Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > wunpm | Structured version Visualization version GIF version |
Description: A weak universe is closed under partial mappings. (Contributed by Mario Carneiro, 2-Jan-2017.) |
Ref | Expression |
---|---|
wun0.1 | ⊢ (𝜑 → 𝑈 ∈ WUni) |
wunop.2 | ⊢ (𝜑 → 𝐴 ∈ 𝑈) |
wunop.3 | ⊢ (𝜑 → 𝐵 ∈ 𝑈) |
Ref | Expression |
---|---|
wunpm | ⊢ (𝜑 → (𝐴 ↑pm 𝐵) ∈ 𝑈) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | wun0.1 | . 2 ⊢ (𝜑 → 𝑈 ∈ WUni) | |
2 | wunop.3 | . . . 4 ⊢ (𝜑 → 𝐵 ∈ 𝑈) | |
3 | wunop.2 | . . . 4 ⊢ (𝜑 → 𝐴 ∈ 𝑈) | |
4 | 1, 2, 3 | wunxp 10237 | . . 3 ⊢ (𝜑 → (𝐵 × 𝐴) ∈ 𝑈) |
5 | 1, 4 | wunpw 10220 | . 2 ⊢ (𝜑 → 𝒫 (𝐵 × 𝐴) ∈ 𝑈) |
6 | pmsspw 8500 | . . 3 ⊢ (𝐴 ↑pm 𝐵) ⊆ 𝒫 (𝐵 × 𝐴) | |
7 | 6 | a1i 11 | . 2 ⊢ (𝜑 → (𝐴 ↑pm 𝐵) ⊆ 𝒫 (𝐵 × 𝐴)) |
8 | 1, 5, 7 | wunss 10225 | 1 ⊢ (𝜑 → (𝐴 ↑pm 𝐵) ∈ 𝑈) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2114 ⊆ wss 3853 𝒫 cpw 4498 × cxp 5533 (class class class)co 7183 ↑pm cpm 8451 WUnicwun 10213 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1917 ax-6 1975 ax-7 2020 ax-8 2116 ax-9 2124 ax-10 2145 ax-11 2162 ax-12 2179 ax-ext 2711 ax-sep 5177 ax-nul 5184 ax-pow 5242 ax-pr 5306 ax-un 7492 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 847 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1787 df-nf 1791 df-sb 2075 df-mo 2541 df-eu 2571 df-clab 2718 df-cleq 2731 df-clel 2812 df-nfc 2882 df-ne 2936 df-ral 3059 df-rex 3060 df-rab 3063 df-v 3402 df-sbc 3686 df-csb 3801 df-dif 3856 df-un 3858 df-in 3860 df-ss 3870 df-nul 4222 df-if 4425 df-pw 4500 df-sn 4527 df-pr 4529 df-op 4533 df-uni 4807 df-iun 4893 df-br 5041 df-opab 5103 df-mpt 5121 df-tr 5147 df-id 5439 df-xp 5541 df-rel 5542 df-cnv 5543 df-co 5544 df-dm 5545 df-rn 5546 df-res 5547 df-ima 5548 df-iota 6308 df-fun 6352 df-fn 6353 df-f 6354 df-fv 6358 df-ov 7186 df-oprab 7187 df-mpo 7188 df-1st 7727 df-2nd 7728 df-pm 8453 df-wun 10215 |
This theorem is referenced by: wunmap 10239 catcfuccl 17498 catcxpccl 17586 |
Copyright terms: Public domain | W3C validator |