MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fpwwecbv Structured version   Visualization version   GIF version

Theorem fpwwecbv 10535
Description: Lemma for fpwwe 10537. (Contributed by Mario Carneiro, 15-May-2015.)
Hypothesis
Ref Expression
fpwwe.1 𝑊 = {⟨𝑥, 𝑟⟩ ∣ ((𝑥𝐴𝑟 ⊆ (𝑥 × 𝑥)) ∧ (𝑟 We 𝑥 ∧ ∀𝑦𝑥 (𝐹‘(𝑟 “ {𝑦})) = 𝑦))}
Assertion
Ref Expression
fpwwecbv 𝑊 = {⟨𝑎, 𝑠⟩ ∣ ((𝑎𝐴𝑠 ⊆ (𝑎 × 𝑎)) ∧ (𝑠 We 𝑎 ∧ ∀𝑧𝑎 (𝐹‘(𝑠 “ {𝑧})) = 𝑧))}
Distinct variable groups:   𝑟,𝑎,𝑠,𝑥,𝐴   𝑦,𝑎,𝑧,𝐹,𝑟,𝑠,𝑥
Allowed substitution hints:   𝐴(𝑦,𝑧)   𝑊(𝑥,𝑦,𝑧,𝑠,𝑟,𝑎)

Proof of Theorem fpwwecbv
StepHypRef Expression
1 fpwwe.1 . 2 𝑊 = {⟨𝑥, 𝑟⟩ ∣ ((𝑥𝐴𝑟 ⊆ (𝑥 × 𝑥)) ∧ (𝑟 We 𝑥 ∧ ∀𝑦𝑥 (𝐹‘(𝑟 “ {𝑦})) = 𝑦))}
2 simpl 482 . . . . . 6 ((𝑥 = 𝑎𝑟 = 𝑠) → 𝑥 = 𝑎)
32sseq1d 3966 . . . . 5 ((𝑥 = 𝑎𝑟 = 𝑠) → (𝑥𝐴𝑎𝐴))
4 simpr 484 . . . . . 6 ((𝑥 = 𝑎𝑟 = 𝑠) → 𝑟 = 𝑠)
52sqxpeqd 5648 . . . . . 6 ((𝑥 = 𝑎𝑟 = 𝑠) → (𝑥 × 𝑥) = (𝑎 × 𝑎))
64, 5sseq12d 3968 . . . . 5 ((𝑥 = 𝑎𝑟 = 𝑠) → (𝑟 ⊆ (𝑥 × 𝑥) ↔ 𝑠 ⊆ (𝑎 × 𝑎)))
73, 6anbi12d 632 . . . 4 ((𝑥 = 𝑎𝑟 = 𝑠) → ((𝑥𝐴𝑟 ⊆ (𝑥 × 𝑥)) ↔ (𝑎𝐴𝑠 ⊆ (𝑎 × 𝑎))))
84, 2weeq12d 5605 . . . . 5 ((𝑥 = 𝑎𝑟 = 𝑠) → (𝑟 We 𝑥𝑠 We 𝑎))
9 sneq 4586 . . . . . . . . . 10 (𝑦 = 𝑧 → {𝑦} = {𝑧})
109imaeq2d 6009 . . . . . . . . 9 (𝑦 = 𝑧 → (𝑟 “ {𝑦}) = (𝑟 “ {𝑧}))
1110fveq2d 6826 . . . . . . . 8 (𝑦 = 𝑧 → (𝐹‘(𝑟 “ {𝑦})) = (𝐹‘(𝑟 “ {𝑧})))
12 id 22 . . . . . . . 8 (𝑦 = 𝑧𝑦 = 𝑧)
1311, 12eqeq12d 2747 . . . . . . 7 (𝑦 = 𝑧 → ((𝐹‘(𝑟 “ {𝑦})) = 𝑦 ↔ (𝐹‘(𝑟 “ {𝑧})) = 𝑧))
1413cbvralvw 3210 . . . . . 6 (∀𝑦𝑥 (𝐹‘(𝑟 “ {𝑦})) = 𝑦 ↔ ∀𝑧𝑥 (𝐹‘(𝑟 “ {𝑧})) = 𝑧)
154cnveqd 5815 . . . . . . . . 9 ((𝑥 = 𝑎𝑟 = 𝑠) → 𝑟 = 𝑠)
1615imaeq1d 6008 . . . . . . . 8 ((𝑥 = 𝑎𝑟 = 𝑠) → (𝑟 “ {𝑧}) = (𝑠 “ {𝑧}))
