![]() |
Mathbox for Stefan O'Rear |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > aomclem7 | Structured version Visualization version GIF version |
Description: Lemma for dfac11 41789. (π 1βπ΄) is well-orderable. (Contributed by Stefan O'Rear, 20-Jan-2015.) |
Ref | Expression |
---|---|
aomclem6.b | β’ π΅ = {β¨π, πβ© β£ βπ β (π 1ββͺ dom π§)((π β π β§ Β¬ π β π) β§ βπ β (π 1ββͺ dom π§)(π(π§ββͺ dom π§)π β (π β π β π β π)))} |
aomclem6.c | β’ πΆ = (π β V β¦ sup((π¦βπ), (π 1βdom π§), π΅)) |
aomclem6.d | β’ π· = recs((π β V β¦ (πΆβ((π 1βdom π§) β ran π)))) |
aomclem6.e | β’ πΈ = {β¨π, πβ© β£ β© (β‘π· β {π}) β β© (β‘π· β {π})} |
aomclem6.f | β’ πΉ = {β¨π, πβ© β£ ((rankβπ) E (rankβπ) β¨ ((rankβπ) = (rankβπ) β§ π(π§βsuc (rankβπ))π))} |
aomclem6.g | β’ πΊ = (if(dom π§ = βͺ dom π§, πΉ, πΈ) β© ((π 1βdom π§) Γ (π 1βdom π§))) |
aomclem6.h | β’ π» = recs((π§ β V β¦ πΊ)) |
aomclem6.a | β’ (π β π΄ β On) |
aomclem6.y | β’ (π β βπ β π« (π 1βπ΄)(π β β β (π¦βπ) β ((π« π β© Fin) β {β }))) |
Ref | Expression |
---|---|
aomclem7 | β’ (π β βπ π We (π 1βπ΄)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | aomclem6.b | . . 3 β’ π΅ = {β¨π, πβ© β£ βπ β (π 1ββͺ dom π§)((π β π β§ Β¬ π β π) β§ βπ β (π 1ββͺ dom π§)(π(π§ββͺ dom π§)π β (π β π β π β π)))} | |
2 | aomclem6.c | . . 3 β’ πΆ = (π β V β¦ sup((π¦βπ), (π 1βdom π§), π΅)) | |
3 | aomclem6.d | . . 3 β’ π· = recs((π β V β¦ (πΆβ((π 1βdom π§) β ran π)))) | |
4 | aomclem6.e | . . 3 β’ πΈ = {β¨π, πβ© β£ β© (β‘π· β {π}) β β© (β‘π· β {π})} | |
5 | aomclem6.f | . . 3 β’ πΉ = {β¨π, πβ© β£ ((rankβπ) E (rankβπ) β¨ ((rankβπ) = (rankβπ) β§ π(π§βsuc (rankβπ))π))} | |
6 | aomclem6.g | . . 3 β’ πΊ = (if(dom π§ = βͺ dom π§, πΉ, πΈ) β© ((π 1βdom π§) Γ (π 1βdom π§))) | |
7 | aomclem6.h | . . 3 β’ π» = recs((π§ β V β¦ πΊ)) | |
8 | aomclem6.a | . . 3 β’ (π β π΄ β On) | |
9 | aomclem6.y | . . 3 β’ (π β βπ β π« (π 1βπ΄)(π β β β (π¦βπ) β ((π« π β© Fin) β {β }))) | |
10 | 1, 2, 3, 4, 5, 6, 7, 8, 9 | aomclem6 41786 | . 2 β’ (π β (π»βπ΄) We (π 1βπ΄)) |
11 | fvex 6901 | . . 3 β’ (π»βπ΄) β V | |
12 | weeq1 5663 | . . 3 β’ (π = (π»βπ΄) β (π We (π 1βπ΄) β (π»βπ΄) We (π 1βπ΄))) | |
13 | 11, 12 | spcev 3596 | . 2 β’ ((π»βπ΄) We (π 1βπ΄) β βπ π We (π 1βπ΄)) |
14 | 10, 13 | syl 17 | 1 β’ (π β βπ π We (π 1βπ΄)) |
Colors of variables: wff setvar class |
Syntax hints: Β¬ wn 3 β wi 4 β wb 205 β§ wa 396 β¨ wo 845 = wceq 1541 βwex 1781 β wcel 2106 β wne 2940 βwral 3061 βwrex 3070 Vcvv 3474 β cdif 3944 β© cin 3946 β c0 4321 ifcif 4527 π« cpw 4601 {csn 4627 βͺ cuni 4907 β© cint 4949 class class class wbr 5147 {copab 5209 β¦ cmpt 5230 E cep 5578 We wwe 5629 Γ cxp 5673 β‘ccnv 5674 dom cdm 5675 ran crn 5676 β cima 5678 Oncon0 6361 suc csuc 6363 βcfv 6540 recscrecs 8366 Fincfn 8935 supcsup 9431 π 1cr1 9753 rankcrnk 9754 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-rep 5284 ax-sep 5298 ax-nul 5305 ax-pow 5362 ax-pr 5426 ax-un 7721 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-ral 3062 df-rex 3071 df-rmo 3376 df-reu 3377 df-rab 3433 df-v 3476 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-pss 3966 df-nul 4322 df-if 4528 df-pw 4603 df-sn 4628 df-pr 4630 df-tp 4632 df-op 4634 df-uni 4908 df-int 4950 df-iun 4998 df-br 5148 df-opab 5210 df-mpt 5231 df-tr 5265 df-id 5573 df-eprel 5579 df-po 5587 df-so 5588 df-fr 5630 df-we 5632 df-xp 5681 df-rel 5682 df-cnv 5683 df-co 5684 df-dm 5685 df-rn 5686 df-res 5687 df-ima 5688 df-pred 6297 df-ord 6364 df-on 6365 df-lim 6366 df-suc 6367 df-iota 6492 df-fun 6542 df-fn 6543 df-f 6544 df-f1 6545 df-fo 6546 df-f1o 6547 df-fv 6548 df-isom 6549 df-riota 7361 df-ov 7408 df-oprab 7409 df-mpo 7410 df-om 7852 df-1st 7971 df-2nd 7972 df-frecs 8262 df-wrecs 8293 df-recs 8367 df-rdg 8406 df-1o 8462 df-2o 8463 df-map 8818 df-en 8936 df-fin 8939 df-sup 9433 df-r1 9755 df-rank 9756 |
This theorem is referenced by: aomclem8 41788 |
Copyright terms: Public domain | W3C validator |