MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  wunom Structured version   Visualization version   GIF version

Theorem wunom 10680
Description: A weak universe contains all the finite ordinals, and hence is infinite. (Contributed by Mario Carneiro, 2-Jan-2017.)
Hypothesis
Ref Expression
wun0.1 (𝜑𝑈 ∈ WUni)
Assertion
Ref Expression
wunom (𝜑 → ω ⊆ 𝑈)

Proof of Theorem wunom
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 wun0.1 . . . . 5 (𝜑𝑈 ∈ WUni)
21adantr 480 . . . 4 ((𝜑𝑥 ∈ ω) → 𝑈 ∈ WUni)
31wunr1om 10679 . . . . . 6 (𝜑 → (𝑅1 “ ω) ⊆ 𝑈)
4 r1funlim 9726 . . . . . . . 8 (Fun 𝑅1 ∧ Lim dom 𝑅1)
54simpli 483 . . . . . . 7 Fun 𝑅1
64simpri 485 . . . . . . . 8 Lim dom 𝑅1
7 limomss 7850 . . . . . . . 8 (Lim dom 𝑅1 → ω ⊆ dom 𝑅1)
86, 7ax-mp 5 . . . . . . 7 ω ⊆ dom 𝑅1
9 funimass4 6928 . . . . . . 7 ((Fun 𝑅1 ∧ ω ⊆ dom 𝑅1) → ((𝑅1 “ ω) ⊆ 𝑈 ↔ ∀𝑥 ∈ ω (𝑅1𝑥) ∈ 𝑈))
105, 8, 9mp2an 692 . . . . . 6 ((𝑅1 “ ω) ⊆ 𝑈 ↔ ∀𝑥 ∈ ω (𝑅1𝑥) ∈ 𝑈)
113, 10sylib 218 . . . . 5 (𝜑 → ∀𝑥 ∈ ω (𝑅1𝑥) ∈ 𝑈)
1211r19.21bi 3230 . . . 4 ((𝜑𝑥 ∈ ω) → (𝑅1𝑥) ∈ 𝑈)
13 simpr 484 . . . . . 6 ((𝜑𝑥 ∈ ω) → 𝑥 ∈ ω)
148, 13sselid 3947 . . . . 5 ((𝜑𝑥 ∈ ω) → 𝑥 ∈ dom 𝑅1)
15 onssr1 9791 . . . . 5 (𝑥 ∈ dom 𝑅1𝑥 ⊆ (𝑅1𝑥))
1614, 15syl 17 . . . 4 ((𝜑𝑥 ∈ ω) → 𝑥 ⊆ (𝑅1𝑥))
172, 12, 16wunss 10672 . . 3 ((𝜑𝑥 ∈ ω) → 𝑥𝑈)
1817ex 412 . 2 (𝜑 → (𝑥 ∈ ω → 𝑥𝑈))
1918ssrdv 3955 1 (𝜑 → ω ⊆ 𝑈)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wcel 2109  wral 3045  wss 3917  dom cdm 5641  cima 5644  Lim wlim 6336  Fun wfun 6508  cfv 6514  ωcom 7845  𝑅1cr1 9722  WUnicwun 10660
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-int 4914  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-ov 7393  df-om 7846  df-2nd 7972  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-r1 9724  df-rank 9725  df-wun 10662
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator