| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > wunom | Structured version Visualization version GIF version | ||
| Description: A weak universe contains all the finite ordinals, and hence is infinite. (Contributed by Mario Carneiro, 2-Jan-2017.) |
| Ref | Expression |
|---|---|
| wun0.1 | ⊢ (𝜑 → 𝑈 ∈ WUni) |
| Ref | Expression |
|---|---|
| wunom | ⊢ (𝜑 → ω ⊆ 𝑈) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | wun0.1 | . . . . 5 ⊢ (𝜑 → 𝑈 ∈ WUni) | |
| 2 | 1 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ ω) → 𝑈 ∈ WUni) |
| 3 | 1 | wunr1om 10602 | . . . . . 6 ⊢ (𝜑 → (𝑅1 “ ω) ⊆ 𝑈) |
| 4 | r1funlim 9651 | . . . . . . . 8 ⊢ (Fun 𝑅1 ∧ Lim dom 𝑅1) | |
| 5 | 4 | simpli 483 | . . . . . . 7 ⊢ Fun 𝑅1 |
| 6 | 4 | simpri 485 | . . . . . . . 8 ⊢ Lim dom 𝑅1 |
| 7 | limomss 7796 | . . . . . . . 8 ⊢ (Lim dom 𝑅1 → ω ⊆ dom 𝑅1) | |
| 8 | 6, 7 | ax-mp 5 | . . . . . . 7 ⊢ ω ⊆ dom 𝑅1 |
| 9 | funimass4 6881 | . . . . . . 7 ⊢ ((Fun 𝑅1 ∧ ω ⊆ dom 𝑅1) → ((𝑅1 “ ω) ⊆ 𝑈 ↔ ∀𝑥 ∈ ω (𝑅1‘𝑥) ∈ 𝑈)) | |
| 10 | 5, 8, 9 | mp2an 692 | . . . . . 6 ⊢ ((𝑅1 “ ω) ⊆ 𝑈 ↔ ∀𝑥 ∈ ω (𝑅1‘𝑥) ∈ 𝑈) |
| 11 | 3, 10 | sylib 218 | . . . . 5 ⊢ (𝜑 → ∀𝑥 ∈ ω (𝑅1‘𝑥) ∈ 𝑈) |
| 12 | 11 | r19.21bi 3222 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ ω) → (𝑅1‘𝑥) ∈ 𝑈) |
| 13 | simpr 484 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ ω) → 𝑥 ∈ ω) | |
| 14 | 8, 13 | sselid 3930 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ ω) → 𝑥 ∈ dom 𝑅1) |
| 15 | onssr1 9716 | . . . . 5 ⊢ (𝑥 ∈ dom 𝑅1 → 𝑥 ⊆ (𝑅1‘𝑥)) | |
| 16 | 14, 15 | syl 17 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ ω) → 𝑥 ⊆ (𝑅1‘𝑥)) |
| 17 | 2, 12, 16 | wunss 10595 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ ω) → 𝑥 ∈ 𝑈) |
| 18 | 17 | ex 412 | . 2 ⊢ (𝜑 → (𝑥 ∈ ω → 𝑥 ∈ 𝑈)) |
| 19 | 18 | ssrdv 3938 | 1 ⊢ (𝜑 → ω ⊆ 𝑈) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∈ wcel 2110 ∀wral 3045 ⊆ wss 3900 dom cdm 5614 “ cima 5617 Lim wlim 6303 Fun wfun 6471 ‘cfv 6477 ωcom 7791 𝑅1cr1 9647 WUnicwun 10583 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2112 ax-9 2120 ax-10 2143 ax-11 2159 ax-12 2179 ax-ext 2702 ax-rep 5215 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7663 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-ral 3046 df-rex 3055 df-reu 3345 df-rab 3394 df-v 3436 df-sbc 3740 df-csb 3849 df-dif 3903 df-un 3905 df-in 3907 df-ss 3917 df-pss 3920 df-nul 4282 df-if 4474 df-pw 4550 df-sn 4575 df-pr 4577 df-op 4581 df-uni 4858 df-int 4896 df-iun 4941 df-br 5090 df-opab 5152 df-mpt 5171 df-tr 5197 df-id 5509 df-eprel 5514 df-po 5522 df-so 5523 df-fr 5567 df-we 5569 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-pred 6244 df-ord 6305 df-on 6306 df-lim 6307 df-suc 6308 df-iota 6433 df-fun 6479 df-fn 6480 df-f 6481 df-f1 6482 df-fo 6483 df-f1o 6484 df-fv 6485 df-ov 7344 df-om 7792 df-2nd 7917 df-frecs 8206 df-wrecs 8237 df-recs 8286 df-rdg 8324 df-r1 9649 df-rank 9650 df-wun 10585 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |