MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dfac8 Structured version   Visualization version   GIF version

Theorem dfac8 9891
Description: A proof of the equivalency of the well-ordering theorem weth 10251 and the axiom of choice ac7 10229. (Contributed by Mario Carneiro, 5-Jan-2013.)
Assertion
Ref Expression
dfac8 (CHOICE ↔ ∀𝑥𝑟 𝑟 We 𝑥)
Distinct variable group:   𝑥,𝑟

Proof of Theorem dfac8
Dummy variables 𝑓 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dfac3 9877 . 2 (CHOICE ↔ ∀𝑦𝑓𝑧𝑦 (𝑧 ≠ ∅ → (𝑓𝑧) ∈ 𝑧))
2 vex 3436 . . . . . 6 𝑥 ∈ V
3 vpwex 5300 . . . . . . 7 𝒫 𝑥 ∈ V
4 raleq 3342 . . . . . . . 8 (𝑦 = 𝒫 𝑥 → (∀𝑧𝑦 (𝑧 ≠ ∅ → (𝑓𝑧) ∈ 𝑧) ↔ ∀𝑧 ∈ 𝒫 𝑥(𝑧 ≠ ∅ → (𝑓𝑧) ∈ 𝑧)))
54exbidv 1924 . . . . . . 7 (𝑦 = 𝒫 𝑥 → (∃𝑓𝑧𝑦 (𝑧 ≠ ∅ → (𝑓𝑧) ∈ 𝑧) ↔ ∃𝑓𝑧 ∈ 𝒫 𝑥(𝑧 ≠ ∅ → (𝑓𝑧) ∈ 𝑧)))
63, 5spcv 3544 . . . . . 6 (∀𝑦𝑓𝑧𝑦 (𝑧 ≠ ∅ → (𝑓𝑧) ∈ 𝑧) → ∃𝑓𝑧 ∈ 𝒫 𝑥(𝑧 ≠ ∅ → (𝑓𝑧) ∈ 𝑧))
7 dfac8a 9786 . . . . . 6 (𝑥 ∈ V → (∃𝑓𝑧 ∈ 𝒫 𝑥(𝑧 ≠ ∅ → (𝑓𝑧) ∈ 𝑧) → 𝑥 ∈ dom card))
82, 6, 7mpsyl 68 . . . . 5 (∀𝑦𝑓𝑧𝑦 (𝑧 ≠ ∅ → (𝑓𝑧) ∈ 𝑧) → 𝑥 ∈ dom card)
9 dfac8b 9787 . . . . 5 (𝑥 ∈ dom card → ∃𝑟 𝑟 We 𝑥)
108, 9syl 17 . . . 4 (∀𝑦𝑓𝑧𝑦 (𝑧 ≠ ∅ → (𝑓𝑧) ∈ 𝑧) → ∃𝑟 𝑟 We 𝑥)
1110alrimiv 1930 . . 3 (∀𝑦𝑓𝑧𝑦 (𝑧 ≠ ∅ → (𝑓𝑧) ∈ 𝑧) → ∀𝑥𝑟 𝑟 We 𝑥)
12 vex 3436 . . . . 5 𝑦 ∈ V
13 vuniex 7592 . . . . . 6 𝑦 ∈ V
14 weeq2 5578 . . . . . . 7 (𝑥 = 𝑦 → (𝑟 We 𝑥𝑟 We 𝑦))
1514exbidv 1924 . . . . . 6 (𝑥 = 𝑦 → (∃𝑟 𝑟 We 𝑥 ↔ ∃𝑟 𝑟 We 𝑦))
1613, 15spcv 3544 . . . . 5 (∀𝑥𝑟 𝑟 We 𝑥 → ∃𝑟 𝑟 We 𝑦)
17 dfac8c 9789 . . . . 5 (𝑦 ∈ V → (∃𝑟 𝑟 We 𝑦 → ∃𝑓𝑧𝑦 (𝑧 ≠ ∅ → (𝑓𝑧) ∈ 𝑧)))
1812, 16, 17mpsyl 68 . . . 4 (∀𝑥𝑟 𝑟 We 𝑥 → ∃𝑓𝑧𝑦 (𝑧 ≠ ∅ → (𝑓𝑧) ∈ 𝑧))
1918alrimiv 1930 . . 3 (∀𝑥𝑟 𝑟 We 𝑥 → ∀𝑦𝑓𝑧𝑦 (𝑧 ≠ ∅ → (𝑓𝑧) ∈ 𝑧))
2011, 19impbii 208 . 2 (∀𝑦𝑓𝑧𝑦 (𝑧 ≠ ∅ → (𝑓𝑧) ∈ 𝑧) ↔ ∀𝑥𝑟 𝑟 We 𝑥)
211, 20bitri 274 1 (CHOICE ↔ ∀𝑥𝑟 𝑟 We 𝑥)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wal 1537   = wceq 1539  wex 1782  wcel 2106  wne 2943  wral 3064  Vcvv 3432  c0 4256  𝒫 cpw 4533   cuni 4839   We wwe 5543  dom cdm 5589  cfv 6433  cardccrd 9693  CHOICEwac 9871
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-ral 3069  df-rex 3070  df-rmo 3071  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-int 4880  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-se 5545  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-isom 6442  df-riota 7232  df-ov 7278  df-2nd 7832  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-en 8734  df-card 9697  df-ac 9872
This theorem is referenced by:  dfac10  9893  weth  10251  dfac11  40887
  Copyright terms: Public domain W3C validator