| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > wunom | Structured version Visualization version GIF version | ||
| Description: A weak universe contains all the finite ordinals, and hence is infinite. (Contributed by Mario Carneiro, 2-Jan-2017.) |
| Ref | Expression |
|---|---|
| wun0.1 | ⊢ (𝜑 → 𝑈 ∈ WUni) |
| Ref | Expression |
|---|---|
| wunom | ⊢ (𝜑 → ω ⊆ 𝑈) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | wun0.1 | . . . . 5 ⊢ (𝜑 → 𝑈 ∈ WUni) | |
| 2 | 1 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ ω) → 𝑈 ∈ WUni) |
| 3 | 1 | wunr1om 10616 | . . . . . 6 ⊢ (𝜑 → (𝑅1 “ ω) ⊆ 𝑈) |
| 4 | r1funlim 9665 | . . . . . . . 8 ⊢ (Fun 𝑅1 ∧ Lim dom 𝑅1) | |
| 5 | 4 | simpli 483 | . . . . . . 7 ⊢ Fun 𝑅1 |
| 6 | 4 | simpri 485 | . . . . . . . 8 ⊢ Lim dom 𝑅1 |
| 7 | limomss 7807 | . . . . . . . 8 ⊢ (Lim dom 𝑅1 → ω ⊆ dom 𝑅1) | |
| 8 | 6, 7 | ax-mp 5 | . . . . . . 7 ⊢ ω ⊆ dom 𝑅1 |
| 9 | funimass4 6892 | . . . . . . 7 ⊢ ((Fun 𝑅1 ∧ ω ⊆ dom 𝑅1) → ((𝑅1 “ ω) ⊆ 𝑈 ↔ ∀𝑥 ∈ ω (𝑅1‘𝑥) ∈ 𝑈)) | |
| 10 | 5, 8, 9 | mp2an 692 | . . . . . 6 ⊢ ((𝑅1 “ ω) ⊆ 𝑈 ↔ ∀𝑥 ∈ ω (𝑅1‘𝑥) ∈ 𝑈) |
| 11 | 3, 10 | sylib 218 | . . . . 5 ⊢ (𝜑 → ∀𝑥 ∈ ω (𝑅1‘𝑥) ∈ 𝑈) |
| 12 | 11 | r19.21bi 3224 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ ω) → (𝑅1‘𝑥) ∈ 𝑈) |
| 13 | simpr 484 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ ω) → 𝑥 ∈ ω) | |
| 14 | 8, 13 | sselid 3927 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ ω) → 𝑥 ∈ dom 𝑅1) |
| 15 | onssr1 9730 | . . . . 5 ⊢ (𝑥 ∈ dom 𝑅1 → 𝑥 ⊆ (𝑅1‘𝑥)) | |
| 16 | 14, 15 | syl 17 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ ω) → 𝑥 ⊆ (𝑅1‘𝑥)) |
| 17 | 2, 12, 16 | wunss 10609 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ ω) → 𝑥 ∈ 𝑈) |
| 18 | 17 | ex 412 | . 2 ⊢ (𝜑 → (𝑥 ∈ ω → 𝑥 ∈ 𝑈)) |
| 19 | 18 | ssrdv 3935 | 1 ⊢ (𝜑 → ω ⊆ 𝑈) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∈ wcel 2111 ∀wral 3047 ⊆ wss 3897 dom cdm 5619 “ cima 5622 Lim wlim 6313 Fun wfun 6481 ‘cfv 6487 ωcom 7802 𝑅1cr1 9661 WUnicwun 10597 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5219 ax-sep 5236 ax-nul 5246 ax-pow 5305 ax-pr 5372 ax-un 7674 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4283 df-if 4475 df-pw 4551 df-sn 4576 df-pr 4578 df-op 4582 df-uni 4859 df-int 4898 df-iun 4943 df-br 5094 df-opab 5156 df-mpt 5175 df-tr 5201 df-id 5514 df-eprel 5519 df-po 5527 df-so 5528 df-fr 5572 df-we 5574 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-pred 6254 df-ord 6315 df-on 6316 df-lim 6317 df-suc 6318 df-iota 6443 df-fun 6489 df-fn 6490 df-f 6491 df-f1 6492 df-fo 6493 df-f1o 6494 df-fv 6495 df-ov 7355 df-om 7803 df-2nd 7928 df-frecs 8217 df-wrecs 8248 df-recs 8297 df-rdg 8335 df-r1 9663 df-rank 9664 df-wun 10599 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |