![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > wunmap | Structured version Visualization version GIF version |
Description: A weak universe is closed under mappings. (Contributed by Mario Carneiro, 2-Jan-2017.) |
Ref | Expression |
---|---|
wun0.1 | ⊢ (𝜑 → 𝑈 ∈ WUni) |
wunop.2 | ⊢ (𝜑 → 𝐴 ∈ 𝑈) |
wunop.3 | ⊢ (𝜑 → 𝐵 ∈ 𝑈) |
Ref | Expression |
---|---|
wunmap | ⊢ (𝜑 → (𝐴 ↑m 𝐵) ∈ 𝑈) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | wun0.1 | . 2 ⊢ (𝜑 → 𝑈 ∈ WUni) | |
2 | wunop.2 | . . 3 ⊢ (𝜑 → 𝐴 ∈ 𝑈) | |
3 | wunop.3 | . . 3 ⊢ (𝜑 → 𝐵 ∈ 𝑈) | |
4 | 1, 2, 3 | wunpm 10768 | . 2 ⊢ (𝜑 → (𝐴 ↑pm 𝐵) ∈ 𝑈) |
5 | mapsspm 8905 | . . 3 ⊢ (𝐴 ↑m 𝐵) ⊆ (𝐴 ↑pm 𝐵) | |
6 | 5 | a1i 11 | . 2 ⊢ (𝜑 → (𝐴 ↑m 𝐵) ⊆ (𝐴 ↑pm 𝐵)) |
7 | 1, 4, 6 | wunss 10755 | 1 ⊢ (𝜑 → (𝐴 ↑m 𝐵) ∈ 𝑈) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2099 ⊆ wss 3947 (class class class)co 7424 ↑m cmap 8855 ↑pm cpm 8856 WUnicwun 10743 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2697 ax-sep 5304 ax-nul 5311 ax-pow 5369 ax-pr 5433 ax-un 7746 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3an 1086 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2529 df-eu 2558 df-clab 2704 df-cleq 2718 df-clel 2803 df-nfc 2878 df-ne 2931 df-ral 3052 df-rex 3061 df-rab 3420 df-v 3464 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4326 df-if 4534 df-pw 4609 df-sn 4634 df-pr 4636 df-op 4640 df-uni 4914 df-iun 5003 df-br 5154 df-opab 5216 df-mpt 5237 df-tr 5271 df-id 5580 df-xp 5688 df-rel 5689 df-cnv 5690 df-co 5691 df-dm 5692 df-rn 5693 df-res 5694 df-ima 5695 df-iota 6506 df-fun 6556 df-fn 6557 df-f 6558 df-fv 6562 df-ov 7427 df-oprab 7428 df-mpo 7429 df-1st 8003 df-2nd 8004 df-map 8857 df-pm 8858 df-wun 10745 |
This theorem is referenced by: wunf 10770 tskmap 10831 wunfunc 17920 wunfuncOLD 17921 wunnat 17979 wunnatOLD 17980 catcfuccl 18141 catcfucclOLD 18142 |
Copyright terms: Public domain | W3C validator |