Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > dfac8 | Structured version Visualization version GIF version |
Description: A proof of the equivalency of the well-ordering theorem weth 10182 and the axiom of choice ac7 10160. (Contributed by Mario Carneiro, 5-Jan-2013.) |
Ref | Expression |
---|---|
dfac8 | ⊢ (CHOICE ↔ ∀𝑥∃𝑟 𝑟 We 𝑥) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dfac3 9808 | . 2 ⊢ (CHOICE ↔ ∀𝑦∃𝑓∀𝑧 ∈ 𝑦 (𝑧 ≠ ∅ → (𝑓‘𝑧) ∈ 𝑧)) | |
2 | vex 3426 | . . . . . 6 ⊢ 𝑥 ∈ V | |
3 | vpwex 5295 | . . . . . . 7 ⊢ 𝒫 𝑥 ∈ V | |
4 | raleq 3333 | . . . . . . . 8 ⊢ (𝑦 = 𝒫 𝑥 → (∀𝑧 ∈ 𝑦 (𝑧 ≠ ∅ → (𝑓‘𝑧) ∈ 𝑧) ↔ ∀𝑧 ∈ 𝒫 𝑥(𝑧 ≠ ∅ → (𝑓‘𝑧) ∈ 𝑧))) | |
5 | 4 | exbidv 1925 | . . . . . . 7 ⊢ (𝑦 = 𝒫 𝑥 → (∃𝑓∀𝑧 ∈ 𝑦 (𝑧 ≠ ∅ → (𝑓‘𝑧) ∈ 𝑧) ↔ ∃𝑓∀𝑧 ∈ 𝒫 𝑥(𝑧 ≠ ∅ → (𝑓‘𝑧) ∈ 𝑧))) |
6 | 3, 5 | spcv 3534 | . . . . . 6 ⊢ (∀𝑦∃𝑓∀𝑧 ∈ 𝑦 (𝑧 ≠ ∅ → (𝑓‘𝑧) ∈ 𝑧) → ∃𝑓∀𝑧 ∈ 𝒫 𝑥(𝑧 ≠ ∅ → (𝑓‘𝑧) ∈ 𝑧)) |
7 | dfac8a 9717 | . . . . . 6 ⊢ (𝑥 ∈ V → (∃𝑓∀𝑧 ∈ 𝒫 𝑥(𝑧 ≠ ∅ → (𝑓‘𝑧) ∈ 𝑧) → 𝑥 ∈ dom card)) | |
8 | 2, 6, 7 | mpsyl 68 | . . . . 5 ⊢ (∀𝑦∃𝑓∀𝑧 ∈ 𝑦 (𝑧 ≠ ∅ → (𝑓‘𝑧) ∈ 𝑧) → 𝑥 ∈ dom card) |
9 | dfac8b 9718 | . . . . 5 ⊢ (𝑥 ∈ dom card → ∃𝑟 𝑟 We 𝑥) | |
10 | 8, 9 | syl 17 | . . . 4 ⊢ (∀𝑦∃𝑓∀𝑧 ∈ 𝑦 (𝑧 ≠ ∅ → (𝑓‘𝑧) ∈ 𝑧) → ∃𝑟 𝑟 We 𝑥) |
11 | 10 | alrimiv 1931 | . . 3 ⊢ (∀𝑦∃𝑓∀𝑧 ∈ 𝑦 (𝑧 ≠ ∅ → (𝑓‘𝑧) ∈ 𝑧) → ∀𝑥∃𝑟 𝑟 We 𝑥) |
12 | vex 3426 | . . . . 5 ⊢ 𝑦 ∈ V | |
13 | vuniex 7570 | . . . . . 6 ⊢ ∪ 𝑦 ∈ V | |
14 | weeq2 5569 | . . . . . . 7 ⊢ (𝑥 = ∪ 𝑦 → (𝑟 We 𝑥 ↔ 𝑟 We ∪ 𝑦)) | |
15 | 14 | exbidv 1925 | . . . . . 6 ⊢ (𝑥 = ∪ 𝑦 → (∃𝑟 𝑟 We 𝑥 ↔ ∃𝑟 𝑟 We ∪ 𝑦)) |
16 | 13, 15 | spcv 3534 | . . . . 5 ⊢ (∀𝑥∃𝑟 𝑟 We 𝑥 → ∃𝑟 𝑟 We ∪ 𝑦) |
17 | dfac8c 9720 | . . . . 5 ⊢ (𝑦 ∈ V → (∃𝑟 𝑟 We ∪ 𝑦 → ∃𝑓∀𝑧 ∈ 𝑦 (𝑧 ≠ ∅ → (𝑓‘𝑧) ∈ 𝑧))) | |
18 | 12, 16, 17 | mpsyl 68 | . . . 4 ⊢ (∀𝑥∃𝑟 𝑟 We 𝑥 → ∃𝑓∀𝑧 ∈ 𝑦 (𝑧 ≠ ∅ → (𝑓‘𝑧) ∈ 𝑧)) |
19 | 18 | alrimiv 1931 | . . 3 ⊢ (∀𝑥∃𝑟 𝑟 We 𝑥 → ∀𝑦∃𝑓∀𝑧 ∈ 𝑦 (𝑧 ≠ ∅ → (𝑓‘𝑧) ∈ 𝑧)) |
20 | 11, 19 | impbii 208 | . 2 ⊢ (∀𝑦∃𝑓∀𝑧 ∈ 𝑦 (𝑧 ≠ ∅ → (𝑓‘𝑧) ∈ 𝑧) ↔ ∀𝑥∃𝑟 𝑟 We 𝑥) |
21 | 1, 20 | bitri 274 | 1 ⊢ (CHOICE ↔ ∀𝑥∃𝑟 𝑟 We 𝑥) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∀wal 1537 = wceq 1539 ∃wex 1783 ∈ wcel 2108 ≠ wne 2942 ∀wral 3063 Vcvv 3422 ∅c0 4253 𝒫 cpw 4530 ∪ cuni 4836 We wwe 5534 dom cdm 5580 ‘cfv 6418 cardccrd 9624 CHOICEwac 9802 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-rep 5205 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-ral 3068 df-rex 3069 df-reu 3070 df-rmo 3071 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-int 4877 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-tr 5188 df-id 5480 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-se 5536 df-we 5537 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-pred 6191 df-ord 6254 df-on 6255 df-suc 6257 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-isom 6427 df-riota 7212 df-ov 7258 df-2nd 7805 df-frecs 8068 df-wrecs 8099 df-recs 8173 df-en 8692 df-card 9628 df-ac 9803 |
This theorem is referenced by: dfac10 9824 weth 10182 dfac11 40803 |
Copyright terms: Public domain | W3C validator |