Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  aomclem7 Structured version   Visualization version   GIF version

Theorem aomclem7 43042
Description: Lemma for dfac11 43044. (𝑅1𝐴) is well-orderable. (Contributed by Stefan O'Rear, 20-Jan-2015.)
Hypotheses
Ref Expression
aomclem6.b 𝐵 = {⟨𝑎, 𝑏⟩ ∣ ∃𝑐 ∈ (𝑅1 dom 𝑧)((𝑐𝑏 ∧ ¬ 𝑐𝑎) ∧ ∀𝑑 ∈ (𝑅1 dom 𝑧)(𝑑(𝑧 dom 𝑧)𝑐 → (𝑑𝑎𝑑𝑏)))}
aomclem6.c 𝐶 = (𝑎 ∈ V ↦ sup((𝑦𝑎), (𝑅1‘dom 𝑧), 𝐵))
aomclem6.d 𝐷 = recs((𝑎 ∈ V ↦ (𝐶‘((𝑅1‘dom 𝑧) ∖ ran 𝑎))))
aomclem6.e 𝐸 = {⟨𝑎, 𝑏⟩ ∣ (𝐷 “ {𝑎}) ∈ (𝐷 “ {𝑏})}
aomclem6.f 𝐹 = {⟨𝑎, 𝑏⟩ ∣ ((rank‘𝑎) E (rank‘𝑏) ∨ ((rank‘𝑎) = (rank‘𝑏) ∧ 𝑎(𝑧‘suc (rank‘𝑎))𝑏))}
aomclem6.g 𝐺 = (if(dom 𝑧 = dom 𝑧, 𝐹, 𝐸) ∩ ((𝑅1‘dom 𝑧) × (𝑅1‘dom 𝑧)))
aomclem6.h 𝐻 = recs((𝑧 ∈ V ↦ 𝐺))
aomclem6.a (𝜑𝐴 ∈ On)
aomclem6.y (𝜑 → ∀𝑎 ∈ 𝒫 (𝑅1𝐴)(𝑎 ≠ ∅ → (𝑦𝑎) ∈ ((𝒫 𝑎 ∩ Fin) ∖ {∅})))
Assertion
Ref Expression
aomclem7 (𝜑 → ∃𝑏 𝑏 We (𝑅1𝐴))
Distinct variable groups:   𝑦,𝑧,𝑎,𝑏,𝑐,𝑑   𝜑,𝑎,𝑏,𝑐,𝑑,𝑧   𝐶,𝑎,𝑏,𝑐,𝑑   𝐷,𝑎,𝑏,𝑐,𝑑   𝐴,𝑎,𝑏,𝑐,𝑑,𝑧   𝐻,𝑎,𝑏,𝑐,𝑑,𝑧   𝐺,𝑑
Allowed substitution hints:   𝜑(𝑦)   𝐴(𝑦)   𝐵(𝑦,𝑧,𝑎,𝑏,𝑐,𝑑)   𝐶(𝑦,𝑧)   𝐷(𝑦,𝑧)   𝐸(𝑦,𝑧,𝑎,𝑏,𝑐,𝑑)   𝐹(𝑦,𝑧,𝑎,𝑏,𝑐,𝑑)   𝐺(𝑦,𝑧,𝑎,𝑏,𝑐)   𝐻(𝑦)

Proof of Theorem aomclem7
StepHypRef Expression
1 aomclem6.b . . 3 𝐵 = {⟨𝑎, 𝑏⟩ ∣ ∃𝑐 ∈ (𝑅1 dom 𝑧)((𝑐𝑏 ∧ ¬ 𝑐𝑎) ∧ ∀𝑑 ∈ (𝑅1 dom 𝑧)(𝑑(𝑧 dom 𝑧)𝑐 → (𝑑𝑎𝑑𝑏)))}
2 aomclem6.c . . 3 𝐶 = (𝑎 ∈ V ↦ sup((𝑦𝑎), (𝑅1‘dom 𝑧), 𝐵))
3 aomclem6.d . . 3 𝐷 = recs((𝑎 ∈ V ↦ (𝐶‘((𝑅1‘dom 𝑧) ∖ ran 𝑎))))
4 aomclem6.e . . 3 𝐸 = {⟨𝑎, 𝑏⟩ ∣ (𝐷 “ {𝑎}) ∈ (𝐷 “ {𝑏})}
5 aomclem6.f . . 3 𝐹 = {⟨𝑎, 𝑏⟩ ∣ ((rank‘𝑎) E (rank‘𝑏) ∨ ((rank‘𝑎) = (rank‘𝑏) ∧ 𝑎(𝑧‘suc (rank‘𝑎))𝑏))}
6 aomclem6.g . . 3 𝐺 = (if(dom 𝑧 = dom 𝑧, 𝐹, 𝐸) ∩ ((𝑅1‘dom 𝑧) × (𝑅1‘dom 𝑧)))
7 aomclem6.h . . 3 𝐻 = recs((𝑧 ∈ V ↦ 𝐺))
8 aomclem6.a . . 3 (𝜑𝐴 ∈ On)
9 aomclem6.y . . 3 (𝜑 → ∀𝑎 ∈ 𝒫 (𝑅1𝐴)(𝑎 ≠ ∅ → (𝑦𝑎) ∈ ((𝒫 𝑎 ∩ Fin) ∖ {∅})))
101, 2, 3, 4, 5, 6, 7, 8, 9aomclem6 43041 . 2 (𝜑 → (𝐻𝐴) We (𝑅1𝐴))
11 fvex 6873 . . 3 (𝐻𝐴) ∈ V
12 weeq1 5627 . . 3 (𝑏 = (𝐻𝐴) → (𝑏 We (𝑅1𝐴) ↔ (𝐻𝐴) We (𝑅1𝐴)))
1311, 12spcev 3575 . 2 ((𝐻𝐴) We (𝑅1𝐴) → ∃𝑏 𝑏 We (𝑅1𝐴))
1410, 13syl 17 1 (𝜑 → ∃𝑏 𝑏 We (𝑅1𝐴))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wo 847   = wceq 1540  wex 1779  wcel 2109  wne 2926  wral 3045  wrex 3054  Vcvv 3450  cdif 3913  cin 3915  c0 4298  ifcif 4490  𝒫 cpw 4565  {csn 4591   cuni 4873   cint 4912   class class class wbr 5109  {copab 5171  cmpt 5190   E cep 5539   We wwe 5592   × cxp 5638  ccnv 5639  dom cdm 5640  ran crn 5641  cima 5643  Oncon0 6334  suc csuc 6336  cfv 6513  recscrecs 8341  Fincfn 8920  supcsup 9397  𝑅1cr1 9721  rankcrnk 9722
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5236  ax-sep 5253  ax-nul 5263  ax-pow 5322  ax-pr 5389  ax-un 7713
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3756  df-csb 3865  df-dif 3919  df-un 3921  df-in 3923  df-ss 3933  df-pss 3936  df-nul 4299  df-if 4491  df-pw 4567  df-sn 4592  df-pr 4594  df-tp 4596  df-op 4598  df-uni 4874  df-int 4913  df-iun 4959  df-br 5110  df-opab 5172  df-mpt 5191  df-tr 5217  df-id 5535  df-eprel 5540  df-po 5548  df-so 5549  df-fr 5593  df-we 5595  df-xp 5646  df-rel 5647  df-cnv 5648  df-co 5649  df-dm 5650  df-rn 5651  df-res 5652  df-ima 5653  df-pred 6276  df-ord 6337  df-on 6338  df-lim 6339  df-suc 6340  df-iota 6466  df-fun 6515  df-fn 6516  df-f 6517  df-f1 6518  df-fo 6519  df-f1o 6520  df-fv 6521  df-isom 6522  df-riota 7346  df-ov 7392  df-oprab 7393  df-mpo 7394  df-om 7845  df-1st 7970  df-2nd 7971  df-frecs 8262  df-wrecs 8293  df-recs 8342  df-rdg 8380  df-1o 8436  df-2o 8437  df-map 8803  df-en 8921  df-fin 8924  df-sup 9399  df-r1 9723  df-rank 9724
This theorem is referenced by:  aomclem8  43043
  Copyright terms: Public domain W3C validator