| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > wunom | Structured version Visualization version GIF version | ||
| Description: A weak universe contains all the finite ordinals, and hence is infinite. (Contributed by Mario Carneiro, 2-Jan-2017.) |
| Ref | Expression |
|---|---|
| wun0.1 | ⊢ (𝜑 → 𝑈 ∈ WUni) |
| Ref | Expression |
|---|---|
| wunom | ⊢ (𝜑 → ω ⊆ 𝑈) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | wun0.1 | . . . . 5 ⊢ (𝜑 → 𝑈 ∈ WUni) | |
| 2 | 1 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ ω) → 𝑈 ∈ WUni) |
| 3 | 1 | wunr1om 10648 | . . . . . 6 ⊢ (𝜑 → (𝑅1 “ ω) ⊆ 𝑈) |
| 4 | r1funlim 9695 | . . . . . . . 8 ⊢ (Fun 𝑅1 ∧ Lim dom 𝑅1) | |
| 5 | 4 | simpli 483 | . . . . . . 7 ⊢ Fun 𝑅1 |
| 6 | 4 | simpri 485 | . . . . . . . 8 ⊢ Lim dom 𝑅1 |
| 7 | limomss 7827 | . . . . . . . 8 ⊢ (Lim dom 𝑅1 → ω ⊆ dom 𝑅1) | |
| 8 | 6, 7 | ax-mp 5 | . . . . . . 7 ⊢ ω ⊆ dom 𝑅1 |
| 9 | funimass4 6907 | . . . . . . 7 ⊢ ((Fun 𝑅1 ∧ ω ⊆ dom 𝑅1) → ((𝑅1 “ ω) ⊆ 𝑈 ↔ ∀𝑥 ∈ ω (𝑅1‘𝑥) ∈ 𝑈)) | |
| 10 | 5, 8, 9 | mp2an 692 | . . . . . 6 ⊢ ((𝑅1 “ ω) ⊆ 𝑈 ↔ ∀𝑥 ∈ ω (𝑅1‘𝑥) ∈ 𝑈) |
| 11 | 3, 10 | sylib 218 | . . . . 5 ⊢ (𝜑 → ∀𝑥 ∈ ω (𝑅1‘𝑥) ∈ 𝑈) |
| 12 | 11 | r19.21bi 3227 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ ω) → (𝑅1‘𝑥) ∈ 𝑈) |
| 13 | simpr 484 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ ω) → 𝑥 ∈ ω) | |
| 14 | 8, 13 | sselid 3941 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ ω) → 𝑥 ∈ dom 𝑅1) |
| 15 | onssr1 9760 | . . . . 5 ⊢ (𝑥 ∈ dom 𝑅1 → 𝑥 ⊆ (𝑅1‘𝑥)) | |
| 16 | 14, 15 | syl 17 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ ω) → 𝑥 ⊆ (𝑅1‘𝑥)) |
| 17 | 2, 12, 16 | wunss 10641 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ ω) → 𝑥 ∈ 𝑈) |
| 18 | 17 | ex 412 | . 2 ⊢ (𝜑 → (𝑥 ∈ ω → 𝑥 ∈ 𝑈)) |
| 19 | 18 | ssrdv 3949 | 1 ⊢ (𝜑 → ω ⊆ 𝑈) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∈ wcel 2109 ∀wral 3044 ⊆ wss 3911 dom cdm 5631 “ cima 5634 Lim wlim 6321 Fun wfun 6493 ‘cfv 6499 ωcom 7822 𝑅1cr1 9691 WUnicwun 10629 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5229 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 ax-un 7691 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-reu 3352 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-pss 3931 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-int 4907 df-iun 4953 df-br 5103 df-opab 5165 df-mpt 5184 df-tr 5210 df-id 5526 df-eprel 5531 df-po 5539 df-so 5540 df-fr 5584 df-we 5586 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-pred 6262 df-ord 6323 df-on 6324 df-lim 6325 df-suc 6326 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-f1 6504 df-fo 6505 df-f1o 6506 df-fv 6507 df-ov 7372 df-om 7823 df-2nd 7948 df-frecs 8237 df-wrecs 8268 df-recs 8317 df-rdg 8355 df-r1 9693 df-rank 9694 df-wun 10631 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |