MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  wfrlem17OLD Structured version   Visualization version   GIF version

Theorem wfrlem17OLD 8321
Description: Without using ax-rep 5284, show that all restrictions of wrecs are sets. Obsolete as of 18-Nov-2024. (New usage is discouraged.) (Proof modification is discouraged.) (Contributed by Scott Fenton, 31-Jul-2020.)
Hypotheses
Ref Expression
wfrlem17OLD.1 𝑅 We 𝐴
wfrlem17OLD.2 𝑅 Se 𝐴
wfrlem17OLD.3 𝐹 = wrecs(𝑅, 𝐴, 𝐺)
Assertion
Ref Expression
wfrlem17OLD (𝑋 ∈ dom 𝐹 → (𝐹 ↾ Pred(𝑅, 𝐴, 𝑋)) ∈ V)

Proof of Theorem wfrlem17OLD
Dummy variables 𝑓 𝑔 𝑥 𝑦 𝑧 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 wfrlem17OLD.1 . . . . 5 𝑅 We 𝐴
2 wfrlem17OLD.2 . . . . 5 𝑅 Se 𝐴
3 wfrlem17OLD.3 . . . . 5 𝐹 = wrecs(𝑅, 𝐴, 𝐺)
41, 2, 3wfrfunOLD 8315 . . . 4 Fun 𝐹
5 funfvop 7048 . . . 4 ((Fun 𝐹𝑋 ∈ dom 𝐹) → ⟨𝑋, (𝐹𝑋)⟩ ∈ 𝐹)
64, 5mpan 688 . . 3 (𝑋 ∈ dom 𝐹 → ⟨𝑋, (𝐹𝑋)⟩ ∈ 𝐹)
7 dfwrecsOLD 8294 . . . . . 6 wrecs(𝑅, 𝐴, 𝐺) = {𝑓 ∣ ∃𝑥(𝑓 Fn 𝑥 ∧ (𝑥𝐴 ∧ ∀𝑦𝑥 Pred(𝑅, 𝐴, 𝑦) ⊆ 𝑥) ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐺‘(𝑓 ↾ Pred(𝑅, 𝐴, 𝑦))))}
83, 7eqtri 2760 . . . . 5 𝐹 = {𝑓 ∣ ∃𝑥(𝑓 Fn 𝑥 ∧ (𝑥𝐴 ∧ ∀𝑦𝑥 Pred(𝑅, 𝐴, 𝑦) ⊆ 𝑥) ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐺‘(𝑓 ↾ Pred(𝑅, 𝐴, 𝑦))))}
98eleq2i 2825 . . . 4 (⟨𝑋, (𝐹𝑋)⟩ ∈ 𝐹 ↔ ⟨𝑋, (𝐹𝑋)⟩ ∈ {𝑓 ∣ ∃𝑥(𝑓 Fn 𝑥 ∧ (𝑥𝐴 ∧ ∀𝑦𝑥 Pred(𝑅, 𝐴, 𝑦) ⊆ 𝑥) ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐺‘(𝑓 ↾ Pred(𝑅, 𝐴, 𝑦))))})
