MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  wunom Structured version   Visualization version   GIF version

Theorem wunom 10603
Description: A weak universe contains all the finite ordinals, and hence is infinite. (Contributed by Mario Carneiro, 2-Jan-2017.)
Hypothesis
Ref Expression
wun0.1 (𝜑𝑈 ∈ WUni)
Assertion
Ref Expression
wunom (𝜑 → ω ⊆ 𝑈)

Proof of Theorem wunom
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 wun0.1 . . . . 5 (𝜑𝑈 ∈ WUni)
21adantr 480 . . . 4 ((𝜑𝑥 ∈ ω) → 𝑈 ∈ WUni)
31wunr1om 10602 . . . . . 6 (𝜑 → (𝑅1 “ ω) ⊆ 𝑈)
4 r1funlim 9651 . . . . . . . 8 (Fun 𝑅1 ∧ Lim dom 𝑅1)
54simpli 483 . . . . . . 7 Fun 𝑅1
64simpri 485 . . . . . . . 8 Lim dom 𝑅1
7 limomss 7796 . . . . . . . 8 (Lim dom 𝑅1 → ω ⊆ dom 𝑅1)
86, 7ax-mp 5 . . . . . . 7 ω ⊆ dom 𝑅1
9 funimass4 6881 . . . . . . 7 ((Fun 𝑅1 ∧ ω ⊆ dom 𝑅1) → ((𝑅1 “ ω) ⊆ 𝑈 ↔ ∀𝑥 ∈ ω (𝑅1𝑥) ∈ 𝑈))
105, 8, 9mp2an 692 . . . . . 6 ((𝑅1 “ ω) ⊆ 𝑈 ↔ ∀𝑥 ∈ ω (𝑅1𝑥) ∈ 𝑈)
113, 10sylib 218 . . . . 5 (𝜑 → ∀𝑥 ∈ ω (𝑅1𝑥) ∈ 𝑈)
1211r19.21bi 3222 . . . 4 ((𝜑𝑥 ∈ ω) → (𝑅1𝑥) ∈ 𝑈)
13 simpr 484 . . . . . 6 ((𝜑𝑥 ∈ ω) → 𝑥 ∈ ω)
148, 13sselid 3930 . . . . 5 ((𝜑𝑥 ∈ ω) → 𝑥 ∈ dom 𝑅1)
15 onssr1 9716 . . . . 5 (𝑥 ∈ dom 𝑅1𝑥 ⊆ (𝑅1𝑥))
1614, 15syl 17 . . . 4 ((𝜑𝑥 ∈ ω) → 𝑥 ⊆ (𝑅1𝑥))
172, 12, 16wunss 10595 . . 3 ((𝜑𝑥 ∈ ω) → 𝑥𝑈)
1817ex 412 . 2 (𝜑 → (𝑥 ∈ ω → 𝑥𝑈))
1918ssrdv 3938 1 (𝜑 → ω ⊆ 𝑈)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wcel 2110  wral 3045  wss 3900  dom cdm 5614  cima 5617  Lim wlim 6303  Fun wfun 6471  cfv 6477  ωcom 7791  𝑅1cr1 9647  WUnicwun 10583
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2112  ax-9 2120  ax-10 2143  ax-11 2159  ax-12 2179  ax-ext 2702  ax-rep 5215  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7663
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-reu 3345  df-rab 3394  df-v 3436  df-sbc 3740  df-csb 3849  df-dif 3903  df-un 3905  df-in 3907  df-ss 3917  df-pss 3920  df-nul 4282  df-if 4474  df-pw 4550  df-sn 4575  df-pr 4577  df-op 4581  df-uni 4858  df-int 4896  df-iun 4941  df-br 5090  df-opab 5152  df-mpt 5171  df-tr 5197  df-id 5509  df-eprel 5514  df-po 5522  df-so 5523  df-fr 5567  df-we 5569  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-pred 6244  df-ord 6305  df-on 6306  df-lim 6307  df-suc 6308  df-iota 6433  df-fun 6479  df-fn 6480  df-f 6481  df-f1 6482  df-fo 6483  df-f1o 6484  df-fv 6485  df-ov 7344  df-om 7792  df-2nd 7917  df-frecs 8206  df-wrecs 8237  df-recs 8286  df-rdg 8324  df-r1 9649  df-rank 9650  df-wun 10585
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator