MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lgamgulmlem2 Structured version   Visualization version   GIF version

Theorem lgamgulmlem2 24473
Description: Lemma for lgamgulm 24478. (Contributed by Mario Carneiro, 3-Jul-2017.)
Hypotheses
Ref Expression
lgamgulm.r (𝜑𝑅 ∈ ℕ)
lgamgulm.u 𝑈 = {𝑥 ∈ ℂ ∣ ((abs‘𝑥) ≤ 𝑅 ∧ ∀𝑘 ∈ ℕ0 (1 / 𝑅) ≤ (abs‘(𝑥 + 𝑘)))}
lgamgulm.n (𝜑𝑁 ∈ ℕ)
lgamgulm.a (𝜑𝐴𝑈)
lgamgulm.l (𝜑 → (2 · 𝑅) ≤ 𝑁)
Assertion
Ref Expression
lgamgulmlem2 (𝜑 → (abs‘((𝐴 / 𝑁) − (log‘((𝐴 / 𝑁) + 1)))) ≤ (𝑅 · ((1 / (𝑁𝑅)) − (1 / 𝑁))))
Distinct variable groups:   𝑥,𝑁   𝑥,𝑘,𝑅   𝐴,𝑘,𝑥   𝜑,𝑥
Allowed substitution hints:   𝜑(𝑘)   𝑈(𝑥,𝑘)   𝑁(𝑘)

Proof of Theorem lgamgulmlem2
Dummy variables 𝑦 𝑡 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 1elunit 12118 . . 3 1 ∈ (0[,]1)
2 0elunit 12117 . . 3 0 ∈ (0[,]1)
3 0red 9897 . . . 4 (𝜑 → 0 ∈ ℝ)
4 1red 9911 . . . 4 (𝜑 → 1 ∈ ℝ)
5 eqid 2609 . . . . 5 (TopOpen‘ℂfld) = (TopOpen‘ℂfld)
65subcn 22408 . . . . . 6 − ∈ (((TopOpen‘ℂfld) ×t (TopOpen‘ℂfld)) Cn (TopOpen‘ℂfld))
76a1i 11 . . . . 5 (𝜑 → − ∈ (((TopOpen‘ℂfld) ×t (TopOpen‘ℂfld)) Cn (TopOpen‘ℂfld)))
8 lgamgulm.r . . . . . . . . . . 11 (𝜑𝑅 ∈ ℕ)
9 lgamgulm.u . . . . . . . . . . 11 𝑈 = {𝑥 ∈ ℂ ∣ ((abs‘𝑥) ≤ 𝑅 ∧ ∀𝑘 ∈ ℕ0 (1 / 𝑅) ≤ (abs‘(𝑥 + 𝑘)))}
108, 9lgamgulmlem1 24472 . . . . . . . . . 10 (𝜑𝑈 ⊆ (ℂ ∖ (ℤ ∖ ℕ)))
11 lgamgulm.a . . . . . . . . . 10 (𝜑𝐴𝑈)
1210, 11sseldd 3568 . . . . . . . . 9 (𝜑𝐴 ∈ (ℂ ∖ (ℤ ∖ ℕ)))
1312eldifad 3551 . . . . . . . 8 (𝜑𝐴 ∈ ℂ)
14 lgamgulm.n . . . . . . . . . 10 (𝜑𝑁 ∈ ℕ)
1514nnred 10882 . . . . . . . . 9 (𝜑𝑁 ∈ ℝ)
1615recnd 9924 . . . . . . . 8 (𝜑𝑁 ∈ ℂ)
1714nnne0d 10912 . . . . . . . 8 (𝜑𝑁 ≠ 0)
1813, 16, 17divcld 10650 . . . . . . 7 (𝜑 → (𝐴 / 𝑁) ∈ ℂ)
19 unitssre 12146 . . . . . . . . 9 (0[,]1) ⊆ ℝ
20 ax-resscn 9849 . . . . . . . . 9 ℝ ⊆ ℂ
2119, 20sstri 3576 . . . . . . . 8 (0[,]1) ⊆ ℂ
2221a1i 11 . . . . . . 7 (𝜑 → (0[,]1) ⊆ ℂ)
23 ssid 3586 . . . . . . . 8 ℂ ⊆ ℂ
2423a1i 11 . . . . . . 7 (𝜑 → ℂ ⊆ ℂ)
