MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  wunmap Structured version   Visualization version   GIF version

Theorem wunmap 10614
Description: A weak universe is closed under mappings. (Contributed by Mario Carneiro, 2-Jan-2017.)
Hypotheses
Ref Expression
wun0.1 (𝜑𝑈 ∈ WUni)
wunop.2 (𝜑𝐴𝑈)
wunop.3 (𝜑𝐵𝑈)
Assertion
Ref Expression
wunmap (𝜑 → (𝐴m 𝐵) ∈ 𝑈)

Proof of Theorem wunmap
StepHypRef Expression
1 wun0.1 . 2 (𝜑𝑈 ∈ WUni)
2 wunop.2 . . 3 (𝜑𝐴𝑈)
3 wunop.3 . . 3 (𝜑𝐵𝑈)
41, 2, 3wunpm 10613 . 2 (𝜑 → (𝐴pm 𝐵) ∈ 𝑈)
5 mapsspm 8800 . . 3 (𝐴m 𝐵) ⊆ (𝐴pm 𝐵)
65a1i 11 . 2 (𝜑 → (𝐴m 𝐵) ⊆ (𝐴pm 𝐵))
71, 4, 6wunss 10600 1 (𝜑 → (𝐴m 𝐵) ∈ 𝑈)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2111  wss 3902  (class class class)co 7346  m cmap 8750  pm cpm 8751  WUnicwun 10588
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5234  ax-nul 5244  ax-pow 5303  ax-pr 5370  ax-un 7668
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-sbc 3742  df-csb 3851  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-nul 4284  df-if 4476  df-pw 4552  df-sn 4577  df-pr 4579  df-op 4583  df-uni 4860  df-iun 4943  df-br 5092  df-opab 5154  df-mpt 5173  df-tr 5199  df-id 5511  df-xp 5622  df-rel 5623  df-cnv 5624  df-co 5625  df-dm 5626  df-rn 5627  df-res 5628  df-ima 5629  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-fv 6489  df-ov 7349  df-oprab 7350  df-mpo 7351  df-1st 7921  df-2nd 7922  df-map 8752  df-pm 8753  df-wun 10590
This theorem is referenced by:  wunf  10615  tskmap  10676  wunfunc  17805  wunnat  17863  catcfuccl  18022
  Copyright terms: Public domain W3C validator