10 eluni 4910 . . . 4 (⟨𝑋, (𝐹𝑋)⟩ ∈ {𝑓 ∣ ∃𝑥(𝑓 Fn 𝑥 ∧ (𝑥𝐴 ∧ ∀𝑦𝑥 Pred(𝑅, 𝐴, 𝑦) ⊆ 𝑥) ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐺‘(𝑓 ↾ Pred(𝑅, 𝐴, 𝑦))))} ↔ ∃𝑔(⟨𝑋, (𝐹𝑋)⟩ ∈ 𝑔𝑔 ∈ {𝑓 ∣ ∃𝑥(𝑓 Fn 𝑥 ∧ (𝑥𝐴 ∧ ∀𝑦𝑥 Pred(𝑅, 𝐴, 𝑦) ⊆ 𝑥) ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐺‘(𝑓 ↾ Pred(𝑅, 𝐴, 𝑦))))}))
119, 10bitri 274 . . 3 (⟨𝑋, (𝐹𝑋)⟩ ∈ 𝐹 ↔ ∃𝑔(⟨𝑋, (𝐹𝑋)⟩ ∈ 𝑔𝑔 ∈ {𝑓 ∣ ∃𝑥(𝑓 Fn 𝑥 ∧ (𝑥𝐴 ∧ ∀𝑦𝑥 Pred(𝑅, 𝐴, 𝑦) ⊆ 𝑥) ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐺‘(𝑓 ↾ Pred(𝑅, 𝐴, 𝑦))))}))
126, 11sylib 217 . 2 (𝑋 ∈ dom 𝐹 → ∃𝑔(⟨𝑋, (𝐹𝑋)⟩ ∈ 𝑔𝑔 ∈ {𝑓 ∣ ∃𝑥(𝑓 Fn 𝑥 ∧ (𝑥𝐴 ∧ ∀𝑦𝑥 Pred(𝑅, 𝐴, 𝑦) ⊆ 𝑥) ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐺‘(𝑓 ↾ Pred(𝑅, 𝐴, 𝑦))))}))
13 simprr 771 . . . 4 ((𝑋 ∈ dom 𝐹 ∧ (⟨𝑋, (𝐹𝑋)⟩ ∈ 𝑔𝑔 ∈ {𝑓 ∣ ∃𝑥(𝑓 Fn 𝑥 ∧ (𝑥𝐴 ∧ ∀𝑦𝑥 Pred(𝑅, 𝐴, 𝑦) ⊆ 𝑥) ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐺‘(𝑓 ↾ Pred(𝑅, 𝐴, 𝑦))))})) → 𝑔 ∈ {𝑓 ∣ ∃𝑥(𝑓 Fn 𝑥 ∧ (𝑥𝐴 ∧ ∀𝑦𝑥 Pred(𝑅, 𝐴, 𝑦) ⊆ 𝑥) ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐺‘(𝑓 ↾ Pred(𝑅, 𝐴, 𝑦))))})
14 eqid 2732 . . . . 5 {𝑓 ∣ ∃𝑥(𝑓 Fn 𝑥 ∧ (𝑥𝐴 ∧ ∀𝑦𝑥 Pred(𝑅, 𝐴, 𝑦) ⊆ 𝑥) ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐺‘(𝑓 ↾ Pred(𝑅, 𝐴, 𝑦))))} = {𝑓 ∣ ∃𝑥(𝑓 Fn 𝑥 ∧ (𝑥𝐴 ∧ ∀𝑦𝑥 Pred(𝑅, 𝐴, 𝑦) ⊆ 𝑥) ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐺‘(𝑓 ↾ Pred(𝑅, 𝐴, 𝑦))))}
15 vex 3478 . . . . 5 𝑔 ∈ V
1614, 15wfrlem3OLDa 8307 . . . 4 (𝑔 ∈ {𝑓 ∣ ∃𝑥(𝑓 Fn 𝑥 ∧ (𝑥𝐴 ∧ ∀𝑦𝑥 Pred(𝑅, 𝐴, 𝑦) ⊆ 𝑥) ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐺‘(𝑓 ↾ Pred(𝑅, 𝐴, 𝑦))))} ↔ ∃𝑧(𝑔 Fn 𝑧 ∧ (𝑧𝐴 ∧ ∀𝑤𝑧 Pred(𝑅, 𝐴, 𝑤) ⊆ 𝑧) ∧ ∀𝑤𝑧 (𝑔𝑤) = (𝐺‘(𝑔 ↾ Pred(𝑅, 𝐴, 𝑤)))))
1713, 16sylib 217 . . 3 ((𝑋 ∈ dom 𝐹 ∧ (⟨𝑋, (𝐹𝑋)⟩ ∈ 𝑔𝑔 ∈ {𝑓 ∣ ∃𝑥(𝑓 Fn 𝑥 ∧ (𝑥𝐴 ∧ ∀𝑦𝑥 Pred(𝑅, 𝐴, 𝑦) ⊆ 𝑥) ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐺‘(𝑓 ↾ Pred(𝑅, 𝐴, 𝑦))))})) → ∃𝑧(𝑔 Fn 𝑧 ∧ (𝑧𝐴 ∧ ∀𝑤𝑧 Pred(𝑅, 𝐴, 𝑤) ⊆ 𝑧) ∧ ∀𝑤𝑧 (𝑔𝑤) = (𝐺‘(𝑔 ↾ Pred(𝑅, 𝐴, 𝑤)))))
18 3simpa 1148 . . . . 5 ((𝑔 Fn 𝑧 ∧ (𝑧𝐴 ∧ ∀𝑤𝑧 Pred(𝑅, 𝐴, 𝑤) ⊆ 𝑧) ∧ ∀𝑤𝑧 (𝑔𝑤) = (𝐺‘(𝑔 ↾ Pred(𝑅, 𝐴, 𝑤)))) → (𝑔 Fn 𝑧 ∧ (𝑧𝐴 ∧ ∀𝑤𝑧 Pred(𝑅, 𝐴, 𝑤) ⊆ 𝑧)))
19 simprlr 778 . . . . . . . . 9 ((𝑋 ∈ dom 𝐹 ∧ ((⟨𝑋, (𝐹𝑋)⟩ ∈ 𝑔𝑔 ∈ {𝑓 ∣ ∃𝑥(𝑓 Fn 𝑥 ∧ (𝑥𝐴 ∧ ∀𝑦𝑥 Pred(𝑅, 𝐴, 𝑦) ⊆ 𝑥) ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐺‘(𝑓 ↾ Pred(𝑅, 𝐴, 𝑦))))}) ∧ (𝑔 Fn 𝑧 ∧ (𝑧𝐴 ∧ ∀𝑤𝑧 Pred(𝑅, 𝐴, 𝑤) ⊆ 𝑧)))) → 𝑔 ∈ {𝑓 ∣ ∃𝑥(𝑓 Fn 𝑥 ∧ (𝑥𝐴 ∧ ∀𝑦𝑥 Pred(𝑅, 𝐴, 𝑦) ⊆ 𝑥) ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐺‘(𝑓 ↾ Pred(𝑅, 𝐴, 𝑦))))})
20 elssuni 4940 . . . . . . . . . 10 (𝑔 ∈ {𝑓 ∣ ∃𝑥(𝑓 Fn 𝑥 ∧ (𝑥𝐴 ∧ ∀𝑦𝑥 Pred(𝑅, 𝐴, 𝑦) ⊆ 𝑥) ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐺‘(𝑓 ↾ Pred(𝑅, 𝐴, 𝑦))))} → 𝑔 {𝑓 ∣ ∃𝑥(𝑓 Fn 𝑥 ∧ (𝑥𝐴 ∧ ∀𝑦𝑥 Pred(𝑅, 𝐴, 𝑦) ⊆ 𝑥) ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐺‘(𝑓 ↾ Pred(𝑅, 𝐴, 𝑦))))})
2120, 8sseqtrrdi 4032 . . . . . . . . 9 (𝑔 ∈ {𝑓 ∣ ∃𝑥(𝑓 Fn 𝑥 ∧ (𝑥𝐴 ∧ ∀𝑦𝑥 Pred(𝑅, 𝐴, 𝑦) ⊆ 𝑥) ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐺‘(𝑓 ↾ Pred(𝑅, 𝐴, 𝑦))))} → 𝑔𝐹)
2219, 21syl 17 . . . . . . . 8 ((𝑋 ∈ dom 𝐹 ∧ ((⟨𝑋, (𝐹𝑋)⟩ ∈ 𝑔𝑔 ∈ {𝑓 ∣ ∃𝑥(𝑓 Fn 𝑥 ∧ (𝑥𝐴 ∧ ∀𝑦𝑥 Pred(𝑅, 𝐴, 𝑦) ⊆ 𝑥) ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐺‘(𝑓 ↾ Pred(𝑅, 𝐴, 𝑦))))}) ∧ (𝑔 Fn 𝑧 ∧ (𝑧𝐴 ∧ ∀𝑤𝑧 Pred(𝑅, 𝐴, 𝑤) ⊆ 𝑧)))) → 𝑔𝐹)
23 predeq3 6301 . . . . . . . . . . 11 (𝑤 = 𝑋 → Pred(𝑅, 𝐴, 𝑤) = Pred(𝑅, 𝐴, 𝑋))
2423sseq1d 4012 . . . . . . . . . 10 (𝑤 = 𝑋 → (Pred(𝑅, 𝐴, 𝑤) ⊆ 𝑧 ↔ Pred(𝑅, 𝐴, 𝑋) ⊆ 𝑧))
25 simprrr 780 . . . . . . . . . . 11 (((⟨𝑋, (𝐹𝑋)⟩ ∈ 𝑔𝑔 ∈ {𝑓 ∣ ∃𝑥(𝑓 Fn 𝑥 ∧ (𝑥𝐴 ∧ ∀𝑦𝑥 Pred(𝑅, 𝐴, 𝑦) ⊆ 𝑥) ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐺‘(𝑓 ↾ Pred(𝑅, 𝐴, 𝑦))))}) ∧ (𝑔 Fn 𝑧 ∧ (𝑧𝐴 ∧ ∀𝑤𝑧 Pred(𝑅, 𝐴, 𝑤) ⊆ 𝑧))) → ∀𝑤𝑧 Pred(𝑅, 𝐴, 𝑤) ⊆ 𝑧)
2625adantl 482 . . . . . . . . . 10 ((𝑋 ∈ dom 𝐹 ∧ ((⟨𝑋, (𝐹𝑋)⟩ ∈ 𝑔𝑔 ∈ {𝑓 ∣ ∃𝑥(𝑓 Fn 𝑥 ∧ (𝑥𝐴 ∧ ∀𝑦𝑥 Pred(𝑅, 𝐴, 𝑦) ⊆ 𝑥) ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐺‘(𝑓 ↾ Pred(𝑅, 𝐴, 𝑦))))}) ∧ (𝑔 Fn 𝑧 ∧ (𝑧𝐴 ∧ ∀𝑤𝑧 Pred(𝑅, 𝐴, 𝑤) ⊆ 𝑧)))) → ∀𝑤𝑧 Pred(𝑅, 𝐴, 𝑤) ⊆ 𝑧)
27 simprll 777 . . . . . . . . . . . . 13 ((𝑋 ∈ dom 𝐹 ∧ ((⟨𝑋, (𝐹𝑋)⟩ ∈ 𝑔𝑔 ∈ {𝑓 ∣ ∃𝑥(𝑓 Fn 𝑥 ∧ (𝑥𝐴 ∧ ∀𝑦𝑥 Pred(𝑅, 𝐴, 𝑦) ⊆ 𝑥) ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐺‘(𝑓 ↾ Pred(𝑅, 𝐴, 𝑦))))}) ∧ (𝑔 Fn 𝑧 ∧ (𝑧𝐴 ∧ ∀𝑤𝑧 Pred(𝑅, 𝐴, 𝑤) ⊆ 𝑧)))) → ⟨𝑋, (𝐹𝑋)⟩ ∈ 𝑔)
28 df-br 5148 . . . . . . . . . . . . 13 (𝑋𝑔(𝐹𝑋) ↔ ⟨𝑋, (𝐹𝑋)⟩ ∈ 𝑔)
2927, 28sylibr 233 . . . . . . . . . . . 12 ((𝑋 ∈ dom 𝐹 ∧ ((⟨𝑋, (𝐹𝑋)⟩ ∈ 𝑔𝑔 ∈ {𝑓 ∣ ∃𝑥(𝑓 Fn 𝑥 ∧ (𝑥𝐴 ∧ ∀𝑦𝑥 Pred(𝑅, 𝐴, 𝑦) ⊆ 𝑥) ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐺‘(𝑓 ↾ Pred(𝑅, 𝐴, 𝑦))))}) ∧ (𝑔 Fn 𝑧 ∧ (𝑧𝐴 ∧ ∀𝑤𝑧 Pred(𝑅, 𝐴, 𝑤) ⊆ 𝑧)))) → 𝑋𝑔(𝐹𝑋))
30 fvex 6901 . . . . . . . . . . . . 13 (𝐹𝑋) ∈ V
31 breldmg 5907 . . . . . . . . . . . . 13 ((𝑋 ∈ dom 𝐹 ∧ (𝐹𝑋) ∈ V ∧ 𝑋𝑔(𝐹𝑋)) → 𝑋 ∈ dom 𝑔)
3230, 31mp3an2 1449 . . . . . . . . . . . 12 ((𝑋 ∈ dom 𝐹𝑋𝑔(𝐹𝑋)) → 𝑋 ∈ dom 𝑔)
3329, 32syldan 591 . . . . . . . . . . 11 ((𝑋 ∈ dom 𝐹 ∧ ((⟨𝑋, (𝐹𝑋)⟩ ∈ 𝑔𝑔 ∈ {𝑓 ∣ ∃𝑥(𝑓 Fn 𝑥 ∧ (𝑥𝐴 ∧ ∀𝑦𝑥 Pred(𝑅, 𝐴, 𝑦) ⊆ 𝑥) ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐺‘(𝑓 ↾ Pred(𝑅, 𝐴, 𝑦))))}) ∧ (𝑔 Fn 𝑧 ∧ (𝑧𝐴 ∧ ∀𝑤𝑧 Pred(𝑅, 𝐴, 𝑤) ⊆ 𝑧)))) → 𝑋 ∈ dom 𝑔)
34 simprrl 779 . . . . . . . . . . . 12 ((𝑋 ∈ dom 𝐹 ∧ ((⟨𝑋, (𝐹𝑋)⟩ ∈ 𝑔𝑔 ∈ {𝑓 ∣ ∃𝑥(𝑓 Fn 𝑥 ∧ (𝑥𝐴 ∧ ∀𝑦𝑥 Pred(𝑅, 𝐴, 𝑦) ⊆ 𝑥) ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐺‘(𝑓 ↾ Pred(𝑅, 𝐴, 𝑦))))}) ∧ (𝑔 Fn 𝑧 ∧ (𝑧𝐴 ∧ ∀𝑤𝑧 Pred(𝑅, 𝐴, 𝑤) ⊆ 𝑧)))) → 𝑔 Fn 𝑧)
3534fndmd 6651 . . . . . . . . . . 11 ((𝑋 ∈ dom 𝐹 ∧ ((⟨𝑋, (𝐹𝑋)⟩ ∈ 𝑔𝑔 ∈ {𝑓 ∣ ∃𝑥(𝑓 Fn 𝑥 ∧ (𝑥𝐴 ∧ ∀𝑦𝑥 Pred(𝑅, 𝐴, 𝑦) ⊆ 𝑥) ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐺‘(𝑓 ↾ Pred(𝑅, 𝐴, 𝑦))))}) ∧ (𝑔 Fn 𝑧 ∧ (𝑧𝐴 ∧ ∀𝑤𝑧 Pred(𝑅, 𝐴, 𝑤) ⊆ 𝑧)))) → dom 𝑔 = 𝑧)
3633, 35eleqtrd 2835 . . . . . . . . . 10 ((𝑋 ∈ dom 𝐹 ∧ ((⟨𝑋, (𝐹𝑋)⟩ ∈ 𝑔𝑔 ∈ {𝑓 ∣ ∃𝑥(𝑓 Fn 𝑥 ∧ (𝑥𝐴 ∧ ∀𝑦𝑥 Pred(𝑅, 𝐴, 𝑦) ⊆ 𝑥) ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐺‘(𝑓 ↾ Pred(𝑅, 𝐴, 𝑦))))}) ∧ (𝑔 Fn 𝑧 ∧ (𝑧𝐴 ∧ ∀𝑤𝑧 Pred(𝑅, 𝐴, 𝑤) ⊆ 𝑧)))) → 𝑋𝑧)
3724, 26, 36rspcdva 3613 . . . . . . . . 9 ((𝑋 ∈ dom 𝐹 ∧ ((⟨𝑋, (𝐹𝑋)⟩ ∈ 𝑔𝑔 ∈ {𝑓 ∣ ∃𝑥(𝑓 Fn 𝑥 ∧ (𝑥𝐴 ∧ ∀𝑦𝑥 Pred(𝑅, 𝐴, 𝑦) ⊆ 𝑥) ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐺‘(𝑓 ↾ Pred(𝑅, 𝐴, 𝑦))))}) ∧ (𝑔 Fn 𝑧 ∧ (𝑧𝐴 ∧ ∀𝑤𝑧 Pred(𝑅, 𝐴, 𝑤) ⊆ 𝑧)))) → Pred(𝑅, 𝐴, 𝑋) ⊆ 𝑧)
3837, 35sseqtrrd 4022 . . . . . . . 8 ((𝑋 ∈ dom 𝐹 ∧ ((⟨𝑋, (𝐹𝑋)⟩ ∈ 𝑔𝑔 ∈ {𝑓 ∣ ∃𝑥(𝑓 Fn 𝑥 ∧ (𝑥𝐴 ∧ ∀𝑦𝑥 Pred(𝑅, 𝐴, 𝑦) ⊆ 𝑥) ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐺‘(𝑓 ↾ Pred(𝑅, 𝐴, 𝑦))))}) ∧ (𝑔 Fn 𝑧 ∧ (𝑧𝐴 ∧ ∀𝑤𝑧 Pred(𝑅, 𝐴, 𝑤) ⊆ 𝑧)))) → Pred(𝑅, 𝐴, 𝑋) ⊆ dom 𝑔)