25 cncfmptc 22453 . . . . . . 7 (((𝐴 / 𝑁) ∈ ℂ ∧ (0[,]1) ⊆ ℂ ∧ ℂ ⊆ ℂ) → (𝑡 ∈ (0[,]1) ↦ (𝐴 / 𝑁)) ∈ ((0[,]1)–cn→ℂ))
2618, 22, 24, 25syl3anc 1317 . . . . . 6 (𝜑 → (𝑡 ∈ (0[,]1) ↦ (𝐴 / 𝑁)) ∈ ((0[,]1)–cn→ℂ))
27 cncfmptid 22454 . . . . . . 7 (((0[,]1) ⊆ ℂ ∧ ℂ ⊆ ℂ) → (𝑡 ∈ (0[,]1) ↦ 𝑡) ∈ ((0[,]1)–cn→ℂ))
2821, 24, 27sylancr 693 . . . . . 6 (𝜑 → (𝑡 ∈ (0[,]1) ↦ 𝑡) ∈ ((0[,]1)–cn→ℂ))
2926, 28mulcncf 22940 . . . . 5 (𝜑 → (𝑡 ∈ (0[,]1) ↦ ((𝐴 / 𝑁) · 𝑡)) ∈ ((0[,]1)–cn→ℂ))
3018adantr 479 . . . . . . . . . . 11 ((𝜑𝑡 ∈ (0[,]1)) → (𝐴 / 𝑁) ∈ ℂ)
31 simpr 475 . . . . . . . . . . . . 13 ((𝜑𝑡 ∈ (0[,]1)) → 𝑡 ∈ (0[,]1))
3219, 31sseldi 3565 . . . . . . . . . . . 12 ((𝜑𝑡 ∈ (0[,]1)) → 𝑡 ∈ ℝ)
3332recnd 9924 . . . . . . . . . . 11 ((𝜑𝑡 ∈ (0[,]1)) → 𝑡 ∈ ℂ)
3430, 33mulcld 9916 . . . . . . . . . 10 ((𝜑𝑡 ∈ (0[,]1)) → ((𝐴 / 𝑁) · 𝑡) ∈ ℂ)
35 1cnd 9912 . . . . . . . . . 10 ((𝜑𝑡 ∈ (0[,]1)) → 1 ∈ ℂ)
3634, 35addcld 9915 . . . . . . . . 9 ((𝜑𝑡 ∈ (0[,]1)) → (((𝐴 / 𝑁) · 𝑡) + 1) ∈ ℂ)
37 rere 13656 . . . . . . . . . . . 12 ((((𝐴 / 𝑁) · 𝑡) + 1) ∈ ℝ → (ℜ‘(((𝐴 / 𝑁) · 𝑡) + 1)) = (((𝐴 / 𝑁) · 𝑡) + 1))
3837adantl 480 . . . . . . . . . . 11 (((𝜑𝑡 ∈ (0[,]1)) ∧ (((𝐴 / 𝑁) · 𝑡) + 1) ∈ ℝ) → (ℜ‘(((𝐴 / 𝑁) · 𝑡) + 1)) = (((𝐴 / 𝑁) · 𝑡) + 1))
3936recld 13728 . . . . . . . . . . . . 13 ((𝜑𝑡 ∈ (0[,]1)) → (ℜ‘(((𝐴 / 𝑁) · 𝑡) + 1)) ∈ ℝ)
4034recld 13728 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑡 ∈ (0[,]1)) → (ℜ‘((𝐴 / 𝑁) · 𝑡)) ∈ ℝ)
4140recnd 9924 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑡 ∈ (0[,]1)) → (ℜ‘((𝐴 / 𝑁) · 𝑡)) ∈ ℂ)
4241abscld 13969 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑡 ∈ (0[,]1)) → (abs‘(ℜ‘((𝐴 / 𝑁) · 𝑡))) ∈ ℝ)
4334abscld 13969 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑡 ∈ (0[,]1)) → (abs‘((𝐴 / 𝑁) · 𝑡)) ∈ ℝ)
44 1red 9911 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑡 ∈ (0[,]1)) → 1 ∈ ℝ)
45 absrele 13842 . . . . . . . . . . . . . . . . . . . 20 (((𝐴 / 𝑁) · 𝑡) ∈ ℂ → (abs‘(ℜ‘((𝐴 / 𝑁) · 𝑡))) ≤ (abs‘((𝐴 / 𝑁) · 𝑡)))
4634, 45syl 17 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑡 ∈