MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ween Structured version   Visualization version   GIF version

Theorem ween 9995
Description: A set is numerable iff it can be well-ordered. (Contributed by Mario Carneiro, 5-Jan-2013.)
Assertion
Ref Expression
ween (𝐴 ∈ dom card ↔ ∃𝑟 𝑟 We 𝐴)
Distinct variable group:   𝐴,𝑟

Proof of Theorem ween
Dummy variables 𝑓 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dfac8b 9991 . 2 (𝐴 ∈ dom card → ∃𝑟 𝑟 We 𝐴)
2 weso 5632 . . . . 5 (𝑟 We 𝐴𝑟 Or 𝐴)
3 vex 3454 . . . . 5 𝑟 ∈ V
4 soex 7900 . . . . 5 ((𝑟 Or 𝐴𝑟 ∈ V) → 𝐴 ∈ V)
52, 3, 4sylancl 586 . . . 4 (𝑟 We 𝐴𝐴 ∈ V)
65exlimiv 1930 . . 3 (∃𝑟 𝑟 We 𝐴𝐴 ∈ V)
7 unipw 5413 . . . . . 6 𝒫 𝐴 = 𝐴
8 weeq2 5629 . . . . . 6 ( 𝒫 𝐴 = 𝐴 → (𝑟 We 𝒫 𝐴𝑟 We 𝐴))
97, 8ax-mp 5 . . . . 5 (𝑟 We 𝒫 𝐴𝑟 We 𝐴)
109exbii 1848 . . . 4 (∃𝑟 𝑟 We 𝒫 𝐴 ↔ ∃𝑟 𝑟 We 𝐴)
1110biimpri 228 . . 3 (∃𝑟 𝑟 We 𝐴 → ∃𝑟 𝑟 We 𝒫 𝐴)
12 pwexg 5336 . . . . 5 (𝐴 ∈ V → 𝒫 𝐴 ∈ V)
13 dfac8c 9993 . . . . 5 (𝒫 𝐴 ∈ V → (∃𝑟 𝑟 We 𝒫 𝐴 → ∃𝑓𝑥 ∈ 𝒫 𝐴(𝑥 ≠ ∅ → (𝑓𝑥) ∈ 𝑥)))
1412, 13syl 17 . . . 4 (𝐴 ∈ V → (∃𝑟 𝑟 We 𝒫 𝐴 → ∃𝑓𝑥 ∈ 𝒫 𝐴(𝑥 ≠ ∅ → (𝑓𝑥) ∈ 𝑥)))
15 dfac8a 9990 . . . 4 (𝐴 ∈ V → (∃𝑓𝑥 ∈ 𝒫 𝐴(𝑥 ≠ ∅ → (𝑓𝑥) ∈ 𝑥) → 𝐴 ∈ dom card))
1614, 15syld 47 . . 3 (𝐴 ∈ V → (∃𝑟 𝑟 We 𝒫 𝐴𝐴 ∈ dom card))
176, 11, 16sylc 65 . 2 (∃𝑟 𝑟 We 𝐴𝐴 ∈ dom card)
181, 17impbii 209 1 (𝐴 ∈ dom card ↔ ∃𝑟 𝑟 We 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206   = wceq 1540  wex 1779  wcel 2109  wne 2926  wral 3045  Vcvv 3450  c0 4299  𝒫 cpw 4566   cuni 4874   Or wor 5548   We wwe 5593  dom cdm 5641  cfv 6514  cardccrd 9895
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-int 4914  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-se 5595  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-isom 6523  df-riota 7347  df-ov 7393  df-2nd 7972  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-en 8922  df-card 9899
This theorem is referenced by:  ondomen  9997  dfac10  10098  zorn2lem7  10462  fpwwe  10606  canthnumlem  10608  canthp1lem2  10613  pwfseqlem4a  10621  pwfseqlem4  10622  numiunnum  36465  fin2so  37608
  Copyright terms: Public domain W3C validator