![]() |
Mathbox for Stefan O'Rear |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > aomclem7 | Structured version Visualization version GIF version |
Description: Lemma for dfac11 43014. (𝑅1‘𝐴) is well-orderable. (Contributed by Stefan O'Rear, 20-Jan-2015.) |
Ref | Expression |
---|---|
aomclem6.b | ⊢ 𝐵 = {〈𝑎, 𝑏〉 ∣ ∃𝑐 ∈ (𝑅1‘∪ dom 𝑧)((𝑐 ∈ 𝑏 ∧ ¬ 𝑐 ∈ 𝑎) ∧ ∀𝑑 ∈ (𝑅1‘∪ dom 𝑧)(𝑑(𝑧‘∪ dom 𝑧)𝑐 → (𝑑 ∈ 𝑎 ↔ 𝑑 ∈ 𝑏)))} |
aomclem6.c | ⊢ 𝐶 = (𝑎 ∈ V ↦ sup((𝑦‘𝑎), (𝑅1‘dom 𝑧), 𝐵)) |
aomclem6.d | ⊢ 𝐷 = recs((𝑎 ∈ V ↦ (𝐶‘((𝑅1‘dom 𝑧) ∖ ran 𝑎)))) |
aomclem6.e | ⊢ 𝐸 = {〈𝑎, 𝑏〉 ∣ ∩ (◡𝐷 “ {𝑎}) ∈ ∩ (◡𝐷 “ {𝑏})} |
aomclem6.f | ⊢ 𝐹 = {〈𝑎, 𝑏〉 ∣ ((rank‘𝑎) E (rank‘𝑏) ∨ ((rank‘𝑎) = (rank‘𝑏) ∧ 𝑎(𝑧‘suc (rank‘𝑎))𝑏))} |
aomclem6.g | ⊢ 𝐺 = (if(dom 𝑧 = ∪ dom 𝑧, 𝐹, 𝐸) ∩ ((𝑅1‘dom 𝑧) × (𝑅1‘dom 𝑧))) |
aomclem6.h | ⊢ 𝐻 = recs((𝑧 ∈ V ↦ 𝐺)) |
aomclem6.a | ⊢ (𝜑 → 𝐴 ∈ On) |
aomclem6.y | ⊢ (𝜑 → ∀𝑎 ∈ 𝒫 (𝑅1‘𝐴)(𝑎 ≠ ∅ → (𝑦‘𝑎) ∈ ((𝒫 𝑎 ∩ Fin) ∖ {∅}))) |
Ref | Expression |
---|---|
aomclem7 | ⊢ (𝜑 → ∃𝑏 𝑏 We (𝑅1‘𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | aomclem6.b | . . 3 ⊢ 𝐵 = {〈𝑎, 𝑏〉 ∣ ∃𝑐 ∈ (𝑅1‘∪ dom 𝑧)((𝑐 ∈ 𝑏 ∧ ¬ 𝑐 ∈ 𝑎) ∧ ∀𝑑 ∈ (𝑅1‘∪ dom 𝑧)(𝑑(𝑧‘∪ dom 𝑧)𝑐 → (𝑑 ∈ 𝑎 ↔ 𝑑 ∈ 𝑏)))} | |
2 | aomclem6.c | . . 3 ⊢ 𝐶 = (𝑎 ∈ V ↦ sup((𝑦‘𝑎), (𝑅1‘dom 𝑧), 𝐵)) | |
3 | aomclem6.d | . . 3 ⊢ 𝐷 = recs((𝑎 ∈ V ↦ (𝐶‘((𝑅1‘dom 𝑧) ∖ ran 𝑎)))) | |
4 | aomclem6.e | . . 3 ⊢ 𝐸 = {〈𝑎, 𝑏〉 ∣ ∩ (◡𝐷 “ {𝑎}) ∈ ∩ (◡𝐷 “ {𝑏})} | |
5 | aomclem6.f | . . 3 ⊢ 𝐹 = {〈𝑎, 𝑏〉 ∣ ((rank‘𝑎) E (rank‘𝑏) ∨ ((rank‘𝑎) = (rank‘𝑏) ∧ 𝑎(𝑧‘suc (rank‘𝑎))𝑏))} | |
6 | aomclem6.g | . . 3 ⊢ 𝐺 = (if(dom 𝑧 = ∪ dom 𝑧, 𝐹, 𝐸) ∩ ((𝑅1‘dom 𝑧) × (𝑅1‘dom 𝑧))) | |
7 | aomclem6.h | . . 3 ⊢ 𝐻 = recs((𝑧 ∈ V ↦ 𝐺)) | |
8 | aomclem6.a | . . 3 ⊢ (𝜑 → 𝐴 ∈ On) | |
9 | aomclem6.y | . . 3 ⊢ (𝜑 → ∀𝑎 ∈ 𝒫 (𝑅1‘𝐴)(𝑎 ≠ ∅ → (𝑦‘𝑎) ∈ ((𝒫 𝑎 ∩ Fin) ∖ {∅}))) | |
10 | 1, 2, 3, 4, 5, 6, 7, 8, 9 | aomclem6 43011 | . 2 ⊢ (𝜑 → (𝐻‘𝐴) We (𝑅1‘𝐴)) |
