Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > ween | Structured version Visualization version GIF version |
Description: A set is numerable iff it can be well-ordered. (Contributed by Mario Carneiro, 5-Jan-2013.) |
Ref | Expression |
---|---|
ween | ⊢ (𝐴 ∈ dom card ↔ ∃𝑟 𝑟 We 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dfac8b 9504 | . 2 ⊢ (𝐴 ∈ dom card → ∃𝑟 𝑟 We 𝐴) | |
2 | weso 5519 | . . . . 5 ⊢ (𝑟 We 𝐴 → 𝑟 Or 𝐴) | |
3 | vex 3413 | . . . . 5 ⊢ 𝑟 ∈ V | |
4 | soex 7637 | . . . . 5 ⊢ ((𝑟 Or 𝐴 ∧ 𝑟 ∈ V) → 𝐴 ∈ V) | |
5 | 2, 3, 4 | sylancl 589 | . . . 4 ⊢ (𝑟 We 𝐴 → 𝐴 ∈ V) |
6 | 5 | exlimiv 1931 | . . 3 ⊢ (∃𝑟 𝑟 We 𝐴 → 𝐴 ∈ V) |
7 | unipw 5315 | . . . . . 6 ⊢ ∪ 𝒫 𝐴 = 𝐴 | |
8 | weeq2 5517 | . . . . . 6 ⊢ (∪ 𝒫 𝐴 = 𝐴 → (𝑟 We ∪ 𝒫 𝐴 ↔ 𝑟 We 𝐴)) | |
9 | 7, 8 | ax-mp 5 | . . . . 5 ⊢ (𝑟 We ∪ 𝒫 𝐴 ↔ 𝑟 We 𝐴) |
10 | 9 | exbii 1849 | . . . 4 ⊢ (∃𝑟 𝑟 We ∪ 𝒫 𝐴 ↔ ∃𝑟 𝑟 We 𝐴) |
11 | 10 | biimpri 231 | . . 3 ⊢ (∃𝑟 𝑟 We 𝐴 → ∃𝑟 𝑟 We ∪ 𝒫 𝐴) |
12 | pwexg 5251 | . . . . 5 ⊢ (𝐴 ∈ V → 𝒫 𝐴 ∈ V) | |
13 | dfac8c 9506 | . . . . 5 ⊢ (𝒫 𝐴 ∈ V → (∃𝑟 𝑟 We ∪ 𝒫 𝐴 → ∃𝑓∀𝑥 ∈ 𝒫 𝐴(𝑥 ≠ ∅ → (𝑓‘𝑥) ∈ 𝑥))) | |
14 | 12, 13 | syl 17 | . . . 4 ⊢ (𝐴 ∈ V → (∃𝑟 𝑟 We ∪ 𝒫 𝐴 → ∃𝑓∀𝑥 ∈ 𝒫 𝐴(𝑥 ≠ ∅ → (𝑓‘𝑥) ∈ 𝑥))) |
15 | dfac8a 9503 | . . . 4 ⊢ (𝐴 ∈ V → (∃𝑓∀𝑥 ∈ 𝒫 𝐴(𝑥 ≠ ∅ → (𝑓‘𝑥) ∈ 𝑥) → 𝐴 ∈ dom card)) | |
16 | 14, 15 | syld 47 | . . 3 ⊢ (𝐴 ∈ V → (∃𝑟 𝑟 We ∪ 𝒫 𝐴 → 𝐴 ∈ dom card)) |
17 | 6, 11, 16 | sylc 65 | . 2 ⊢ (∃𝑟 𝑟 We 𝐴 → 𝐴 ∈ dom card) |
18 | 1, 17 | impbii 212 | 1 ⊢ (𝐴 ∈ dom card ↔ ∃𝑟 𝑟 We 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 209 = wceq 1538 ∃wex 1781 ∈ wcel 2111 ≠ wne 2951 ∀wral 3070 Vcvv 3409 ∅c0 4227 𝒫 cpw 4497 ∪ cuni 4801 Or wor 5446 We wwe 5486 dom cdm 5528 ‘cfv 6340 cardccrd 9410 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1911 ax-6 1970 ax-7 2015 ax-8 2113 ax-9 2121 ax-10 2142 ax-11 2158 ax-12 2175 ax-ext 2729 ax-rep 5160 ax-sep 5173 ax-nul 5180 ax-pow 5238 ax-pr 5302 ax-un 7465 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 845 df-3or 1085 df-3an 1086 df-tru 1541 df-fal 1551 df-ex 1782 df-nf 1786 df-sb 2070 df-mo 2557 df-eu 2588 df-clab 2736 df-cleq 2750 df-clel 2830 df-nfc 2901 df-ne 2952 df-ral 3075 df-rex 3076 df-reu 3077 df-rmo 3078 df-rab 3079 df-v 3411 df-sbc 3699 df-csb 3808 df-dif 3863 df-un 3865 df-in 3867 df-ss 3877 df-pss 3879 df-nul 4228 df-if 4424 df-pw 4499 df-sn 4526 df-pr 4528 df-tp 4530 df-op 4532 df-uni 4802 df-int 4842 df-iun 4888 df-br 5037 df-opab 5099 df-mpt 5117 df-tr 5143 df-id 5434 df-eprel 5439 df-po 5447 df-so 5448 df-fr 5487 df-se 5488 df-we 5489 df-xp 5534 df-rel 5535 df-cnv 5536 df-co 5537 df-dm 5538 df-rn 5539 df-res 5540 df-ima 5541 df-pred 6131 df-ord 6177 df-on 6178 df-suc 6180 df-iota 6299 df-fun 6342 df-fn 6343 df-f 6344 df-f1 6345 df-fo 6346 df-f1o 6347 df-fv 6348 df-isom 6349 df-riota 7114 df-wrecs 7963 df-recs 8024 df-en 8541 df-card 9414 |
This theorem is referenced by: ondomen 9510 dfac10 9610 zorn2lem7 9975 fpwwe 10119 canthnumlem 10121 canthp1lem2 10126 pwfseqlem4a 10134 pwfseqlem4 10135 fin2so 35358 |
Copyright terms: Public domain | W3C validator |