MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cncfmptc Structured version   Visualization version   GIF version

Theorem cncfmptc 22469
Description: A constant function is a continuous function on . (Contributed by Jeff Madsen, 2-Sep-2009.) (Revised by Mario Carneiro, 7-Sep-2015.)
Assertion
Ref Expression
cncfmptc ((𝐴𝑇𝑆 ⊆ ℂ ∧ 𝑇 ⊆ ℂ) → (𝑥𝑆𝐴) ∈ (𝑆cn𝑇))
Distinct variable groups:   𝑥,𝐴   𝑥,𝑆   𝑥,𝑇

Proof of Theorem cncfmptc
StepHypRef Expression
1 eqid 2609 . . . . 5 (TopOpen‘ℂfld) = (TopOpen‘ℂfld)
21cnfldtopon 22343 . . . 4 (TopOpen‘ℂfld) ∈ (TopOn‘ℂ)
3 simp2 1054 . . . 4 ((𝐴𝑇𝑆 ⊆ ℂ ∧ 𝑇 ⊆ ℂ) → 𝑆 ⊆ ℂ)
4 resttopon 20722 . . . 4 (((TopOpen‘ℂfld) ∈ (TopOn‘ℂ) ∧ 𝑆 ⊆ ℂ) → ((TopOpen‘ℂfld) ↾t 𝑆) ∈ (TopOn‘𝑆))
52, 3, 4sylancr 693 . . 3 ((𝐴𝑇𝑆 ⊆ ℂ ∧ 𝑇 ⊆ ℂ) → ((TopOpen‘ℂfld) ↾t 𝑆) ∈ (TopOn‘𝑆))
6 simp3 1055 . . . 4 ((𝐴𝑇𝑆 ⊆ ℂ ∧ 𝑇 ⊆ ℂ) → 𝑇 ⊆ ℂ)
7 resttopon 20722 . . . 4 (((TopOpen‘ℂfld) ∈ (TopOn‘ℂ) ∧ 𝑇 ⊆ ℂ) → ((TopOpen‘ℂfld) ↾t 𝑇) ∈ (TopOn‘𝑇))
82, 6, 7sylancr 693 . . 3 ((𝐴𝑇𝑆 ⊆ ℂ ∧ 𝑇 ⊆ ℂ) → ((TopOpen‘ℂfld) ↾t 𝑇) ∈ (TopOn‘𝑇))
9 simp1 1053 . . 3 ((𝐴𝑇𝑆 ⊆ ℂ ∧ 𝑇 ⊆ ℂ) → 𝐴𝑇)
105, 8, 9cnmptc 21222 . 2 ((𝐴𝑇𝑆 ⊆ ℂ ∧ 𝑇 ⊆ ℂ) → (𝑥𝑆𝐴) ∈ (((TopOpen‘ℂfld) ↾t 𝑆) Cn ((TopOpen‘ℂfld) ↾t 𝑇)))
11 eqid 2609 . . . 4 ((TopOpen‘ℂfld) ↾t 𝑆) = ((TopOpen‘ℂfld) ↾t 𝑆)
12 eqid 2609 . . . 4 ((TopOpen‘ℂfld) ↾t 𝑇) = ((TopOpen‘ℂfld) ↾t 𝑇)
131, 11, 12cncfcn 22467 . . 3 ((𝑆 ⊆ ℂ ∧ 𝑇 ⊆ ℂ) → (𝑆cn𝑇) = (((TopOpen‘ℂfld) ↾t 𝑆) Cn ((TopOpen‘ℂfld) ↾t 𝑇)))
14133adant1 1071 . 2 ((𝐴𝑇𝑆 ⊆ ℂ ∧ 𝑇 ⊆ ℂ) → (𝑆cn𝑇) = (((TopOpen‘ℂfld) ↾t 𝑆) Cn ((TopOpen‘ℂfld) ↾t 𝑇)))
1510, 14eleqtrrd 2690 1 ((𝐴𝑇𝑆 ⊆ ℂ ∧ 𝑇 ⊆ ℂ) → (𝑥𝑆𝐴) ∈ (𝑆cn𝑇))
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1030   = wceq 1474  wcel 1976  wss 3539  cmpt 4637  cfv 5789  (class class class)co 6526  cc 9790  t crest 15852  TopOpenctopn 15853  fldccnfld 19515  TopOnctopon 20465   Cn ccn 20785  cnccncf 22434
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1712  ax-4 1727  ax-5 1826  ax-6 1874  ax-7 1921  ax-8 1978  ax-9 1985  ax-10 2005  ax-11 2020  ax-12 2033  ax-13 2233  ax-ext 2589  ax-rep 4693  ax-sep 4703  ax-nul 4711  ax-pow 4763  ax-pr 4827  ax-un 6824  ax-cnex 9848  ax-resscn 9849  ax-1cn 9850  ax-icn 9851  ax-addcl 9852  ax-addrcl 9853  ax-mulcl 9854  ax-mulrcl 9855  ax-mulcom 9856  ax-addass 9857  ax-mulass 9858  ax-distr 9859  ax-i2m1 9860  ax-1ne0 9861  ax-1rid 9862  ax-rnegex 9863  ax-rrecex 9864  ax-cnre 9865  ax-pre-lttri 9866  ax-pre-lttrn 9867  ax-pre-ltadd 9868  ax-pre-mulgt0 9869  ax-pre-sup 9870