11 | fvex 6928 | . . 3 ⊢ (𝐻‘𝐴) ∈ V | |
12 | weeq1 5683 | . . 3 ⊢ (𝑏 = (𝐻‘𝐴) → (𝑏 We (𝑅1‘𝐴) ↔ (𝐻‘𝐴) We (𝑅1‘𝐴))) | |
13 | 11, 12 | spcev 3619 | . 2 ⊢ ((𝐻‘𝐴) We (𝑅1‘𝐴) → ∃𝑏 𝑏 We (𝑅1‘𝐴)) |
14 | 10, 13 | syl 17 | 1 ⊢ (𝜑 → ∃𝑏 𝑏 We (𝑅1‘𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 ∨ wo 846 = wceq 1537 ∃wex 1777 ∈ wcel 2108 ≠ wne 2946 ∀wral 3067 ∃wrex 3076 Vcvv 3488 ∖ cdif 3973 ∩ cin 3975 ∅c0 4352 ifcif 4548 𝒫 cpw 4622 {csn 4648 ∪ cuni 4931 ∩ cint 4970 class class class wbr 5166 {copab 5228 ↦ cmpt 5249 E cep 5598 We wwe 5649 × cxp 5693 ◡ccnv 5694 dom cdm 5695 ran crn 5696 “ cima 5698 Oncon0 6390 suc csuc 6392 ‘cfv 6568 recscrecs 8420 Fincfn 8997 supcsup 9503 𝑅1cr1 9825 rankcrnk 9826 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-rep 5303 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7764 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-ral 3068 df-rex 3077 df-rmo 3388 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-pss 3996 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-tp 4653 df-op 4655 df-uni 4932 df-int 4971 df-iun 5017 df-br 5167 df-opab 5229 df-mpt 5250 df-tr 5284 df-id 5593 df-eprel 5599 df-po 5607 df-so 5608 df-fr 5650 df-we 5652 df-xp 5701 df-rel 5702 df-cnv 5703 df-co 5704 df-dm 5705 df-rn 5706 df-res 5707 df-ima 5708 df-pred 6327 df-ord 6393 df-on 6394 df-lim 6395 df-suc 6396 df-iota 6520 df-fun 6570 df-fn 6571 df-f 6572 df-f1 6573 df-fo 6574 df-f1o 6575 df-fv 6576 df-isom 6577 df-riota 7399 df-ov 7446 df-oprab 7447 df-mpo 7448 df-om 7898 df-1st 8024 df-2nd 8025 df-frecs 8316 df-wrecs 8347 df-recs 8421 df-rdg 8460 df-1o 8516 df-2o 8517 df-map 8880 df-en 8998 df-fin 9001 df-sup 9505 df-r1 9827 df-rank 9828 |
This theorem is referenced by: aomclem8 43013 |
Copyright terms: Public domain | W3C validator |