![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > wunndx | Structured version Visualization version GIF version |
Description: Closure of the index extractor in an infinite weak universe. (Contributed by Mario Carneiro, 12-Jan-2017.) |
Ref | Expression |
---|---|
wunndx.1 | β’ (π β π β WUni) |
wunndx.2 | β’ (π β Ο β π) |
Ref | Expression |
---|---|
wunndx | β’ (π β ndx β π) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-ndx 17127 | . 2 β’ ndx = ( I βΎ β) | |
2 | wunndx.1 | . . 3 β’ (π β π β WUni) | |
3 | wunndx.2 | . . . . 5 β’ (π β Ο β π) | |
4 | 2, 3 | wuncn 11165 | . . . 4 β’ (π β β β π) |
5 | nnsscn 12217 | . . . . 5 β’ β β β | |
6 | 5 | a1i 11 | . . . 4 β’ (π β β β β) |
7 | 2, 4, 6 | wunss 10707 | . . 3 β’ (π β β β π) |
8 | f1oi 6872 | . . . 4 β’ ( I βΎ β):ββ1-1-ontoββ | |
9 | f1of 6834 | . . . 4 β’ (( I βΎ β):ββ1-1-ontoββ β ( I βΎ β):ββΆβ) | |
10 | 8, 9 | mp1i 13 | . . 3 β’ (π β ( I βΎ β):ββΆβ) |
11 | 2, 7, 7, 10 | wunf 10722 | . 2 β’ (π β ( I βΎ β) β π) |
12 | 1, 11 | eqeltrid 2838 | 1 β’ (π β ndx β π) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β wcel 2107 β wss 3949 I cid 5574 βΎ cres 5679 βΆwf 6540 β1-1-ontoβwf1o 6543 Οcom 7855 WUnicwun 10695 βcc 11108 βcn 12212 ndxcnx 17126 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-sep 5300 ax-nul 5307 ax-pow 5364 ax-pr 5428 ax-un 7725 ax-inf2 9636 ax-1cn 11168 ax-addcl 11170 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3or 1089 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-ne 2942 df-ral 3063 df-rex 3072 df-rmo 3377 df-reu 3378 df-rab 3434 df-v 3477 df-sbc 3779 df-csb 3895 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-pss 3968 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4910 df-int 4952 df-iun 5000 df-br 5150 df-opab 5212 df-mpt 5233 df-tr 5267 df-id 5575 df-eprel 5581 df-po 5589 df-so 5590 df-fr 5632 df-we 5634 df-xp 5683 df-rel 5684 df-cnv 5685 df-co 5686 df-dm 5687 df-rn 5688 df-res 5689 df-ima 5690 df-pred 6301 df-ord 6368 df-on 6369 df-lim 6370 df-suc 6371 df-iota 6496 df-fun 6546 df-fn 6547 df-f 6548 df-f1 6549 df-fo 6550 df-f1o 6551 df-fv 6552 df-ov 7412 df-oprab 7413 df-mpo 7414 df-om 7856 df-1st 7975 df-2nd 7976 df-frecs 8266 df-wrecs 8297 df-recs 8371 df-rdg 8410 df-1o 8466 df-oadd 8470 df-omul 8471 df-er 8703 df-ec 8705 df-qs 8709 df-map 8822 df-pm 8823 df-wun 10697 df-ni 10867 df-pli 10868 df-mi 10869 df-lti 10870 df-plpq 10903 df-mpq 10904 df-ltpq 10905 df-enq 10906 df-nq 10907 df-erq 10908 df-plq 10909 df-mq 10910 df-1nq 10911 df-rq 10912 df-ltnq 10913 df-np 10976 df-plp 10978 df-ltp 10980 df-enr 11050 df-nr 11051 df-c 11116 df-nn 12213 df-ndx 17127 |
This theorem is referenced by: basndxelwund 17156 1strwunOLD 17165 wunressOLD 17196 catcoppccl 18067 catcoppcclOLD 18068 catcfuccl 18069 catcfucclOLD 18070 catcxpccl 18159 catcxpcclOLD 18160 |
Copyright terms: Public domain | W3C validator |