 df-eprel 5579 df-po 5587 df-so 5588 df-fr 5630 df-we 5632 df-xp 5681 df-rel 5682 df-cnv 5683 df-co 5684 df-dm 5685 df-rn 5686 df-res 5687 df-ima 5688 df-pred 6297 df-ord 6364 df-on 6365 df-lim 6366 df-suc 6367 df-iota 6492 df-fun 6542 df-fn 6543 df-f 6544 df-f1 6545 df-fo 6546 df-f1o 6547 df-fv 6548 df-isom 6549 df-riota 7360 df-ov 7407 df-oprab 7408 df-mpo 7409 df-om 7851 df-1st 7970 df-2nd 7971 df-frecs 8261 df-wrecs 8292 df-recs 8366 df-rdg 8405 df-1o 8461 df-2o 8462 df-map 8818 df-en 8936 df-fin 8939 df-sup 9433 df-r1 9755 df-rank 9756 |
This theorem is referenced by: aomclem8 41736 |
Copyright terms: Public domain | W3C validator |