| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > wunndx | Structured version Visualization version GIF version | ||
| Description: Closure of the index extractor in an infinite weak universe. (Contributed by Mario Carneiro, 12-Jan-2017.) |
| Ref | Expression |
|---|---|
| wunndx.1 | ⊢ (𝜑 → 𝑈 ∈ WUni) |
| wunndx.2 | ⊢ (𝜑 → ω ∈ 𝑈) |
| Ref | Expression |
|---|---|
| wunndx | ⊢ (𝜑 → ndx ∈ 𝑈) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-ndx 17164 | . 2 ⊢ ndx = ( I ↾ ℕ) | |
| 2 | wunndx.1 | . . 3 ⊢ (𝜑 → 𝑈 ∈ WUni) | |
| 3 | wunndx.2 | . . . . 5 ⊢ (𝜑 → ω ∈ 𝑈) | |
| 4 | 2, 3 | wuncn 11123 | . . . 4 ⊢ (𝜑 → ℂ ∈ 𝑈) |
| 5 | nnsscn 12191 | . . . . 5 ⊢ ℕ ⊆ ℂ | |
| 6 | 5 | a1i 11 | . . . 4 ⊢ (𝜑 → ℕ ⊆ ℂ) |
| 7 | 2, 4, 6 | wunss 10665 | . . 3 ⊢ (𝜑 → ℕ ∈ 𝑈) |
| 8 | f1oi 6838 | . . . 4 ⊢ ( I ↾ ℕ):ℕ–1-1-onto→ℕ | |
| 9 | f1of 6800 | . . . 4 ⊢ (( I ↾ ℕ):ℕ–1-1-onto→ℕ → ( I ↾ ℕ):ℕ⟶ℕ) | |
| 10 | 8, 9 | mp1i 13 | . . 3 ⊢ (𝜑 → ( I ↾ ℕ):ℕ⟶ℕ) |
| 11 | 2, 7, 7, 10 | wunf 10680 | . 2 ⊢ (𝜑 → ( I ↾ ℕ) ∈ 𝑈) |
| 12 | 1, 11 | eqeltrid 2832 | 1 ⊢ (𝜑 → ndx ∈ 𝑈) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2109 ⊆ wss 3914 I cid 5532 ↾ cres 5640 ⟶wf 6507 –1-1-onto→wf1o 6510 ωcom 7842 WUnicwun 10653 ℂcc 11066 ℕcn 12186 ndxcnx 17163 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 ax-inf2 9594 ax-1cn 11126 ax-addcl 11128 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rmo 3354 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-pss 3934 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-int 4911 df-iun 4957 df-br 5108 df-opab 5170 df-mpt 5189 df-tr 5215 df-id 5533 df-eprel 5538 df-po 5546 df-so 5547 df-fr 5591 df-we 5593 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-pred 6274 df-ord 6335 df-on 6336 df-lim 6337 df-suc 6338 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-ov 7390 df-oprab 7391 df-mpo 7392 df-om 7843 df-1st 7968 df-2nd 7969 df-frecs 8260 df-wrecs 8291 df-recs 8340 df-rdg 8378 df-1o 8434 df-oadd 8438 df-omul 8439 df-er 8671 df-ec 8673 df-qs 8677 df-map 8801 df-pm 8802 df-wun 10655 df-ni 10825 df-pli 10826 df-mi 10827 df-lti 10828 df-plpq 10861 df-mpq 10862 df-ltpq 10863 df-enq 10864 df-nq 10865 df-erq 10866 df-plq 10867 df-mq 10868 df-1nq 10869 df-rq 10870 df-ltnq 10871 df-np 10934 df-plp 10936 df-ltp 10938 df-enr 11008 df-nr 11009 df-c 11074 df-nn 12187 df-ndx 17164 |
| This theorem is referenced by: basndxelwund 17190 catcoppccl 18079 catcfuccl 18080 catcxpccl 18168 |
| Copyright terms: Public domain | W3C validator |