| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > dfac8 | Structured version Visualization version GIF version | ||
| Description: A proof of the equivalency of the well-ordering theorem weth 10389 and the axiom of choice ac7 10367. (Contributed by Mario Carneiro, 5-Jan-2013.) |
| Ref | Expression |
|---|---|
| dfac8 | ⊢ (CHOICE ↔ ∀𝑥∃𝑟 𝑟 We 𝑥) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dfac3 10015 | . 2 ⊢ (CHOICE ↔ ∀𝑦∃𝑓∀𝑧 ∈ 𝑦 (𝑧 ≠ ∅ → (𝑓‘𝑧) ∈ 𝑧)) | |
| 2 | vex 3440 | . . . . . 6 ⊢ 𝑥 ∈ V | |
| 3 | vpwex 5316 | . . . . . . 7 ⊢ 𝒫 𝑥 ∈ V | |
| 4 | raleq 3286 | . . . . . . . 8 ⊢ (𝑦 = 𝒫 𝑥 → (∀𝑧 ∈ 𝑦 (𝑧 ≠ ∅ → (𝑓‘𝑧) ∈ 𝑧) ↔ ∀𝑧 ∈ 𝒫 𝑥(𝑧 ≠ ∅ → (𝑓‘𝑧) ∈ 𝑧))) | |
| 5 | 4 | exbidv 1921 | . . . . . . 7 ⊢ (𝑦 = 𝒫 𝑥 → (∃𝑓∀𝑧 ∈ 𝑦 (𝑧 ≠ ∅ → (𝑓‘𝑧) ∈ 𝑧) ↔ ∃𝑓∀𝑧 ∈ 𝒫 𝑥(𝑧 ≠ ∅ → (𝑓‘𝑧) ∈ 𝑧))) |
| 6 | 3, 5 | spcv 3560 | . . . . . 6 ⊢ (∀𝑦∃𝑓∀𝑧 ∈ 𝑦 (𝑧 ≠ ∅ → (𝑓‘𝑧) ∈ 𝑧) → ∃𝑓∀𝑧 ∈ 𝒫 𝑥(𝑧 ≠ ∅ → (𝑓‘𝑧) ∈ 𝑧)) |
| 7 | dfac8a 9924 | . . . . . 6 ⊢ (𝑥 ∈ V → (∃𝑓∀𝑧 ∈ 𝒫 𝑥(𝑧 ≠ ∅ → (𝑓‘𝑧) ∈ 𝑧) → 𝑥 ∈ dom card)) | |
| 8 | 2, 6, 7 | mpsyl 68 | . . . . 5 ⊢ (∀𝑦∃𝑓∀𝑧 ∈ 𝑦 (𝑧 ≠ ∅ → (𝑓‘𝑧) ∈ 𝑧) → 𝑥 ∈ dom card) |
| 9 | dfac8b 9925 | . . . . 5 ⊢ (𝑥 ∈ dom card → ∃𝑟 𝑟 We 𝑥) | |
| 10 | 8, 9 | syl 17 | . . . 4 ⊢ (∀𝑦∃𝑓∀𝑧 ∈ 𝑦 (𝑧 ≠ ∅ → (𝑓‘𝑧) ∈ 𝑧) → ∃𝑟 𝑟 We 𝑥) |
| 11 | 10 | alrimiv 1927 | . . 3 ⊢ (∀𝑦∃𝑓∀𝑧 ∈ 𝑦 (𝑧 ≠ ∅ → (𝑓‘𝑧) ∈ 𝑧) → ∀𝑥∃𝑟 𝑟 We 𝑥) |
| 12 | vex 3440 | . . . . 5 ⊢ 𝑦 ∈ V | |
| 13 | vuniex 7675 | . . . . . 6 ⊢ ∪ 𝑦 ∈ V | |
| 14 | weeq2 5607 | . . . . . . 7 ⊢ (𝑥 = ∪ 𝑦 → (𝑟 We 𝑥 ↔ 𝑟 We ∪ 𝑦)) | |
| 15 | 14 | exbidv 1921 | . . . . . 6 ⊢ (𝑥 = ∪ 𝑦 → (∃𝑟 𝑟 We 𝑥 ↔ ∃𝑟 𝑟 We ∪ 𝑦)) |
| 16 | 13, 15 | spcv 3560 | . . . . 5 ⊢ (∀𝑥∃𝑟 𝑟 We 𝑥 → ∃𝑟 𝑟 We ∪ 𝑦) |
| 17 | dfac8c 9927 | . . . . 5 ⊢ (𝑦 ∈ V → (∃𝑟 𝑟 We ∪ 𝑦 → ∃𝑓∀𝑧 ∈ 𝑦 (𝑧 ≠ ∅ → (𝑓‘𝑧) ∈ 𝑧))) | |
| 18 | 12, 16, 17 | mpsyl 68 | . . . 4 ⊢ (∀𝑥∃𝑟 𝑟 We 𝑥 → ∃𝑓∀𝑧 ∈ 𝑦 (𝑧 ≠ ∅ → (𝑓‘𝑧) ∈ 𝑧)) |
| 19 | 18 | alrimiv 1927 | . . 3 ⊢ (∀𝑥∃𝑟 𝑟 We 𝑥 → ∀𝑦∃𝑓∀𝑧 ∈ 𝑦 (𝑧 ≠ ∅ → (𝑓‘𝑧) ∈ 𝑧)) |
| 20 | 11, 19 | impbii 209 | . 2 ⊢ (∀𝑦∃𝑓∀𝑧 ∈ 𝑦 (𝑧 ≠ ∅ → (𝑓‘𝑧) ∈ 𝑧) ↔ ∀𝑥∃𝑟 𝑟 We 𝑥) |
| 21 | 1, 20 | bitri 275 | 1 ⊢ (CHOICE ↔ ∀𝑥∃𝑟 𝑟 We 𝑥) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∀wal 1538 = wceq 1540 ∃wex 1779 ∈ wcel 2109 ≠ wne 2925 ∀wral 3044 Vcvv 3436 ∅c0 4284 𝒫 cpw 4551 ∪ cuni 4858 We wwe 5571 dom cdm 5619 ‘cfv 6482 cardccrd 9831 CHOICEwac 10009 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5218 ax-sep 5235 ax-nul 5245 ax-pow 5304 ax-pr 5371 ax-un 7671 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rmo 3343 df-reu 3344 df-rab 3395 df-v 3438 df-sbc 3743 df-csb 3852 df-dif 3906 df-un 3908 df-in 3910 df-ss 3920 df-pss 3923 df-nul 4285 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4859 df-int 4897 df-iun 4943 df-br 5093 df-opab 5155 df-mpt 5174 df-tr 5200 df-id 5514 df-eprel 5519 df-po 5527 df-so 5528 df-fr 5572 df-se 5573 df-we 5574 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-pred 6249 df-ord 6310 df-on 6311 df-suc 6313 df-iota 6438 df-fun 6484 df-fn 6485 df-f 6486 df-f1 6487 df-fo 6488 df-f1o 6489 df-fv 6490 df-isom 6491 df-riota 7306 df-ov 7352 df-2nd 7925 df-frecs 8214 df-wrecs 8245 df-recs 8294 df-en 8873 df-card 9835 df-ac 10010 |
| This theorem is referenced by: dfac10 10032 weth 10389 dfac11 43039 |
| Copyright terms: Public domain | W3C validator |