Proof of Theorem fpwwecbv
| Step | Hyp | Ref
| Expression |
| 1 | | fpwwe.1 |
. 2
⊢ 𝑊 = {〈𝑥, 𝑟〉 ∣ ((𝑥 ⊆ 𝐴 ∧ 𝑟 ⊆ (𝑥 × 𝑥)) ∧ (𝑟 We 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝐹‘(◡𝑟 “ {𝑦})) = 𝑦))} |
| 2 | | simpl 482 |
. . . . . 6
⊢ ((𝑥 = 𝑎 ∧ 𝑟 = 𝑠) → 𝑥 = 𝑎) |
| 3 | 2 | sseq1d 3995 |
. . . . 5
⊢ ((𝑥 = 𝑎 ∧ 𝑟 = 𝑠) → (𝑥 ⊆ 𝐴 ↔ 𝑎 ⊆ 𝐴)) |
| 4 | | simpr 484 |
. . . . . 6
⊢ ((𝑥 = 𝑎 ∧ 𝑟 = 𝑠) → 𝑟 = 𝑠) |
| 5 | 2 | sqxpeqd 5697 |
. . . . . 6
⊢ ((𝑥 = 𝑎 ∧ 𝑟 = 𝑠) → (𝑥 × 𝑥) = (𝑎 × 𝑎)) |
| 6 | 4, 5 | sseq12d 3997 |
. . . . 5
⊢ ((𝑥 = 𝑎 ∧ 𝑟 = 𝑠) → (𝑟 ⊆ (𝑥 × 𝑥) ↔ 𝑠 ⊆ (𝑎 × 𝑎))) |
| 7 | 3, 6 | anbi12d 632 |
. . . 4
⊢ ((𝑥 = 𝑎 ∧ 𝑟 = 𝑠) → ((𝑥 ⊆ 𝐴 ∧ 𝑟 ⊆ (𝑥 × 𝑥)) ↔ (𝑎 ⊆ 𝐴 ∧ 𝑠 ⊆ (𝑎 × 𝑎)))) |
| 8 | 4, 2 | weeq12d 5654 |
. . . . 5
⊢ ((𝑥 = 𝑎 ∧ 𝑟 = 𝑠) → (𝑟 We 𝑥 ↔ 𝑠 We 𝑎)) |
| 9 | | sneq 4616 |
. . . . . . . . . 10
⊢ (𝑦 = 𝑧 → {𝑦} = {𝑧}) |
| 10 | 9 | imaeq2d 6058 |
. . . . . . . . 9
⊢ (𝑦 = 𝑧 → (◡𝑟 “ {𝑦}) = (◡𝑟 “ {𝑧})) |
| 11 | 10 | fveq2d 6890 |
. . . . . . . 8
⊢ (𝑦 = 𝑧 → (𝐹‘(◡𝑟 “ {𝑦})) = (𝐹‘(◡𝑟 “ {𝑧}))) |
| 12 | | id 22 |
. . . . . . . 8
⊢ (𝑦 = 𝑧 → 𝑦 = 𝑧) |
| 13 | 11, 12 | eqeq12d 2750 |
. . . . . . 7
⊢ (𝑦 = 𝑧 → ((𝐹‘(◡𝑟 “ {𝑦})) = 𝑦 ↔ (𝐹‘(◡𝑟 “ {𝑧})) = 𝑧)) |
| 14 | 13 | cbvralvw 3223 |
. . . . . 6
⊢
(∀𝑦 ∈
𝑥 (𝐹‘(◡𝑟 “ {𝑦})) = 𝑦 ↔ ∀𝑧 ∈ 𝑥 (𝐹‘(◡𝑟 “ {𝑧})) = 𝑧) |
| 15 | 4 | cnveqd 5866 |
. . . . . . . . 9
⊢ ((𝑥 = 𝑎 ∧ 𝑟 = 𝑠) → ◡𝑟 = ◡𝑠) |
| 16 | 15 | imaeq1d 6057 |
. . . . . . . 8
⊢ ((𝑥 = 𝑎 ∧ 𝑟 = 𝑠) → (◡𝑟 “ {𝑧}) = (◡𝑠 “ {𝑧})) |
| 17 | 16 | fveqeq2d 6894 |
. . . . . . 7
⊢ ((𝑥 = 𝑎 ∧ 𝑟 = 𝑠) → ((𝐹‘(◡𝑟 “ {𝑧})) = 𝑧 ↔ (𝐹‘(◡𝑠 “ {𝑧})) = 𝑧)) |
| 18 | 2, 17 | raleqbidv 3329 |
. . . . . 6
⊢ ((𝑥 = 𝑎 ∧ 𝑟 = 𝑠) → (∀𝑧 ∈ 𝑥 (𝐹‘(◡𝑟 “ {𝑧})) = 𝑧 ↔ ∀𝑧 ∈ 𝑎 (𝐹‘(◡𝑠 “ {𝑧})) = 𝑧)) |
| 19 | 14, 18 | bitrid 283 |
. . . . 5
⊢ ((𝑥 = 𝑎 ∧ 𝑟 = 𝑠) → (∀𝑦 ∈ 𝑥 (𝐹‘(◡𝑟 “ {𝑦})) = 𝑦 ↔ ∀𝑧 ∈ 𝑎 (𝐹‘(◡𝑠 “ {𝑧})) = 𝑧)) |
| 20 | 8, 19 | anbi12d 632 |
. . . 4
⊢ ((𝑥 = 𝑎 ∧ 𝑟 = 𝑠) → ((𝑟 We 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝐹‘(◡𝑟 “ {𝑦})) = 𝑦) ↔ (𝑠 We 𝑎 ∧ ∀𝑧 ∈ 𝑎 (𝐹‘(◡𝑠 “ {𝑧})) = 𝑧))) |
| 21 | 7, 20 | anbi12d 632 |
. . 3
⊢ ((𝑥 = 𝑎 ∧ 𝑟 = 𝑠) → (((𝑥 ⊆ 𝐴 ∧ 𝑟 ⊆ (𝑥 × 𝑥)) ∧ (𝑟 We 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝐹‘(◡𝑟 “ {𝑦})) = 𝑦)) ↔ ((𝑎 ⊆ 𝐴 ∧ 𝑠 ⊆ (𝑎 × 𝑎)) ∧ (𝑠 We 𝑎 ∧ ∀𝑧 ∈ 𝑎 (𝐹‘(◡𝑠 “ {𝑧})) = 𝑧)))) |
| 22 | 21 | cbvopabv 5196 |
. 2
⊢
{〈𝑥, 𝑟〉 ∣ ((𝑥 ⊆ 𝐴 ∧ 𝑟 ⊆ (𝑥 × 𝑥)) ∧ (𝑟 We 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝐹‘(◡𝑟 “ {𝑦})) = 𝑦))} = {〈𝑎, 𝑠〉 ∣ ((𝑎 ⊆ 𝐴 ∧ 𝑠 ⊆ (𝑎 × 𝑎)) ∧ (𝑠 We 𝑎 ∧ ∀𝑧 ∈ 𝑎 (𝐹‘(◡𝑠 “ {𝑧})) = 𝑧))} |
| 23 | 1, 22 | eqtri 2757 |
1
⊢ 𝑊 = {〈𝑎, 𝑠〉 ∣ ((𝑎 ⊆ 𝐴 ∧ 𝑠 ⊆ (𝑎 × 𝑎)) ∧ (𝑠 We 𝑎 ∧ ∀𝑧 ∈ 𝑎 (𝐹‘(◡𝑠 “ {𝑧})) = 𝑧))} |