39 fun2ssres 6590 . . . . . . . 8 ((Fun 𝐹𝑔𝐹 ∧ Pred(𝑅, 𝐴, 𝑋) ⊆ dom 𝑔) → (𝐹 ↾ Pred(𝑅, 𝐴, 𝑋)) = (𝑔 ↾ Pred(𝑅, 𝐴, 𝑋)))
404, 22, 38, 39mp3an2i 1466 . . . . . . 7 ((𝑋 ∈ dom 𝐹 ∧ ((⟨𝑋, (𝐹𝑋)⟩ ∈ 𝑔𝑔 ∈ {𝑓 ∣ ∃𝑥(𝑓 Fn 𝑥 ∧ (𝑥𝐴 ∧ ∀𝑦𝑥 Pred(𝑅, 𝐴, 𝑦) ⊆ 𝑥) ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐺‘(𝑓 ↾ Pred(𝑅, 𝐴, 𝑦))))}) ∧ (𝑔 Fn 𝑧 ∧ (𝑧𝐴 ∧ ∀𝑤𝑧 Pred(𝑅, 𝐴, 𝑤) ⊆ 𝑧)))) → (𝐹 ↾ Pred(𝑅, 𝐴, 𝑋)) = (𝑔 ↾ Pred(𝑅, 𝐴, 𝑋)))
4115resex 6027 . . . . . . 7 (𝑔 ↾ Pred(𝑅, 𝐴, 𝑋)) ∈ V
4240, 41eqeltrdi 2841 . . . . . 6 ((𝑋 ∈ dom 𝐹 ∧ ((⟨𝑋, (𝐹𝑋)⟩ ∈ 𝑔𝑔 ∈ {𝑓 ∣ ∃𝑥(𝑓 Fn 𝑥 ∧ (𝑥𝐴 ∧ ∀𝑦𝑥 Pred(𝑅, 𝐴, 𝑦) ⊆ 𝑥) ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐺‘(𝑓 ↾ Pred(𝑅, 𝐴, 𝑦))))}) ∧ (𝑔 Fn 𝑧 ∧ (𝑧𝐴 ∧ ∀𝑤𝑧 Pred(𝑅, 𝐴, 𝑤) ⊆ 𝑧)))) → (𝐹 ↾ Pred(𝑅, 𝐴, 𝑋)) ∈ V)
4342expr 457 . . . . 5 ((𝑋 ∈ dom 𝐹 ∧ (⟨𝑋, (𝐹𝑋)⟩ ∈ 𝑔𝑔 ∈ {𝑓 ∣ ∃𝑥(𝑓 Fn 𝑥 ∧ (𝑥𝐴 ∧ ∀𝑦𝑥 Pred(𝑅, 𝐴, 𝑦) ⊆ 𝑥) ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐺‘(𝑓 ↾ Pred(𝑅, 𝐴, 𝑦))))})) → ((𝑔 Fn 𝑧 ∧ (𝑧𝐴 ∧ ∀𝑤𝑧 Pred(𝑅, 𝐴, 𝑤) ⊆ 𝑧)) → (𝐹 ↾ Pred(𝑅, 𝐴, 𝑋)) ∈ V))
4418, 43syl5 34 . . . 4 ((𝑋 ∈ dom 𝐹 ∧ (⟨𝑋, (𝐹𝑋)⟩ ∈ 𝑔𝑔 ∈ {𝑓 ∣ ∃𝑥(𝑓 Fn 𝑥 ∧ (𝑥𝐴 ∧ ∀𝑦𝑥 Pred(𝑅, 𝐴, 𝑦) ⊆ 𝑥) ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐺‘(𝑓 ↾ Pred(𝑅, 𝐴, 𝑦))))})) → ((𝑔 Fn 𝑧 ∧ (𝑧𝐴 ∧ ∀𝑤𝑧 Pred(𝑅, 𝐴, 𝑤) ⊆ 𝑧) ∧ ∀𝑤𝑧 (𝑔𝑤) = (𝐺‘(𝑔 ↾ Pred(𝑅, 𝐴, 𝑤)))) → (𝐹 ↾ Pred(𝑅, 𝐴, 𝑋)) ∈ V))
