| Mathbox for Stefan O'Rear |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > aomclem7 | Structured version Visualization version GIF version | ||
| Description: Lemma for dfac11 43219. (𝑅1‘𝐴) is well-orderable. (Contributed by Stefan O'Rear, 20-Jan-2015.) |
| Ref | Expression |
|---|---|
| aomclem6.b | ⊢ 𝐵 = {〈𝑎, 𝑏〉 ∣ ∃𝑐 ∈ (𝑅1‘∪ dom 𝑧)((𝑐 ∈ 𝑏 ∧ ¬ 𝑐 ∈ 𝑎) ∧ ∀𝑑 ∈ (𝑅1‘∪ dom 𝑧)(𝑑(𝑧‘∪ dom 𝑧)𝑐 → (𝑑 ∈ 𝑎 ↔ 𝑑 ∈ 𝑏)))} |
| aomclem6.c | ⊢ 𝐶 = (𝑎 ∈ V ↦ sup((𝑦‘𝑎), (𝑅1‘dom 𝑧), 𝐵)) |
| aomclem6.d | ⊢ 𝐷 = recs((𝑎 ∈ V ↦ (𝐶‘((𝑅1‘dom 𝑧) ∖ ran 𝑎)))) |
| aomclem6.e | ⊢ 𝐸 = {〈𝑎, 𝑏〉 ∣ ∩ (◡𝐷 “ {𝑎}) ∈ ∩ (◡𝐷 “ {𝑏})} |
| aomclem6.f | ⊢ 𝐹 = {〈𝑎, 𝑏〉 ∣ ((rank‘𝑎) E (rank‘𝑏) ∨ ((rank‘𝑎) = (rank‘𝑏) ∧ 𝑎(𝑧‘suc (rank‘𝑎))𝑏))} |
| aomclem6.g | ⊢ 𝐺 = (if(dom 𝑧 = ∪ dom 𝑧, 𝐹, 𝐸) ∩ ((𝑅1‘dom 𝑧) × (𝑅1‘dom 𝑧))) |
| aomclem6.h | ⊢ 𝐻 = recs((𝑧 ∈ V ↦ 𝐺)) |
| aomclem6.a | ⊢ (𝜑 → 𝐴 ∈ On) |
| aomclem6.y | ⊢ (𝜑 → ∀𝑎 ∈ 𝒫 (𝑅1‘𝐴)(𝑎 ≠ ∅ → (𝑦‘𝑎) ∈ ((𝒫 𝑎 ∩ Fin) ∖ {∅}))) |
| Ref | Expression |
|---|---|
| aomclem7 | ⊢ (𝜑 → ∃𝑏 𝑏 We (𝑅1‘𝐴)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | aomclem6.b | . . 3 ⊢ 𝐵 = {〈𝑎, 𝑏〉 ∣ ∃𝑐 ∈ (𝑅1‘∪ dom 𝑧)((𝑐 ∈ 𝑏 ∧ ¬ 𝑐 ∈ 𝑎) ∧ ∀𝑑 ∈ (𝑅1‘∪ dom 𝑧)(𝑑(𝑧‘∪ dom 𝑧)𝑐 → (𝑑 ∈ 𝑎 ↔ 𝑑 ∈ 𝑏)))} | |
| 2 | aomclem6.c | . . 3 ⊢ 𝐶 = (𝑎 ∈ V ↦ sup((𝑦‘𝑎), (𝑅1‘dom 𝑧), 𝐵)) | |
| 3 | aomclem6.d | . . 3 ⊢ 𝐷 = recs((𝑎 ∈ V ↦ (𝐶‘((𝑅1‘dom 𝑧) ∖ ran 𝑎)))) | |
| 4 | aomclem6.e | . . 3 ⊢ 𝐸 = {〈𝑎, 𝑏〉 ∣ ∩ (◡𝐷 “ {𝑎}) ∈ ∩ (◡𝐷 “ {𝑏})} | |
| 5 | aomclem6.f | . . 3 ⊢ 𝐹 = {〈𝑎, 𝑏〉 ∣ ((rank‘𝑎) E (rank‘𝑏) ∨ ((rank‘𝑎) = (rank‘𝑏) ∧ 𝑎(𝑧‘suc (rank‘𝑎))𝑏))} | |
| 6 | aomclem6.g | . . 3 ⊢ 𝐺 = (if(dom 𝑧 = ∪ dom 𝑧, 𝐹, 𝐸) ∩ ((𝑅1‘dom 𝑧) × (𝑅1‘dom 𝑧))) | |
| 7 | aomclem6.h | . . 3 ⊢ 𝐻 = recs((𝑧 ∈ V ↦ 𝐺)) | |
| 8 | aomclem6.a | . . 3 ⊢ (𝜑 → 𝐴 ∈ On) | |
| 9 | aomclem6.y | . . 3 ⊢ (𝜑 → ∀𝑎 ∈ 𝒫 (𝑅1‘𝐴)(𝑎 ≠ ∅ → (𝑦‘𝑎) ∈ ((𝒫 𝑎 ∩ Fin) ∖ {∅}))) | |
| 10 | 1, 2, 3, 4, 5, 6, 7, 8, 9 | aomclem6 43216 | . 2 ⊢ (𝜑 → (𝐻‘𝐴) We (𝑅1‘𝐴)) |
