MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ween Structured version   Visualization version   GIF version

Theorem ween 10036
Description: A set is numerable iff it can be well-ordered. (Contributed by Mario Carneiro, 5-Jan-2013.)
Assertion
Ref Expression
ween (𝐴 ∈ dom card ↔ ∃𝑟 𝑟 We 𝐴)
Distinct variable group:   𝐴,𝑟

Proof of Theorem ween
Dummy variables 𝑓 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dfac8b 10032 . 2 (𝐴 ∈ dom card → ∃𝑟 𝑟 We 𝐴)
2 weso 5667 . . . . 5 (𝑟 We 𝐴𝑟 Or 𝐴)
3 vex 3477 . . . . 5 𝑟 ∈ V
4 soex 7916 . . . . 5 ((𝑟 Or 𝐴𝑟 ∈ V) → 𝐴 ∈ V)
52, 3, 4sylancl 585 . . . 4 (𝑟 We 𝐴𝐴 ∈ V)
65exlimiv 1932 . . 3 (∃𝑟 𝑟 We 𝐴𝐴 ∈ V)
7 unipw 5450 . . . . . 6 𝒫 𝐴 = 𝐴
8 weeq2 5665 . . . . . 6 ( 𝒫 𝐴 = 𝐴 → (𝑟 We 𝒫 𝐴𝑟 We 𝐴))
97, 8ax-mp 5 . . . . 5 (𝑟 We 𝒫 𝐴𝑟 We 𝐴)
109exbii 1849 . . . 4 (∃𝑟 𝑟 We 𝒫 𝐴 ↔ ∃𝑟 𝑟 We 𝐴)
1110biimpri 227 . . 3 (∃𝑟 𝑟 We 𝐴 → ∃𝑟 𝑟 We 𝒫 𝐴)
12 pwexg 5376 . . . . 5 (𝐴 ∈ V → 𝒫 𝐴 ∈ V)
13 dfac8c 10034 . . . . 5 (𝒫 𝐴 ∈ V → (∃𝑟 𝑟 We 𝒫 𝐴 → ∃𝑓𝑥 ∈ 𝒫 𝐴(𝑥 ≠ ∅ → (𝑓𝑥) ∈ 𝑥)))
1412, 13syl 17 . . . 4 (𝐴 ∈ V → (∃𝑟 𝑟 We 𝒫 𝐴 → ∃𝑓𝑥 ∈ 𝒫 𝐴(𝑥 ≠ ∅ → (𝑓𝑥) ∈ 𝑥)))
15 dfac8a 10031 . . . 4 (𝐴 ∈ V → (∃𝑓𝑥 ∈ 𝒫 𝐴(𝑥 ≠ ∅ → (𝑓𝑥) ∈ 𝑥) → 𝐴 ∈ dom card))
1614, 15syld 47 . . 3 (𝐴 ∈ V → (∃𝑟 𝑟 We 𝒫 𝐴𝐴 ∈ dom card))
176, 11, 16sylc 65 . 2 (∃𝑟 𝑟 We 𝐴𝐴 ∈ dom card)
181, 17impbii 208 1 (𝐴 ∈ dom card ↔ ∃𝑟 𝑟 We 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205   = wceq 1540  wex 1780  wcel 2105  wne 2939  wral 3060  Vcvv 3473  c0 4322  𝒫 cpw 4602   cuni 4908   Or wor 5587   We wwe 5630  dom cdm 5676  cfv 6543  cardccrd 9936
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2702  ax-rep 5285  ax-sep 5299  ax-nul 5306  ax-pow 5363  ax-pr 5427  ax-un 7729
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2533  df-eu 2562  df-clab 2709  df-cleq 2723  df-clel 2809  df-nfc 2884  df-ne 2940  df-ral 3061  df-rex 3070  df-rmo 3375  df-reu 3376  df-rab 3432  df-v 3475  df-sbc 3778  df-csb 3894  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-pss 3967  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-int 4951  df-iun 4999  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5574  df-eprel 5580  df-po 5588  df-so 5589  df-fr 5631  df-se 5632  df-we 5633  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-pred 6300  df-ord 6367  df-on 6368  df-suc 6370  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-isom 6552  df-riota 7368  df-ov 7415  df-2nd 7980  df-frecs 8272  df-wrecs 8303  df-recs 8377  df-en 8946  df-card 9940
This theorem is referenced by:  ondomen  10038  dfac10  10138  zorn2lem7  10503  fpwwe  10647  canthnumlem  10649  canthp1lem2  10654  pwfseqlem4a  10662  pwfseqlem4  10663  fin2so  36791
  Copyright terms: Public domain W3C validator