MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ween Structured version   Visualization version   GIF version

Theorem ween 9948
Description: A set is numerable iff it can be well-ordered. (Contributed by Mario Carneiro, 5-Jan-2013.)
Assertion
Ref Expression
ween (𝐴 ∈ dom card ↔ ∃𝑟 𝑟 We 𝐴)
Distinct variable group:   𝐴,𝑟

Proof of Theorem ween
Dummy variables 𝑓 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dfac8b 9944 . 2 (𝐴 ∈ dom card → ∃𝑟 𝑟 We 𝐴)
2 weso 5614 . . . . 5 (𝑟 We 𝐴𝑟 Or 𝐴)
3 vex 3442 . . . . 5 𝑟 ∈ V
4 soex 7861 . . . . 5 ((𝑟 Or 𝐴𝑟 ∈ V) → 𝐴 ∈ V)
52, 3, 4sylancl 586 . . . 4 (𝑟 We 𝐴𝐴 ∈ V)
65exlimiv 1930 . . 3 (∃𝑟 𝑟 We 𝐴𝐴 ∈ V)
7 unipw 5397 . . . . . 6 𝒫 𝐴 = 𝐴
8 weeq2 5611 . . . . . 6 ( 𝒫 𝐴 = 𝐴 → (𝑟 We 𝒫 𝐴𝑟 We 𝐴))
97, 8ax-mp 5 . . . . 5 (𝑟 We 𝒫 𝐴𝑟 We 𝐴)
109exbii 1848 . . . 4 (∃𝑟 𝑟 We 𝒫 𝐴 ↔ ∃𝑟 𝑟 We 𝐴)
1110biimpri 228 . . 3 (∃𝑟 𝑟 We 𝐴 → ∃𝑟 𝑟 We 𝒫 𝐴)
12 pwexg 5320 . . . . 5 (𝐴 ∈ V → 𝒫 𝐴 ∈ V)
13 dfac8c 9946 . . . . 5 (𝒫 𝐴 ∈ V → (∃𝑟 𝑟 We 𝒫 𝐴 → ∃𝑓𝑥 ∈ 𝒫 𝐴(𝑥 ≠ ∅ → (𝑓𝑥) ∈ 𝑥)))
1412, 13syl 17 . . . 4 (𝐴 ∈ V → (∃𝑟 𝑟 We 𝒫 𝐴 → ∃𝑓𝑥 ∈ 𝒫 𝐴(𝑥 ≠ ∅ → (𝑓𝑥) ∈ 𝑥)))
15 dfac8a 9943 . . . 4 (𝐴 ∈ V → (∃𝑓𝑥 ∈ 𝒫 𝐴(𝑥 ≠ ∅ → (𝑓𝑥) ∈ 𝑥) → 𝐴 ∈ dom card))
1614, 15syld 47 . . 3 (𝐴 ∈ V → (∃𝑟 𝑟 We 𝒫 𝐴𝐴 ∈ dom card))
176, 11, 16sylc 65 . 2 (∃𝑟 𝑟 We 𝐴𝐴 ∈ dom card)
181, 17impbii 209 1 (𝐴 ∈ dom card ↔ ∃𝑟 𝑟 We 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206   = wceq 1540  wex 1779  wcel 2109  wne 2925  wral 3044  Vcvv 3438  c0 4286  𝒫 cpw 4553   cuni 4861   Or wor 5530   We wwe 5575  dom cdm 5623  cfv 6486  cardccrd 9850
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7675
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rmo 3345  df-reu 3346  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-pss 3925  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-int 4900  df-iun 4946  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5518  df-eprel 5523  df-po 5531  df-so 5532  df-fr 5576  df-se 5577  df-we 5578  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-pred 6253  df-ord 6314  df-on 6315  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-isom 6495  df-riota 7310  df-ov 7356  df-2nd 7932  df-frecs 8221  df-wrecs 8252  df-recs 8301  df-en 8880  df-card 9854
This theorem is referenced by:  ondomen  9950  dfac10  10051  zorn2lem7  10415  fpwwe  10559  canthnumlem  10561  canthp1lem2  10566  pwfseqlem4a  10574  pwfseqlem4  10575  numiunnum  36443  fin2so  37586
  Copyright terms: Public domain W3C validator