MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ween Structured version   Visualization version   GIF version

Theorem ween 9463
Description: A set is numerable iff it can be well-ordered. (Contributed by Mario Carneiro, 5-Jan-2013.)
Assertion
Ref Expression
ween (𝐴 ∈ dom card ↔ ∃𝑟 𝑟 We 𝐴)
Distinct variable group:   𝐴,𝑟

Proof of Theorem ween
Dummy variables 𝑓 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dfac8b 9459 . 2 (𝐴 ∈ dom card → ∃𝑟 𝑟 We 𝐴)
2 weso 5548 . . . . 5 (𝑟 We 𝐴𝑟 Or 𝐴)
3 vex 3499 . . . . 5 𝑟 ∈ V
4 soex 7628 . . . . 5 ((𝑟 Or 𝐴𝑟 ∈ V) → 𝐴 ∈ V)
52, 3, 4sylancl 588 . . . 4 (𝑟 We 𝐴𝐴 ∈ V)
65exlimiv 1931 . . 3 (∃𝑟 𝑟 We 𝐴𝐴 ∈ V)
7 unipw 5345 . . . . . 6 𝒫 𝐴 = 𝐴
8 weeq2 5546 . . . . . 6 ( 𝒫 𝐴 = 𝐴 → (𝑟 We 𝒫 𝐴𝑟 We 𝐴))
97, 8ax-mp 5 . . . . 5 (𝑟 We 𝒫 𝐴𝑟 We 𝐴)
109exbii 1848 . . . 4 (∃𝑟 𝑟 We 𝒫 𝐴 ↔ ∃𝑟 𝑟 We 𝐴)
1110biimpri 230 . . 3 (∃𝑟 𝑟 We 𝐴 → ∃𝑟 𝑟 We 𝒫 𝐴)
12 pwexg 5281 . . . . 5 (𝐴 ∈ V → 𝒫 𝐴 ∈ V)
13 dfac8c 9461 . . . . 5 (𝒫 𝐴 ∈ V → (∃𝑟 𝑟 We 𝒫 𝐴 → ∃𝑓𝑥 ∈ 𝒫 𝐴(𝑥 ≠ ∅ → (𝑓𝑥) ∈ 𝑥)))
1412, 13syl 17 . . . 4 (𝐴 ∈ V → (∃𝑟 𝑟 We 𝒫 𝐴 → ∃𝑓𝑥 ∈ 𝒫 𝐴(𝑥 ≠ ∅ → (𝑓𝑥) ∈ 𝑥)))
15 dfac8a 9458 . . . 4 (𝐴 ∈ V → (∃𝑓𝑥 ∈ 𝒫 𝐴(𝑥 ≠ ∅ → (𝑓𝑥) ∈ 𝑥) → 𝐴 ∈ dom card))
1614, 15syld 47 . . 3 (𝐴 ∈ V → (∃𝑟 𝑟 We 𝒫 𝐴𝐴 ∈ dom card))
176, 11, 16sylc 65 . 2 (∃𝑟 𝑟 We 𝐴𝐴 ∈ dom card)
181, 17impbii 211 1 (𝐴 ∈ dom card ↔ ∃𝑟 𝑟 We 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208   = wceq 1537  wex 1780  wcel 2114  wne 3018  wral 3140  Vcvv 3496  c0 4293  𝒫 cpw 4541   cuni 4840   Or wor 5475   We wwe 5515  dom cdm 5557  cfv 6357  cardccrd 9366
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2795  ax-rep 5192  ax-sep 5205  ax-nul 5212  ax-pow 5268  ax-pr 5332  ax-un 7463
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2802  df-cleq 2816  df-clel 2895  df-nfc 2965  df-ne 3019  df-ral 3145  df-rex 3146  df-reu 3147  df-rmo 3148  df-rab 3149  df-v 3498  df-sbc 3775  df-csb 3886  df-dif 3941  df-un 3943  df-in 3945  df-ss 3954  df-pss 3956  df-nul 4294  df-if 4470  df-pw 4543  df-sn 4570  df-pr 4572  df-tp 4574  df-op 4576  df-uni 4841  df-int 4879  df-iun 4923  df-br 5069  df-opab 5131  df-mpt 5149  df-tr 5175  df-id 5462  df-eprel 5467  df-po 5476  df-so 5477  df-fr 5516  df-se 5517  df-we 5518  df-xp 5563  df-rel 5564  df-cnv 5565  df-co 5566  df-dm 5567  df-rn 5568  df-res 5569  df-ima 5570  df-pred 6150  df-ord 6196  df-on 6197  df-suc 6199  df-iota 6316  df-fun 6359  df-fn 6360  df-f 6361  df-f1 6362  df-fo 6363  df-f1o 6364  df-fv 6365  df-isom 6366  df-riota 7116  df-wrecs 7949  df-recs 8010  df-en 8512  df-card 9370
This theorem is referenced by:  ondomen  9465  dfac10  9565  zorn2lem7  9926  fpwwe  10070  canthnumlem  10072  canthp1lem2  10077  pwfseqlem4a  10085  pwfseqlem4  10086  fin2so  34881
  Copyright terms: Public domain W3C validator