| 11 | fvex 6844 | . . 3 ⊢ (𝐻‘𝐴) ∈ V | |
| 12 | weeq1 5608 | . . 3 ⊢ (𝑏 = (𝐻‘𝐴) → (𝑏 We (𝑅1‘𝐴) ↔ (𝐻‘𝐴) We (𝑅1‘𝐴))) | |
| 13 | 11, 12 | spcev 3557 | . 2 ⊢ ((𝐻‘𝐴) We (𝑅1‘𝐴) → ∃𝑏 𝑏 We (𝑅1‘𝐴)) |
| 14 | 10, 13 | syl 17 | 1 ⊢ (𝜑 → ∃𝑏 𝑏 We (𝑅1‘𝐴)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 ∨ wo 847 = wceq 1541 ∃wex 1780 ∈ wcel 2113 ≠ wne 2929 ∀wral 3048 ∃wrex 3057 Vcvv 3437 ∖ cdif 3895 ∩ cin 3897 ∅c0 4282 ifcif 4476 𝒫 cpw 4551 {csn 4577 ∪ cuni 4860 ∩ cint 4899 class class class wbr 5095 {copab 5157 ↦ cmpt 5176 E cep 5520 We wwe 5573 × cxp 5619 ◡ccnv 5620 dom cdm 5621 ran crn 5622 “ cima 5624 Oncon0 6314 suc csuc 6316 ‘cfv 6489 recscrecs 8299 Fincfn 8879 supcsup 9335 𝑅1cr1 9666 rankcrnk 9667 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-rep 5221 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7677 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-ral 3049 df-rex 3058 df-rmo 3347 df-reu 3348 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-pss 3918 df-nul 4283 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-tp 4582 df-op 4584 df-uni 4861 df-int 4900 df-iun 4945 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5516 df-eprel 5521 df-po 5529 df-so 5530 df-fr 5574 df-we 5576 df-xp 5627 df-rel 5628 df-cnv 5629 df-co 5630 df-dm 5631 df-rn 5632 df-res 5633 df-ima 5634 df-pred 6256 df-ord 6317 df-on 6318 df-lim 6319 df-suc 6320 df-iota 6445 df-fun 6491 df-fn 6492 df-f 6493 df-f1 6494 df-fo 6495 df-f1o 6496 df-fv 6497 df-isom 6498 df-riota 7312 df-ov 7358 df-oprab 7359 df-mpo 7360 df-om 7806 df-1st 7930 df-2nd 7931 df-frecs 8220 df-wrecs 8251 df-recs 8300 df-rdg 8338 df-1o 8394 df-2o 8395 df-map 8761 df-en 8880 df-fin 8883 df-sup 9337 df-r1 9668 df-rank 9669 |
| This theorem is referenced by: aomclem8 43218 |
| Copyright terms: Public domain | W3C validator |