MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fpwwecbv Structured version   Visualization version   GIF version

Theorem fpwwecbv 10331
Description: Lemma for fpwwe 10333. (Contributed by Mario Carneiro, 15-May-2015.)
Hypothesis
Ref Expression
fpwwe.1 𝑊 = {⟨𝑥, 𝑟⟩ ∣ ((𝑥𝐴𝑟 ⊆ (𝑥 × 𝑥)) ∧ (𝑟 We 𝑥 ∧ ∀𝑦𝑥 (𝐹‘(𝑟 “ {𝑦})) = 𝑦))}
Assertion
Ref Expression
fpwwecbv 𝑊 = {⟨𝑎, 𝑠⟩ ∣ ((𝑎𝐴𝑠 ⊆ (𝑎 × 𝑎)) ∧ (𝑠 We 𝑎 ∧ ∀𝑧𝑎 (𝐹‘(𝑠 “ {𝑧})) = 𝑧))}
Distinct variable groups:   𝑟,𝑎,𝑠,𝑥,𝐴   𝑦,𝑎,𝑧,𝐹,𝑟,𝑠,𝑥
Allowed substitution hints:   𝐴(𝑦,𝑧)   𝑊(𝑥,𝑦,𝑧,𝑠,𝑟,𝑎)

Proof of Theorem fpwwecbv
StepHypRef Expression
1 fpwwe.1 . 2 𝑊 = {⟨𝑥, 𝑟⟩ ∣ ((𝑥𝐴𝑟 ⊆ (𝑥 × 𝑥)) ∧ (𝑟 We 𝑥 ∧ ∀𝑦𝑥 (𝐹‘(𝑟 “ {𝑦})) = 𝑦))}
2 simpl 482 . . . . . 6 ((𝑥 = 𝑎𝑟 = 𝑠) → 𝑥 = 𝑎)
32sseq1d 3948 . . . . 5 ((𝑥 = 𝑎𝑟 = 𝑠) → (𝑥𝐴𝑎𝐴))
4 simpr 484 . . . . . 6 ((𝑥 = 𝑎𝑟 = 𝑠) → 𝑟 = 𝑠)
52sqxpeqd 5612 . . . . . 6 ((𝑥 = 𝑎𝑟 = 𝑠) → (𝑥 × 𝑥) = (𝑎 × 𝑎))
64, 5sseq12d 3950 . . . . 5 ((𝑥 = 𝑎𝑟 = 𝑠) → (𝑟 ⊆ (𝑥 × 𝑥) ↔ 𝑠 ⊆ (𝑎 × 𝑎)))
73, 6anbi12d 630 . . . 4 ((𝑥 = 𝑎𝑟 = 𝑠) → ((𝑥𝐴𝑟 ⊆ (𝑥 × 𝑥)) ↔ (𝑎𝐴𝑠 ⊆ (𝑎 × 𝑎))))
8 weeq2 5569 . . . . . 6 (𝑥 = 𝑎 → (𝑟 We 𝑥𝑟 We 𝑎))
9 weeq1 5568 . . . . . 6 (𝑟 = 𝑠 → (𝑟 We 𝑎𝑠 We 𝑎))
108, 9sylan9bb 509 . . . . 5 ((𝑥 = 𝑎𝑟 = 𝑠) → (𝑟 We 𝑥𝑠 We 𝑎))
11 sneq 4568 . . . . . . . . . 10 (𝑦 = 𝑧 → {𝑦} = {𝑧})
1211imaeq2d 5958 . . . . . . . . 9 (𝑦 = 𝑧 → (𝑟 “ {𝑦}) = (𝑟 “ {𝑧}))
1312fveq2d 6760 . . . . . . . 8 (𝑦 = 𝑧 → (𝐹‘(𝑟 “ {𝑦})) = (𝐹‘(𝑟 “ {𝑧})))
14 id 22 . . . . . . . 8 (𝑦 = 𝑧𝑦 = 𝑧)
1513, 14eqeq12d 2754 . . . . . . 7 (𝑦 = 𝑧 → ((𝐹‘(𝑟 “ {𝑦})) = 𝑦 ↔ (𝐹‘(𝑟 “ {𝑧})) = 𝑧))
1615cbvralvw 3372 . . . . . 6 (∀𝑦𝑥 (𝐹‘(𝑟 “ {𝑦})) = 𝑦 ↔ ∀𝑧𝑥 (𝐹‘(𝑟 “ {𝑧})) = 𝑧)
174cnveqd 5773 . . . . . . . . 9 ((𝑥 = 𝑎𝑟 = 𝑠) → 𝑟 = 𝑠)
1817imaeq1d 5957 . . . . . . . 8 ((𝑥 = 𝑎𝑟 = 𝑠) → (𝑟 “ {𝑧}) = (𝑠 “ {𝑧}))
1918fveqeq2d 6764 . . . . . . 7 ((𝑥 = 𝑎𝑟 = 𝑠) → ((𝐹‘(𝑟 “ {𝑧})) = 𝑧 ↔ (𝐹‘(𝑠 “ {𝑧})) = 𝑧))
202, 19raleqbidv 3327 . . . . . 6 ((𝑥 = 𝑎𝑟 = 𝑠) → (∀𝑧𝑥 (𝐹‘(𝑟 “ {𝑧})) = 𝑧 ↔ ∀𝑧𝑎 (𝐹‘(𝑠 “ {𝑧})) = 𝑧))
2116, 20syl5bb 282 . . . . 5 ((𝑥 = 𝑎𝑟 = 𝑠) → (∀𝑦𝑥 (𝐹‘(𝑟 “ {𝑦})) = 𝑦 ↔ ∀𝑧𝑎 (𝐹‘(𝑠 “ {𝑧})) = 𝑧))
2210, 21anbi12d 630 . . . 4 ((𝑥 = 𝑎𝑟 = 𝑠) → ((𝑟 We 𝑥 ∧ ∀𝑦𝑥 (𝐹‘(𝑟 “ {𝑦})) = 𝑦) ↔ (𝑠 We 𝑎 ∧ ∀𝑧𝑎 (𝐹‘(𝑠 “ {𝑧})) = 𝑧)))
237, 22anbi12d 630 . . 3 ((𝑥 = 𝑎𝑟 = 𝑠) → (((𝑥𝐴𝑟 ⊆ (𝑥 × 𝑥)) ∧ (𝑟 We 𝑥 ∧ ∀𝑦𝑥 (𝐹‘(𝑟 “ {𝑦})) = 𝑦)) ↔ ((𝑎𝐴𝑠 ⊆ (𝑎 × 𝑎)) ∧ (𝑠 We 𝑎 ∧ ∀𝑧𝑎 (𝐹‘(𝑠 “ {𝑧})) = 𝑧))))
2423cbvopabv 5143 . 2 {⟨𝑥, 𝑟⟩ ∣ ((𝑥𝐴𝑟 ⊆ (𝑥 × 𝑥)) ∧ (𝑟 We 𝑥 ∧ ∀𝑦𝑥 (𝐹‘(𝑟 “ {𝑦})) = 𝑦))} = {⟨𝑎, 𝑠⟩ ∣ ((𝑎𝐴𝑠 ⊆ (𝑎 × 𝑎)) ∧ (𝑠 We 𝑎 ∧ ∀𝑧𝑎 (𝐹‘(𝑠 “ {𝑧})) = 𝑧))}
251, 24eqtri 2766 1 𝑊 = {⟨𝑎, 𝑠⟩ ∣ ((𝑎𝐴𝑠 ⊆ (𝑎 × 𝑎)) ∧ (𝑠 We 𝑎 ∧ ∀𝑧𝑎 (𝐹‘(𝑠 “ {𝑧})) = 𝑧))}
Colors of variables: wff setvar class
Syntax hints:  wa 395   = wceq 1539  wral 3063  wss 3883  {csn 4558  {copab 5132   We wwe 5534   × cxp 5578  ccnv 5579  cima 5583  cfv 6418
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-sb 2069  df-clab 2716  df-cleq 2730  df-clel 2817  df-ral 3068  df-rex 3069  df-rab 3072  df-v 3424  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-br 5071  df-opab 5133  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-cnv 5588  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-iota 6376  df-fv 6426
This theorem is referenced by:  canthnum  10336  canthp1  10341
  Copyright terms: Public domain W3C validator