4544exlimdv 1936 . . 3 ((𝑋 ∈ dom 𝐹 ∧ (⟨𝑋, (𝐹𝑋)⟩ ∈ 𝑔𝑔 ∈ {𝑓 ∣ ∃𝑥(𝑓 Fn 𝑥 ∧ (𝑥𝐴 ∧ ∀𝑦𝑥 Pred(𝑅, 𝐴, 𝑦) ⊆ 𝑥) ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐺‘(𝑓 ↾ Pred(𝑅, 𝐴, 𝑦))))})) → (∃𝑧(𝑔 Fn 𝑧 ∧ (𝑧𝐴 ∧ ∀𝑤𝑧 Pred(𝑅, 𝐴, 𝑤) ⊆ 𝑧) ∧ ∀𝑤𝑧 (𝑔𝑤) = (𝐺‘(𝑔 ↾ Pred(𝑅, 𝐴, 𝑤)))) → (𝐹 ↾ Pred(𝑅, 𝐴, 𝑋)) ∈ V))
4617, 45mpd 15 . 2 ((𝑋 ∈ dom 𝐹 ∧ (⟨𝑋, (𝐹𝑋)⟩ ∈ 𝑔𝑔 ∈ {𝑓 ∣ ∃𝑥(𝑓 Fn 𝑥 ∧ (𝑥𝐴 ∧ ∀𝑦𝑥 Pred(𝑅, 𝐴, 𝑦) ⊆ 𝑥) ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐺‘(𝑓 ↾ Pred(𝑅, 𝐴, 𝑦))))})) → (𝐹 ↾ Pred(𝑅, 𝐴, 𝑋)) ∈ V)
4712, 46exlimddv 1938 1 (𝑋 ∈ dom 𝐹 → (𝐹 ↾ Pred(𝑅, 𝐴, 𝑋)) ∈ V)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396  w3a 1087   = wceq 1541  wex 1781  wcel 2106  {cab 2709  wral 3061  Vcvv 3474  wss 3947  cop 4633   cuni 4907   class class class wbr 5147   Se wse 5628   We wwe 5629  dom cdm 5675  cres 5677  Predcpred 6296  Fun wfun 6534   Fn wfn 6535  cfv 6540  wrecscwrecs 8292
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-sep 5298  ax-nul 5305  ax-pr 5426  ax-un 7721
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-ral 3062  df-rex 3071  df-rab 3433  df-v 3476  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-nul 4322  df-if 4528  df-pw 4603  df-sn 4628  df-pr 4630  df-op 4634  df-uni 4908  df-iun 4998  df-br 5148  df-opab 5210  df-mpt 5231  df-id 5573  df-po 5587  df-so 5588  df-fr 5630  df-se 5631  df-we 5632  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-res 5687  df-ima 5688  df-pred 6297  df-iota 6492  df-fun 6542  df-fn 6543  df-f 6544  df-fo 6546  df-fv 6548  df-ov 7408  df-2nd 7972  df-frecs 8262  df-wrecs 8293
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator