| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ween | Structured version Visualization version GIF version | ||
| Description: A set is numerable iff it can be well-ordered. (Contributed by Mario Carneiro, 5-Jan-2013.) |
| Ref | Expression |
|---|---|
| ween | ⊢ (𝐴 ∈ dom card ↔ ∃𝑟 𝑟 We 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dfac8b 10050 | . 2 ⊢ (𝐴 ∈ dom card → ∃𝑟 𝑟 We 𝐴) | |
| 2 | weso 5650 | . . . . 5 ⊢ (𝑟 We 𝐴 → 𝑟 Or 𝐴) | |
| 3 | vex 3468 | . . . . 5 ⊢ 𝑟 ∈ V | |
| 4 | soex 7922 | . . . . 5 ⊢ ((𝑟 Or 𝐴 ∧ 𝑟 ∈ V) → 𝐴 ∈ V) | |
| 5 | 2, 3, 4 | sylancl 586 | . . . 4 ⊢ (𝑟 We 𝐴 → 𝐴 ∈ V) |
| 6 | 5 | exlimiv 1930 | . . 3 ⊢ (∃𝑟 𝑟 We 𝐴 → 𝐴 ∈ V) |
| 7 | unipw 5430 | . . . . . 6 ⊢ ∪ 𝒫 𝐴 = 𝐴 | |
| 8 | weeq2 5647 | . . . . . 6 ⊢ (∪ 𝒫 𝐴 = 𝐴 → (𝑟 We ∪ 𝒫 𝐴 ↔ 𝑟 We 𝐴)) | |
| 9 | 7, 8 | ax-mp 5 | . . . . 5 ⊢ (𝑟 We ∪ 𝒫 𝐴 ↔ 𝑟 We 𝐴) |
| 10 | 9 | exbii 1848 | . . . 4 ⊢ (∃𝑟 𝑟 We ∪ 𝒫 𝐴 ↔ ∃𝑟 𝑟 We 𝐴) |
| 11 | 10 | biimpri 228 | . . 3 ⊢ (∃𝑟 𝑟 We 𝐴 → ∃𝑟 𝑟 We ∪ 𝒫 𝐴) |
| 12 | pwexg 5353 | . . . . 5 ⊢ (𝐴 ∈ V → 𝒫 𝐴 ∈ V) | |
| 13 | dfac8c 10052 | . . . . 5 ⊢ (𝒫 𝐴 ∈ V → (∃𝑟 𝑟 We ∪ 𝒫 𝐴 → ∃𝑓∀𝑥 ∈ 𝒫 𝐴(𝑥 ≠ ∅ → (𝑓‘𝑥) ∈ 𝑥))) | |
| 14 | 12, 13 | syl 17 | . . . 4 ⊢ (𝐴 ∈ V → (∃𝑟 𝑟 We ∪ 𝒫 𝐴 → ∃𝑓∀𝑥 ∈ 𝒫 𝐴(𝑥 ≠ ∅ → (𝑓‘𝑥) ∈ 𝑥))) |
| 15 | dfac8a 10049 | . . . 4 ⊢ (𝐴 ∈ V → (∃𝑓∀𝑥 ∈ 𝒫 𝐴(𝑥 ≠ ∅ → (𝑓‘𝑥) ∈ 𝑥) → 𝐴 ∈ dom card)) | |
| 16 | 14, 15 | syld 47 | . . 3 ⊢ (𝐴 ∈ V → (∃𝑟 𝑟 We ∪ 𝒫 𝐴 → 𝐴 ∈ dom card)) |
| 17 | 6, 11, 16 | sylc 65 | . 2 ⊢ (∃𝑟 𝑟 We 𝐴 → 𝐴 ∈ dom card) |
| 18 | 1, 17 | impbii 209 | 1 ⊢ (𝐴 ∈ dom card ↔ ∃𝑟 𝑟 We 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 = wceq 1540 ∃wex 1779 ∈ wcel 2109 ≠ wne 2933 ∀wral 3052 Vcvv 3464 ∅c0 4313 𝒫 cpw 4580 ∪ cuni 4888 Or wor 5565 We wwe 5610 dom cdm 5659 ‘cfv 6536 cardccrd 9954 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2708 ax-rep 5254 ax-sep 5271 ax-nul 5281 ax-pow 5340 ax-pr 5407 ax-un 7734 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2728 df-clel 2810 df-nfc 2886 df-ne 2934 df-ral 3053 df-rex 3062 df-rmo 3364 df-reu 3365 df-rab 3421 df-v 3466 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-pss 3951 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4889 df-int 4928 df-iun 4974 df-br 5125 df-opab 5187 df-mpt 5207 df-tr 5235 df-id 5553 df-eprel 5558 df-po 5566 df-so 5567 df-fr 5611 df-se 5612 df-we 5613 df-xp 5665 df-rel 5666 df-cnv 5667 df-co 5668 df-dm 5669 df-rn 5670 df-res 5671 df-ima 5672 df-pred 6295 df-ord 6360 df-on 6361 df-suc 6363 df-iota 6489 df-fun 6538 df-fn 6539 df-f 6540 df-f1 6541 df-fo 6542 df-f1o 6543 df-fv 6544 df-isom 6545 df-riota 7367 df-ov 7413 df-2nd 7994 df-frecs 8285 df-wrecs 8316 df-recs 8390 df-en 8965 df-card 9958 |
| This theorem is referenced by: ondomen 10056 dfac10 10157 zorn2lem7 10521 fpwwe 10665 canthnumlem 10667 canthp1lem2 10672 pwfseqlem4a 10680 pwfseqlem4 10681 numiunnum 36493 fin2so 37636 |
| Copyright terms: Public domain | W3C validator |