Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > wunom | Structured version Visualization version GIF version |
Description: A weak universe contains all the finite ordinals, and hence is infinite. (Contributed by Mario Carneiro, 2-Jan-2017.) |
Ref | Expression |
---|---|
wun0.1 | ⊢ (𝜑 → 𝑈 ∈ WUni) |
Ref | Expression |
---|---|
wunom | ⊢ (𝜑 → ω ⊆ 𝑈) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | wun0.1 | . . . . 5 ⊢ (𝜑 → 𝑈 ∈ WUni) | |
2 | 1 | adantr 484 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ ω) → 𝑈 ∈ WUni) |
3 | 1 | wunr1om 10179 | . . . . . 6 ⊢ (𝜑 → (𝑅1 “ ω) ⊆ 𝑈) |
4 | r1funlim 9228 | . . . . . . . 8 ⊢ (Fun 𝑅1 ∧ Lim dom 𝑅1) | |
5 | 4 | simpli 487 | . . . . . . 7 ⊢ Fun 𝑅1 |
6 | 4 | simpri 489 | . . . . . . . 8 ⊢ Lim dom 𝑅1 |
7 | limomss 7584 | . . . . . . . 8 ⊢ (Lim dom 𝑅1 → ω ⊆ dom 𝑅1) | |
8 | 6, 7 | ax-mp 5 | . . . . . . 7 ⊢ ω ⊆ dom 𝑅1 |
9 | funimass4 6718 | . . . . . . 7 ⊢ ((Fun 𝑅1 ∧ ω ⊆ dom 𝑅1) → ((𝑅1 “ ω) ⊆ 𝑈 ↔ ∀𝑥 ∈ ω (𝑅1‘𝑥) ∈ 𝑈)) | |
10 | 5, 8, 9 | mp2an 691 | . . . . . 6 ⊢ ((𝑅1 “ ω) ⊆ 𝑈 ↔ ∀𝑥 ∈ ω (𝑅1‘𝑥) ∈ 𝑈) |
11 | 3, 10 | sylib 221 | . . . . 5 ⊢ (𝜑 → ∀𝑥 ∈ ω (𝑅1‘𝑥) ∈ 𝑈) |
12 | 11 | r19.21bi 3137 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ ω) → (𝑅1‘𝑥) ∈ 𝑈) |
13 | simpr 488 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ ω) → 𝑥 ∈ ω) | |
14 | 8, 13 | sseldi 3890 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ ω) → 𝑥 ∈ dom 𝑅1) |
15 | onssr1 9293 | . . . . 5 ⊢ (𝑥 ∈ dom 𝑅1 → 𝑥 ⊆ (𝑅1‘𝑥)) | |
16 | 14, 15 | syl 17 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ ω) → 𝑥 ⊆ (𝑅1‘𝑥)) |
17 | 2, 12, 16 | wunss 10172 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ ω) → 𝑥 ∈ 𝑈) |
18 | 17 | ex 416 | . 2 ⊢ (𝜑 → (𝑥 ∈ ω → 𝑥 ∈ 𝑈)) |
19 | 18 | ssrdv 3898 | 1 ⊢ (𝜑 → ω ⊆ 𝑈) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 209 ∧ wa 399 ∈ wcel 2111 ∀wral 3070 ⊆ wss 3858 dom cdm 5524 “ cima 5527 Lim wlim 6170 Fun wfun 6329 ‘cfv 6335 ωcom 7579 𝑅1cr1 9224 WUnicwun 10160 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1911 ax-6 1970 ax-7 2015 ax-8 2113 ax-9 2121 ax-10 2142 ax-11 2158 ax-12 2175 ax-ext 2729 ax-rep 5156 ax-sep 5169 ax-nul 5176 ax-pow 5234 ax-pr 5298 ax-un 7459 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 845 df-3or 1085 df-3an 1086 df-tru 1541 df-fal 1551 df-ex 1782 df-nf 1786 df-sb 2070 df-mo 2557 df-eu 2588 df-clab 2736 df-cleq 2750 df-clel 2830 df-nfc 2901 df-ne 2952 df-ral 3075 df-rex 3076 df-reu 3077 df-rab 3079 df-v 3411 df-sbc 3697 df-csb 3806 df-dif 3861 df-un 3863 df-in 3865 df-ss 3875 df-pss 3877 df-nul 4226 df-if 4421 df-pw 4496 df-sn 4523 df-pr 4525 df-tp 4527 df-op 4529 df-uni 4799 df-int 4839 df-iun 4885 df-br 5033 df-opab 5095 df-mpt 5113 df-tr 5139 df-id 5430 df-eprel 5435 df-po 5443 df-so 5444 df-fr 5483 df-we 5485 df-xp 5530 df-rel 5531 df-cnv 5532 df-co 5533 df-dm 5534 df-rn 5535 df-res 5536 df-ima 5537 df-pred 6126 df-ord 6172 df-on 6173 df-lim 6174 df-suc 6175 df-iota 6294 df-fun 6337 df-fn 6338 df-f 6339 df-f1 6340 df-fo 6341 df-f1o 6342 df-fv 6343 df-om 7580 df-wrecs 7957 df-recs 8018 df-rdg 8056 df-r1 9226 df-rank 9227 df-wun 10162 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |