| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > dfac8 | Structured version Visualization version GIF version | ||
| Description: A proof of the equivalency of the well-ordering theorem weth 10509 and the axiom of choice ac7 10487. (Contributed by Mario Carneiro, 5-Jan-2013.) |
| Ref | Expression |
|---|---|
| dfac8 | ⊢ (CHOICE ↔ ∀𝑥∃𝑟 𝑟 We 𝑥) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dfac3 10135 | . 2 ⊢ (CHOICE ↔ ∀𝑦∃𝑓∀𝑧 ∈ 𝑦 (𝑧 ≠ ∅ → (𝑓‘𝑧) ∈ 𝑧)) | |
| 2 | vex 3463 | . . . . . 6 ⊢ 𝑥 ∈ V | |
| 3 | vpwex 5347 | . . . . . . 7 ⊢ 𝒫 𝑥 ∈ V | |
| 4 | raleq 3302 | . . . . . . . 8 ⊢ (𝑦 = 𝒫 𝑥 → (∀𝑧 ∈ 𝑦 (𝑧 ≠ ∅ → (𝑓‘𝑧) ∈ 𝑧) ↔ ∀𝑧 ∈ 𝒫 𝑥(𝑧 ≠ ∅ → (𝑓‘𝑧) ∈ 𝑧))) | |
| 5 | 4 | exbidv 1921 | . . . . . . 7 ⊢ (𝑦 = 𝒫 𝑥 → (∃𝑓∀𝑧 ∈ 𝑦 (𝑧 ≠ ∅ → (𝑓‘𝑧) ∈ 𝑧) ↔ ∃𝑓∀𝑧 ∈ 𝒫 𝑥(𝑧 ≠ ∅ → (𝑓‘𝑧) ∈ 𝑧))) |
| 6 | 3, 5 | spcv 3584 | . . . . . 6 ⊢ (∀𝑦∃𝑓∀𝑧 ∈ 𝑦 (𝑧 ≠ ∅ → (𝑓‘𝑧) ∈ 𝑧) → ∃𝑓∀𝑧 ∈ 𝒫 𝑥(𝑧 ≠ ∅ → (𝑓‘𝑧) ∈ 𝑧)) |
| 7 | dfac8a 10044 | . . . . . 6 ⊢ (𝑥 ∈ V → (∃𝑓∀𝑧 ∈ 𝒫 𝑥(𝑧 ≠ ∅ → (𝑓‘𝑧) ∈ 𝑧) → 𝑥 ∈ dom card)) | |
| 8 | 2, 6, 7 | mpsyl 68 | . . . . 5 ⊢ (∀𝑦∃𝑓∀𝑧 ∈ 𝑦 (𝑧 ≠ ∅ → (𝑓‘𝑧) ∈ 𝑧) → 𝑥 ∈ dom card) |
| 9 | dfac8b 10045 | . . . . 5 ⊢ (𝑥 ∈ dom card → ∃𝑟 𝑟 We 𝑥) | |
| 10 | 8, 9 | syl 17 | . . . 4 ⊢ (∀𝑦∃𝑓∀𝑧 ∈ 𝑦 (𝑧 ≠ ∅ → (𝑓‘𝑧) ∈ 𝑧) → ∃𝑟 𝑟 We 𝑥) |
| 11 | 10 | alrimiv 1927 | . . 3 ⊢ (∀𝑦∃𝑓∀𝑧 ∈ 𝑦 (𝑧 ≠ ∅ → (𝑓‘𝑧) ∈ 𝑧) → ∀𝑥∃𝑟 𝑟 We 𝑥) |
| 12 | vex 3463 | . . . . 5 ⊢ 𝑦 ∈ V | |
| 13 | vuniex 7733 | . . . . . 6 ⊢ ∪ 𝑦 ∈ V | |
| 14 | weeq2 5642 | . . . . . . 7 ⊢ (𝑥 = ∪ 𝑦 → (𝑟 We 𝑥 ↔ 𝑟 We ∪ 𝑦)) | |
| 15 | 14 | exbidv 1921 | . . . . . 6 ⊢ (𝑥 = ∪ 𝑦 → (∃𝑟 𝑟 We 𝑥 ↔ ∃𝑟 𝑟 We ∪ 𝑦)) |
| 16 | 13, 15 | spcv 3584 | . . . . 5 ⊢ (∀𝑥∃𝑟 𝑟 We 𝑥 → ∃𝑟 𝑟 We ∪ 𝑦) |
| 17 | dfac8c 10047 | . . . . 5 ⊢ (𝑦 ∈ V → (∃𝑟 𝑟 We ∪ 𝑦 → ∃𝑓∀𝑧 ∈ 𝑦 (𝑧 ≠ ∅ → (𝑓‘𝑧) ∈ 𝑧))) | |
| 18 | 12, 16, 17 | mpsyl 68 | . . . 4 ⊢ (∀𝑥∃𝑟 𝑟 We 𝑥 → ∃𝑓∀𝑧 ∈ 𝑦 (𝑧 ≠ ∅ → (𝑓‘𝑧) ∈ 𝑧)) |
| 19 | 18 | alrimiv 1927 | . . 3 ⊢ (∀𝑥∃𝑟 𝑟 We 𝑥 → ∀𝑦∃𝑓∀𝑧 ∈ 𝑦 (𝑧 ≠ ∅ → (𝑓‘𝑧) ∈ 𝑧)) |
| 20 | 11, 19 | impbii 209 | . 2 ⊢ (∀𝑦∃𝑓∀𝑧 ∈ 𝑦 (𝑧 ≠ ∅ → (𝑓‘𝑧) ∈ 𝑧) ↔ ∀𝑥∃𝑟 𝑟 We 𝑥) |
| 21 | 1, 20 | bitri 275 | 1 ⊢ (CHOICE ↔ ∀𝑥∃𝑟 𝑟 We 𝑥) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∀wal 1538 = wceq 1540 ∃wex 1779 ∈ wcel 2108 ≠ wne 2932 ∀wral 3051 Vcvv 3459 ∅c0 4308 𝒫 cpw 4575 ∪ cuni 4883 We wwe 5605 dom cdm 5654 ‘cfv 6531 cardccrd 9949 CHOICEwac 10129 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-rep 5249 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 ax-un 7729 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-ral 3052 df-rex 3061 df-rmo 3359 df-reu 3360 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-pss 3946 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-int 4923 df-iun 4969 df-br 5120 df-opab 5182 df-mpt 5202 df-tr 5230 df-id 5548 df-eprel 5553 df-po 5561 df-so 5562 df-fr 5606 df-se 5607 df-we 5608 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-pred 6290 df-ord 6355 df-on 6356 df-suc 6358 df-iota 6484 df-fun 6533 df-fn 6534 df-f 6535 df-f1 6536 df-fo 6537 df-f1o 6538 df-fv 6539 df-isom 6540 df-riota 7362 df-ov 7408 df-2nd 7989 df-frecs 8280 df-wrecs 8311 df-recs 8385 df-en 8960 df-card 9953 df-ac 10130 |
| This theorem is referenced by: dfac10 10152 weth 10509 dfac11 43086 |
| Copyright terms: Public domain | W3C validator |