![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > wunndx | Structured version Visualization version GIF version |
Description: Closure of the index extractor in an infinite weak universe. (Contributed by Mario Carneiro, 12-Jan-2017.) |
Ref | Expression |
---|---|
wunndx.1 | ⊢ (𝜑 → 𝑈 ∈ WUni) |
wunndx.2 | ⊢ (𝜑 → ω ∈ 𝑈) |
Ref | Expression |
---|---|
wunndx | ⊢ (𝜑 → ndx ∈ 𝑈) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-ndx 17191 | . 2 ⊢ ndx = ( I ↾ ℕ) | |
2 | wunndx.1 | . . 3 ⊢ (𝜑 → 𝑈 ∈ WUni) | |
3 | wunndx.2 | . . . . 5 ⊢ (𝜑 → ω ∈ 𝑈) | |
4 | 2, 3 | wuncn 11204 | . . . 4 ⊢ (𝜑 → ℂ ∈ 𝑈) |
5 | nnsscn 12263 | . . . . 5 ⊢ ℕ ⊆ ℂ | |
6 | 5 | a1i 11 | . . . 4 ⊢ (𝜑 → ℕ ⊆ ℂ) |
7 | 2, 4, 6 | wunss 10746 | . . 3 ⊢ (𝜑 → ℕ ∈ 𝑈) |
8 | f1oi 6873 | . . . 4 ⊢ ( I ↾ ℕ):ℕ–1-1-onto→ℕ | |
9 | f1of 6835 | . . . 4 ⊢ (( I ↾ ℕ):ℕ–1-1-onto→ℕ → ( I ↾ ℕ):ℕ⟶ℕ) | |
10 | 8, 9 | mp1i 13 | . . 3 ⊢ (𝜑 → ( I ↾ ℕ):ℕ⟶ℕ) |
11 | 2, 7, 7, 10 | wunf 10761 | . 2 ⊢ (𝜑 → ( I ↾ ℕ) ∈ 𝑈) |
12 | 1, 11 | eqeltrid 2830 | 1 ⊢ (𝜑 → ndx ∈ 𝑈) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2099 ⊆ wss 3946 I cid 5571 ↾ cres 5676 ⟶wf 6542 –1-1-onto→wf1o 6545 ωcom 7868 WUnicwun 10734 ℂcc 11147 ℕcn 12258 ndxcnx 17190 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2697 ax-sep 5296 ax-nul 5303 ax-pow 5361 ax-pr 5425 ax-un 7738 ax-inf2 9677 ax-1cn 11207 ax-addcl 11209 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2529 df-eu 2558 df-clab 2704 df-cleq 2718 df-clel 2803 df-nfc 2878 df-ne 2931 df-ral 3052 df-rex 3061 df-rmo 3364 df-reu 3365 df-rab 3420 df-v 3464 df-sbc 3776 df-csb 3892 df-dif 3949 df-un 3951 df-in 3953 df-ss 3963 df-pss 3966 df-nul 4323 df-if 4524 df-pw 4599 df-sn 4624 df-pr 4626 df-op 4630 df-uni 4906 df-int 4947 df-iun 4995 df-br 5146 df-opab 5208 df-mpt 5229 df-tr 5263 df-id 5572 df-eprel 5578 df-po 5586 df-so 5587 df-fr 5629 df-we 5631 df-xp 5680 df-rel 5681 df-cnv 5682 df-co 5683 df-dm 5684 df-rn 5685 df-res 5686 df-ima 5687 df-pred 6304 df-ord 6371 df-on 6372 df-lim 6373 df-suc 6374 df-iota 6498 df-fun 6548 df-fn 6549 df-f 6550 df-f1 6551 df-fo 6552 df-f1o 6553 df-fv 6554 df-ov 7419 df-oprab 7420 df-mpo 7421 df-om 7869 df-1st 7995 df-2nd 7996 df-frecs 8288 df-wrecs 8319 df-recs 8393 df-rdg 8432 df-1o 8488 df-oadd 8492 df-omul 8493 df-er 8726 df-ec 8728 df-qs 8732 df-map 8849 df-pm 8850 df-wun 10736 df-ni 10906 df-pli 10907 df-mi 10908 df-lti 10909 df-plpq 10942 df-mpq 10943 df-ltpq 10944 df-enq 10945 df-nq 10946 df-erq 10947 df-plq 10948 df-mq 10949 df-1nq 10950 df-rq 10951 df-ltnq 10952 df-np 11015 df-plp 11017 df-ltp 11019 df-enr 11089 df-nr 11090 df-c 11155 df-nn 12259 df-ndx 17191 |
This theorem is referenced by: basndxelwund 17220 1strwunOLD 17229 wunressOLD 17260 catcoppccl 18134 catcoppcclOLD 18135 catcfuccl 18136 catcfucclOLD 18137 catcxpccl 18226 catcxpcclOLD 18227 |
Copyright terms: Public domain | W3C validator |