Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > ween | Structured version Visualization version GIF version |
Description: A set is numerable iff it can be well-ordered. (Contributed by Mario Carneiro, 5-Jan-2013.) |
Ref | Expression |
---|---|
ween | ⊢ (𝐴 ∈ dom card ↔ ∃𝑟 𝑟 We 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dfac8b 9787 | . 2 ⊢ (𝐴 ∈ dom card → ∃𝑟 𝑟 We 𝐴) | |
2 | weso 5580 | . . . . 5 ⊢ (𝑟 We 𝐴 → 𝑟 Or 𝐴) | |
3 | vex 3436 | . . . . 5 ⊢ 𝑟 ∈ V | |
4 | soex 7768 | . . . . 5 ⊢ ((𝑟 Or 𝐴 ∧ 𝑟 ∈ V) → 𝐴 ∈ V) | |
5 | 2, 3, 4 | sylancl 586 | . . . 4 ⊢ (𝑟 We 𝐴 → 𝐴 ∈ V) |
6 | 5 | exlimiv 1933 | . . 3 ⊢ (∃𝑟 𝑟 We 𝐴 → 𝐴 ∈ V) |
7 | unipw 5366 | . . . . . 6 ⊢ ∪ 𝒫 𝐴 = 𝐴 | |
8 | weeq2 5578 | . . . . . 6 ⊢ (∪ 𝒫 𝐴 = 𝐴 → (𝑟 We ∪ 𝒫 𝐴 ↔ 𝑟 We 𝐴)) | |
9 | 7, 8 | ax-mp 5 | . . . . 5 ⊢ (𝑟 We ∪ 𝒫 𝐴 ↔ 𝑟 We 𝐴) |
10 | 9 | exbii 1850 | . . . 4 ⊢ (∃𝑟 𝑟 We ∪ 𝒫 𝐴 ↔ ∃𝑟 𝑟 We 𝐴) |
11 | 10 | biimpri 227 | . . 3 ⊢ (∃𝑟 𝑟 We 𝐴 → ∃𝑟 𝑟 We ∪ 𝒫 𝐴) |
12 | pwexg 5301 | . . . . 5 ⊢ (𝐴 ∈ V → 𝒫 𝐴 ∈ V) | |
13 | dfac8c 9789 | . . . . 5 ⊢ (𝒫 𝐴 ∈ V → (∃𝑟 𝑟 We ∪ 𝒫 𝐴 → ∃𝑓∀𝑥 ∈ 𝒫 𝐴(𝑥 ≠ ∅ → (𝑓‘𝑥) ∈ 𝑥))) | |
14 | 12, 13 | syl 17 | . . . 4 ⊢ (𝐴 ∈ V → (∃𝑟 𝑟 We ∪ 𝒫 𝐴 → ∃𝑓∀𝑥 ∈ 𝒫 𝐴(𝑥 ≠ ∅ → (𝑓‘𝑥) ∈ 𝑥))) |
15 | dfac8a 9786 | . . . 4 ⊢ (𝐴 ∈ V → (∃𝑓∀𝑥 ∈ 𝒫 𝐴(𝑥 ≠ ∅ → (𝑓‘𝑥) ∈ 𝑥) → 𝐴 ∈ dom card)) | |
16 | 14, 15 | syld 47 | . . 3 ⊢ (𝐴 ∈ V → (∃𝑟 𝑟 We ∪ 𝒫 𝐴 → 𝐴 ∈ dom card)) |
17 | 6, 11, 16 | sylc 65 | . 2 ⊢ (∃𝑟 𝑟 We 𝐴 → 𝐴 ∈ dom card) |
18 | 1, 17 | impbii 208 | 1 ⊢ (𝐴 ∈ dom card ↔ ∃𝑟 𝑟 We 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 = wceq 1539 ∃wex 1782 ∈ wcel 2106 ≠ wne 2943 ∀wral 3064 Vcvv 3432 ∅c0 4256 𝒫 cpw 4533 ∪ cuni 4839 Or wor 5502 We wwe 5543 dom cdm 5589 ‘cfv 6433 cardccrd 9693 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-rep 5209 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7588 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-ral 3069 df-rex 3070 df-rmo 3071 df-reu 3072 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-pss 3906 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-int 4880 df-iun 4926 df-br 5075 df-opab 5137 df-mpt 5158 df-tr 5192 df-id 5489 df-eprel 5495 df-po 5503 df-so 5504 df-fr 5544 df-se 5545 df-we 5546 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-pred 6202 df-ord 6269 df-on 6270 df-suc 6272 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-fv 6441 df-isom 6442 df-riota 7232 df-ov 7278 df-2nd 7832 df-frecs 8097 df-wrecs 8128 df-recs 8202 df-en 8734 df-card 9697 |
This theorem is referenced by: ondomen 9793 dfac10 9893 zorn2lem7 10258 fpwwe 10402 canthnumlem 10404 canthp1lem2 10409 pwfseqlem4a 10417 pwfseqlem4 10418 fin2so 35764 |
Copyright terms: Public domain | W3C validator |