This theorem depends on definitions:  df-bi 195  df-or 383  df-an 384  df-3or 1031  df-3an 1032  df-tru 1477  df-ex 1695  df-nf 1700  df-sb 1867  df-eu 2461  df-mo 2462  df-clab 2596  df-cleq 2602  df-clel 2605  df-nfc 2739  df-ne 2781  df-nel 2782  df-ral 2900  df-rex 2901  df-reu 2902  df-rmo 2903  df-rab 2904  df-v 3174  df-sbc 3402  df-csb 3499  df-dif 3542  df-un 3544  df-in 3546  df-ss 3553  df-pss 3555  df-nul 3874  df-if 4036  df-pw 4109  df-sn 4125  df-pr 4127  df-tp 4129  df-op 4131  df-uni 4367  df-int 4405  df-iun 4451  df-br 4578  df-opab 4638  df-mpt 4639  df-tr 4675  df-eprel 4938  df-id 4942  df-po 4948  df-so 4949  df-fr 4986  df-we 4988  df-xp 5033  df-rel 5034  df-cnv 5035  df-co 5036  df-dm 5037  df-rn 5038  df-res 5039  df-ima 5040  df-pred 5582  df-ord 5628  df-on 5629  df-lim 5630  df-suc 5631  df-iota 5753  df-fun 5791  df-fn 5792  df-f 5793  df-f1 5794  df-fo 5795  df-f1o 5796  df-fv 5797  df-riota 6488  df-ov 6529  df-oprab 6530  df-mpt2 6531  df-om 6935  df-1st 7036  df-2nd 7037  df-wrecs 7271  df-recs 7332  df-rdg 7370  df-1o 7424  df-oadd 7428  df-er 7606  df-map 7723  df-en 7819  df-dom 7820  df-sdom 7821  df-fin 7822  df-fi 8177  df-sup 8208  df-inf 8209  df-pnf 9932  df-mnf 9933  df-xr 9934  df-ltxr 9935  df-le 9936  df-sub 10119  df-neg 10120  df-div 10536  df-nn 10870  df-2 10928  df-3 10929  df-4 10930  df-5 10931  df-6 10932  df-7 10933  df-8 10934  df-9 10935  df-n0 11142  df-z 11213  df-dec 11328  df-uz 11522  df-q 11623  df-rp 11667  df-xneg 11780  df-xadd 11781  df-xmul 11782  df-fz 12155  df-seq 12621  df-exp 12680  df-cj 13635  df-re 13636  df-im 13637  df-sqrt 13771  df-abs 13772  df-struct 15645  df-ndx 15646  df-slot 15647  df-base 15648  df-plusg 15729  df-mulr 15730  df-starv 15731  df-tset 15735  df-ple 15736  df-ds 15739  df-unif 15740  df-rest 15854  df-topn 15855  df-topgen 15875  df-psmet 19507  df-xmet 19508  df-met 19509  df-bl 19510  df-mopn 19511  df-cnfld 19516  df-top 20468  df-bases 20469  df-topon 20470  df-topsp 20471  df-cn 20788  df-cnp 20789  df-xms 21882  df-ms 21883  df-cncf 22436
This theorem is referenced by:  addccncf  22474  negcncf  22476  dvidlem  23429  dvcnp2  23433  dvmulbr  23452  cmvth  23502  dvlipcn  23505  lhop1lem  23524  dvfsumle  23532  dvfsumge  23533  dvfsumabs  23534  dvfsumlem2  23538  taylthlem2  23876  loglesqrt  24243  lgamgulmlem2  24500  pntlem3  25042  ftc1cnnclem  32436  ftc2nc  32447  areacirclem3  32455  areacirclem4  32456  areacirc  32458  constcncf  32511  sub1cncf  32513  sub2cncf  32514  itgpowd  36602  arearect  36603  areaquad  36604  constcncfg  38539  add1cncf  38571  add2cncf  38572  sub1cncfd  38573  sub2cncfd  38574  itgsbtaddcnst  38657  dirkeritg  38778
  Copyright terms: Public domain W3C validator