1716fveqeq2d 6830 . . . . . . 7 ((𝑥 = 𝑎𝑟 = 𝑠) → ((𝐹‘(𝑟 “ {𝑧})) = 𝑧 ↔ (𝐹‘(𝑠 “ {𝑧})) = 𝑧))
182, 17raleqbidv 3312 . . . . . 6 ((𝑥 = 𝑎𝑟 = 𝑠) → (∀𝑧𝑥 (𝐹‘(𝑟 “ {𝑧})) = 𝑧 ↔ ∀𝑧𝑎 (𝐹‘(𝑠 “ {𝑧})) = 𝑧))
1914, 18bitrid 283 . . . . 5 ((𝑥 = 𝑎𝑟 = 𝑠) → (∀𝑦𝑥 (𝐹‘(𝑟 “ {𝑦})) = 𝑦 ↔ ∀𝑧𝑎 (𝐹‘(𝑠 “ {𝑧})) = 𝑧))
208, 19anbi12d 632 . . . 4 ((𝑥 = 𝑎𝑟 = 𝑠) → ((𝑟 We 𝑥 ∧ ∀𝑦𝑥 (𝐹‘(𝑟 “ {𝑦})) = 𝑦) ↔ (𝑠 We 𝑎 ∧ ∀𝑧𝑎 (𝐹‘(𝑠 “ {𝑧})) = 𝑧)))
217, 20anbi12d 632 . . 3 ((𝑥 = 𝑎𝑟 = 𝑠) → (((𝑥𝐴𝑟 ⊆ (𝑥 × 𝑥)) ∧ (𝑟 We 𝑥 ∧ ∀𝑦𝑥 (𝐹‘(𝑟 “ {𝑦})) = 𝑦)) ↔ ((𝑎𝐴𝑠 ⊆ (𝑎 × 𝑎)) ∧ (𝑠 We 𝑎 ∧ ∀𝑧𝑎 (𝐹‘(𝑠 “ {𝑧})) = 𝑧))))
2221cbvopabv 5164 . 2 {⟨𝑥, 𝑟⟩ ∣ ((𝑥𝐴𝑟 ⊆ (𝑥 × 𝑥)) ∧ (𝑟 We 𝑥 ∧ ∀𝑦𝑥 (𝐹‘(𝑟 “ {𝑦})) = 𝑦))} = {⟨𝑎, 𝑠⟩ ∣ ((𝑎𝐴𝑠 ⊆ (𝑎 × 𝑎)) ∧ (𝑠 We 𝑎 ∧ ∀𝑧𝑎 (𝐹‘(𝑠 “ {𝑧})) = 𝑧))}
231, 22eqtri 2754 1 𝑊 = {⟨𝑎, 𝑠⟩ ∣ ((𝑎𝐴𝑠 ⊆ (𝑎 × 𝑎)) ∧ (𝑠 We 𝑎 ∧ ∀𝑧𝑎 (𝐹‘(𝑠 “ {𝑧})) = 𝑧))}
Colors of variables: wff setvar class
Syntax hints:  wa 395   = wceq 1541  wral 3047  wss 3902  {csn 4576  {copab 5153   We wwe 5568   × cxp 5614  ccnv 5615  cima 5619  cfv 6481
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-ext 2703
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-sb 2068  df-clab 2710  df-cleq 2723  df-clel 2806  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-nul 4284  df-if 4476  df-sn 4577  df-pr 4579  df-op 4583  df-uni 4860  df-br 5092  df-opab 5154  df-po 5524  df-so 5525  df-fr 5569  df-we 5571  df-xp 5622  df-cnv 5624  df-dm 5626  df-rn 5627  df-res 5628  df-ima 5629  df-iota 6437  df-fv 6489
This theorem is referenced by:  canthnum  10540  canthp1  10545
  Copyright terms: Public domain W3C validator