![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > dfac8 | Structured version Visualization version GIF version |
Description: A proof of the equivalency of the well-ordering theorem weth 10439 and the axiom of choice ac7 10417. (Contributed by Mario Carneiro, 5-Jan-2013.) |
Ref | Expression |
---|---|
dfac8 | ⊢ (CHOICE ↔ ∀𝑥∃𝑟 𝑟 We 𝑥) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dfac3 10065 | . 2 ⊢ (CHOICE ↔ ∀𝑦∃𝑓∀𝑧 ∈ 𝑦 (𝑧 ≠ ∅ → (𝑓‘𝑧) ∈ 𝑧)) | |
2 | vex 3451 | . . . . . 6 ⊢ 𝑥 ∈ V | |
3 | vpwex 5336 | . . . . . . 7 ⊢ 𝒫 𝑥 ∈ V | |
4 | raleq 3308 | . . . . . . . 8 ⊢ (𝑦 = 𝒫 𝑥 → (∀𝑧 ∈ 𝑦 (𝑧 ≠ ∅ → (𝑓‘𝑧) ∈ 𝑧) ↔ ∀𝑧 ∈ 𝒫 𝑥(𝑧 ≠ ∅ → (𝑓‘𝑧) ∈ 𝑧))) | |
5 | 4 | exbidv 1925 | . . . . . . 7 ⊢ (𝑦 = 𝒫 𝑥 → (∃𝑓∀𝑧 ∈ 𝑦 (𝑧 ≠ ∅ → (𝑓‘𝑧) ∈ 𝑧) ↔ ∃𝑓∀𝑧 ∈ 𝒫 𝑥(𝑧 ≠ ∅ → (𝑓‘𝑧) ∈ 𝑧))) |
6 | 3, 5 | spcv 3566 | . . . . . 6 ⊢ (∀𝑦∃𝑓∀𝑧 ∈ 𝑦 (𝑧 ≠ ∅ → (𝑓‘𝑧) ∈ 𝑧) → ∃𝑓∀𝑧 ∈ 𝒫 𝑥(𝑧 ≠ ∅ → (𝑓‘𝑧) ∈ 𝑧)) |
7 | dfac8a 9974 | . . . . . 6 ⊢ (𝑥 ∈ V → (∃𝑓∀𝑧 ∈ 𝒫 𝑥(𝑧 ≠ ∅ → (𝑓‘𝑧) ∈ 𝑧) → 𝑥 ∈ dom card)) | |
8 | 2, 6, 7 | mpsyl 68 | . . . . 5 ⊢ (∀𝑦∃𝑓∀𝑧 ∈ 𝑦 (𝑧 ≠ ∅ → (𝑓‘𝑧) ∈ 𝑧) → 𝑥 ∈ dom card) |
9 | dfac8b 9975 | . . . . 5 ⊢ (𝑥 ∈ dom card → ∃𝑟 𝑟 We 𝑥) | |
10 | 8, 9 | syl 17 | . . . 4 ⊢ (∀𝑦∃𝑓∀𝑧 ∈ 𝑦 (𝑧 ≠ ∅ → (𝑓‘𝑧) ∈ 𝑧) → ∃𝑟 𝑟 We 𝑥) |
11 | 10 | alrimiv 1931 | . . 3 ⊢ (∀𝑦∃𝑓∀𝑧 ∈ 𝑦 (𝑧 ≠ ∅ → (𝑓‘𝑧) ∈ 𝑧) → ∀𝑥∃𝑟 𝑟 We 𝑥) |
12 | vex 3451 | . . . . 5 ⊢ 𝑦 ∈ V | |
13 | vuniex 7680 | . . . . . 6 ⊢ ∪ 𝑦 ∈ V | |
14 | weeq2 5626 | . . . . . . 7 ⊢ (𝑥 = ∪ 𝑦 → (𝑟 We 𝑥 ↔ 𝑟 We ∪ 𝑦)) | |
15 | 14 | exbidv 1925 | . . . . . 6 ⊢ (𝑥 = ∪ 𝑦 → (∃𝑟 𝑟 We 𝑥 ↔ ∃𝑟 𝑟 We ∪ 𝑦)) |
16 | 13, 15 | spcv 3566 | . . . . 5 ⊢ (∀𝑥∃𝑟 𝑟 We 𝑥 → ∃𝑟 𝑟 We ∪ 𝑦) |
17 | dfac8c 9977 | . . . . 5 ⊢ (𝑦 ∈ V → (∃𝑟 𝑟 We ∪ 𝑦 → ∃𝑓∀𝑧 ∈ 𝑦 (𝑧 ≠ ∅ → (𝑓‘𝑧) ∈ 𝑧))) | |
18 | 12, 16, 17 | mpsyl 68 | . . . 4 ⊢ (∀𝑥∃𝑟 𝑟 We 𝑥 → ∃𝑓∀𝑧 ∈ 𝑦 (𝑧 ≠ ∅ → (𝑓‘𝑧) ∈ 𝑧)) |
19 | 18 | alrimiv 1931 | . . 3 ⊢ (∀𝑥∃𝑟 𝑟 We 𝑥 → ∀𝑦∃𝑓∀𝑧 ∈ 𝑦 (𝑧 ≠ ∅ → (𝑓‘𝑧) ∈ 𝑧)) |
20 | 11, 19 | impbii 208 | . 2 ⊢ (∀𝑦∃𝑓∀𝑧 ∈ 𝑦 (𝑧 ≠ ∅ → (𝑓‘𝑧) ∈ 𝑧) ↔ ∀𝑥∃𝑟 𝑟 We 𝑥) |
21 | 1, 20 | bitri 275 | 1 ⊢ (CHOICE ↔ ∀𝑥∃𝑟 𝑟 We 𝑥) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∀wal 1540 = wceq 1542 ∃wex 1782 ∈ wcel 2107 ≠ wne 2940 ∀wral 3061 Vcvv 3447 ∅c0 4286 𝒫 cpw 4564 ∪ cuni 4869 We wwe 5591 dom cdm 5637 ‘cfv 6500 cardccrd 9879 CHOICEwac 10059 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-rep 5246 ax-sep 5260 ax-nul 5267 ax-pow 5324 ax-pr 5388 ax-un 7676 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3or 1089 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-ne 2941 df-ral 3062 df-rex 3071 df-rmo 3352 df-reu 3353 df-rab 3407 df-v 3449 df-sbc 3744 df-csb 3860 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-pss 3933 df-nul 4287 df-if 4491 df-pw 4566 df-sn 4591 df-pr 4593 df-op 4597 df-uni 4870 df-int 4912 df-iun 4960 df-br 5110 df-opab 5172 df-mpt 5193 df-tr 5227 df-id 5535 df-eprel 5541 df-po 5549 df-so 5550 df-fr 5592 df-se 5593 df-we 5594 df-xp 5643 df-rel 5644 df-cnv 5645 df-co 5646 df-dm 5647 df-rn 5648 df-res 5649 df-ima 5650 df-pred 6257 df-ord 6324 df-on 6325 df-suc 6327 df-iota 6452 df-fun 6502 df-fn 6503 df-f 6504 df-f1 6505 df-fo 6506 df-f1o 6507 df-fv 6508 df-isom 6509 df-riota 7317 df-ov 7364 df-2nd 7926 df-frecs 8216 df-wrecs 8247 df-recs 8321 df-en 8890 df-card 9883 df-ac 10060 |
This theorem is referenced by: dfac10 10081 weth 10439 dfac11 41436 |
Copyright terms: Public domain | W3C validator |