| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ween | Structured version Visualization version GIF version | ||
| Description: A set is numerable iff it can be well-ordered. (Contributed by Mario Carneiro, 5-Jan-2013.) |
| Ref | Expression |
|---|---|
| ween | ⊢ (𝐴 ∈ dom card ↔ ∃𝑟 𝑟 We 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dfac8b 9932 | . 2 ⊢ (𝐴 ∈ dom card → ∃𝑟 𝑟 We 𝐴) | |
| 2 | weso 5612 | . . . . 5 ⊢ (𝑟 We 𝐴 → 𝑟 Or 𝐴) | |
| 3 | vex 3442 | . . . . 5 ⊢ 𝑟 ∈ V | |
| 4 | soex 7860 | . . . . 5 ⊢ ((𝑟 Or 𝐴 ∧ 𝑟 ∈ V) → 𝐴 ∈ V) | |
| 5 | 2, 3, 4 | sylancl 586 | . . . 4 ⊢ (𝑟 We 𝐴 → 𝐴 ∈ V) |
| 6 | 5 | exlimiv 1931 | . . 3 ⊢ (∃𝑟 𝑟 We 𝐴 → 𝐴 ∈ V) |
| 7 | unipw 5395 | . . . . . 6 ⊢ ∪ 𝒫 𝐴 = 𝐴 | |
| 8 | weeq2 5609 | . . . . . 6 ⊢ (∪ 𝒫 𝐴 = 𝐴 → (𝑟 We ∪ 𝒫 𝐴 ↔ 𝑟 We 𝐴)) | |
| 9 | 7, 8 | ax-mp 5 | . . . . 5 ⊢ (𝑟 We ∪ 𝒫 𝐴 ↔ 𝑟 We 𝐴) |
| 10 | 9 | exbii 1849 | . . . 4 ⊢ (∃𝑟 𝑟 We ∪ 𝒫 𝐴 ↔ ∃𝑟 𝑟 We 𝐴) |
| 11 | 10 | biimpri 228 | . . 3 ⊢ (∃𝑟 𝑟 We 𝐴 → ∃𝑟 𝑟 We ∪ 𝒫 𝐴) |
| 12 | pwexg 5320 | . . . . 5 ⊢ (𝐴 ∈ V → 𝒫 𝐴 ∈ V) | |
| 13 | dfac8c 9934 | . . . . 5 ⊢ (𝒫 𝐴 ∈ V → (∃𝑟 𝑟 We ∪ 𝒫 𝐴 → ∃𝑓∀𝑥 ∈ 𝒫 𝐴(𝑥 ≠ ∅ → (𝑓‘𝑥) ∈ 𝑥))) | |
| 14 | 12, 13 | syl 17 | . . . 4 ⊢ (𝐴 ∈ V → (∃𝑟 𝑟 We ∪ 𝒫 𝐴 → ∃𝑓∀𝑥 ∈ 𝒫 𝐴(𝑥 ≠ ∅ → (𝑓‘𝑥) ∈ 𝑥))) |
| 15 | dfac8a 9931 | . . . 4 ⊢ (𝐴 ∈ V → (∃𝑓∀𝑥 ∈ 𝒫 𝐴(𝑥 ≠ ∅ → (𝑓‘𝑥) ∈ 𝑥) → 𝐴 ∈ dom card)) | |
| 16 | 14, 15 | syld 47 | . . 3 ⊢ (𝐴 ∈ V → (∃𝑟 𝑟 We ∪ 𝒫 𝐴 → 𝐴 ∈ dom card)) |
| 17 | 6, 11, 16 | sylc 65 | . 2 ⊢ (∃𝑟 𝑟 We 𝐴 → 𝐴 ∈ dom card) |
| 18 | 1, 17 | impbii 209 | 1 ⊢ (𝐴 ∈ dom card ↔ ∃𝑟 𝑟 We 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 = wceq 1541 ∃wex 1780 ∈ wcel 2113 ≠ wne 2930 ∀wral 3049 Vcvv 3438 ∅c0 4284 𝒫 cpw 4551 ∪ cuni 4860 Or wor 5528 We wwe 5573 dom cdm 5621 ‘cfv 6489 cardccrd 9838 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-rep 5221 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7677 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2883 df-ne 2931 df-ral 3050 df-rex 3059 df-rmo 3348 df-reu 3349 df-rab 3398 df-v 3440 df-sbc 3739 df-csb 3848 df-dif 3902 df-un 3904 df-in 3906 df-ss 3916 df-pss 3919 df-nul 4285 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4861 df-int 4900 df-iun 4945 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5516 df-eprel 5521 df-po 5529 df-so 5530 df-fr 5574 df-se 5575 df-we 5576 df-xp 5627 df-rel 5628 df-cnv 5629 df-co 5630 df-dm 5631 df-rn 5632 df-res 5633 df-ima 5634 df-pred 6256 df-ord 6317 df-on 6318 df-suc 6320 df-iota 6445 df-fun 6491 df-fn 6492 df-f 6493 df-f1 6494 df-fo 6495 df-f1o 6496 df-fv 6497 df-isom 6498 df-riota 7312 df-ov 7358 df-2nd 7931 df-frecs 8220 df-wrecs 8251 df-recs 8300 df-en 8879 df-card 9842 |
| This theorem is referenced by: ondomen 9938 dfac10 10039 zorn2lem7 10403 fpwwe 10547 canthnumlem 10549 canthp1lem2 10554 pwfseqlem4a 10562 pwfseqlem4 10563 numiunnum 36525 fin2so 37657 |
| Copyright terms: Public domain | W3C validator |