MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  wunmap Structured version   Visualization version   GIF version

Theorem wunmap 10679
Description: A weak universe is closed under mappings. (Contributed by Mario Carneiro, 2-Jan-2017.)
Hypotheses
Ref Expression
wun0.1 (𝜑𝑈 ∈ WUni)
wunop.2 (𝜑𝐴𝑈)
wunop.3 (𝜑𝐵𝑈)
Assertion
Ref Expression
wunmap (𝜑 → (𝐴m 𝐵) ∈ 𝑈)

Proof of Theorem wunmap
StepHypRef Expression
1 wun0.1 . 2 (𝜑𝑈 ∈ WUni)
2 wunop.2 . . 3 (𝜑𝐴𝑈)
3 wunop.3 . . 3 (𝜑𝐵𝑈)
41, 2, 3wunpm 10678 . 2 (𝜑 → (𝐴pm 𝐵) ∈ 𝑈)
5 mapsspm 8849 . . 3 (𝐴m 𝐵) ⊆ (𝐴pm 𝐵)
65a1i 11 . 2 (𝜑 → (𝐴m 𝐵) ⊆ (𝐴pm 𝐵))
71, 4, 6wunss 10665 1 (𝜑 → (𝐴m 𝐵) ∈ 𝑈)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2109  wss 3914  (class class class)co 7387  m cmap 8799  pm cpm 8800  WUnicwun 10653
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-fv 6519  df-ov 7390  df-oprab 7391  df-mpo 7392  df-1st 7968  df-2nd 7969  df-map 8801  df-pm 8802  df-wun 10655
This theorem is referenced by:  wunf  10680  tskmap  10741  wunfunc  17863  wunnat  17921  catcfuccl  18080
  Copyright terms: Public domain W3C validator