MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dfac8 Structured version   Visualization version   GIF version

Theorem dfac8 10065
Description: A proof of the equivalency of the well-ordering theorem weth 10424 and the axiom of choice ac7 10402. (Contributed by Mario Carneiro, 5-Jan-2013.)
Assertion
Ref Expression
dfac8 (CHOICE ↔ ∀𝑥𝑟 𝑟 We 𝑥)
Distinct variable group:   𝑥,𝑟

Proof of Theorem dfac8
Dummy variables 𝑓 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dfac3 10050 . 2 (CHOICE ↔ ∀𝑦𝑓𝑧𝑦 (𝑧 ≠ ∅ → (𝑓𝑧) ∈ 𝑧))
2 vex 3448 . . . . . 6 𝑥 ∈ V
3 vpwex 5327 . . . . . . 7 𝒫 𝑥 ∈ V
4 raleq 3293 . . . . . . . 8 (𝑦 = 𝒫 𝑥 → (∀𝑧𝑦 (𝑧 ≠ ∅ → (𝑓𝑧) ∈ 𝑧) ↔ ∀𝑧 ∈ 𝒫 𝑥(𝑧 ≠ ∅ → (𝑓𝑧) ∈ 𝑧)))
54exbidv 1921 . . . . . . 7 (𝑦 = 𝒫 𝑥 → (∃𝑓𝑧𝑦 (𝑧 ≠ ∅ → (𝑓𝑧) ∈ 𝑧) ↔ ∃𝑓𝑧 ∈ 𝒫 𝑥(𝑧 ≠ ∅ → (𝑓𝑧) ∈ 𝑧)))
63, 5spcv 3568 . . . . . 6 (∀𝑦𝑓𝑧𝑦 (𝑧 ≠ ∅ → (𝑓𝑧) ∈ 𝑧) → ∃𝑓𝑧 ∈ 𝒫 𝑥(𝑧 ≠ ∅ → (𝑓𝑧) ∈ 𝑧))
7 dfac8a 9959 . . . . . 6 (𝑥 ∈ V → (∃𝑓𝑧 ∈ 𝒫 𝑥(𝑧 ≠ ∅ → (𝑓𝑧) ∈ 𝑧) → 𝑥 ∈ dom card))
82, 6, 7mpsyl 68 . . . . 5 (∀𝑦𝑓𝑧𝑦 (𝑧 ≠ ∅ → (𝑓𝑧) ∈ 𝑧) → 𝑥 ∈ dom card)
9 dfac8b 9960 . . . . 5 (𝑥 ∈ dom card → ∃𝑟 𝑟 We 𝑥)
108, 9syl 17 . . . 4 (∀𝑦𝑓𝑧𝑦 (𝑧 ≠ ∅ → (𝑓𝑧) ∈ 𝑧) → ∃𝑟 𝑟 We 𝑥)
1110alrimiv 1927 . . 3 (∀𝑦𝑓𝑧𝑦 (𝑧 ≠ ∅ → (𝑓𝑧) ∈ 𝑧) → ∀𝑥𝑟 𝑟 We 𝑥)
12 vex 3448 . . . . 5 𝑦 ∈ V
13 vuniex 7695 . . . . . 6 𝑦 ∈ V
14 weeq2 5619 . . . . . . 7 (𝑥 = 𝑦 → (𝑟 We 𝑥𝑟 We 𝑦))
1514exbidv 1921 . . . . . 6 (𝑥 = 𝑦 → (∃𝑟 𝑟 We 𝑥 ↔ ∃𝑟 𝑟 We 𝑦))
1613, 15spcv 3568 . . . . 5 (∀𝑥𝑟 𝑟 We 𝑥 → ∃𝑟 𝑟 We 𝑦)
17 dfac8c 9962 . . . . 5 (𝑦 ∈ V → (∃𝑟 𝑟 We 𝑦 → ∃𝑓𝑧𝑦 (𝑧 ≠ ∅ → (𝑓𝑧) ∈ 𝑧)))
1812, 16, 17mpsyl 68 . . . 4 (∀𝑥𝑟 𝑟 We 𝑥 → ∃𝑓𝑧𝑦 (𝑧 ≠ ∅ → (𝑓𝑧) ∈ 𝑧))
1918alrimiv 1927 . . 3 (∀𝑥𝑟 𝑟 We 𝑥 → ∀𝑦𝑓𝑧𝑦 (𝑧 ≠ ∅ → (𝑓𝑧) ∈ 𝑧))
2011, 19impbii 209 . 2 (∀𝑦𝑓𝑧𝑦 (𝑧 ≠ ∅ → (𝑓𝑧) ∈ 𝑧) ↔ ∀𝑥𝑟 𝑟 We 𝑥)
211, 20bitri 275 1 (CHOICE ↔ ∀𝑥𝑟 𝑟 We 𝑥)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wal 1538   = wceq 1540  wex 1779  wcel 2109  wne 2925  wral 3044  Vcvv 3444  c0 4292  𝒫 cpw 4559   cuni 4867   We wwe 5583  dom cdm 5631  cfv 6499  cardccrd 9864  CHOICEwac 10044
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5229  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rmo 3351  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-int 4907  df-iun 4953  df-br 5103  df-opab 5165  df-mpt 5184  df-tr 5210  df-id 5526  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-se 5585  df-we 5586  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-pred 6262  df-ord 6323  df-on 6324  df-suc 6326  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-isom 6508  df-riota 7326  df-ov 7372  df-2nd 7948  df-frecs 8237  df-wrecs 8268  df-recs 8317  df-en 8896  df-card 9868  df-ac 10045
This theorem is referenced by:  dfac10  10067  weth  10424  dfac11  43044
  Copyright terms: Public domain W3C validator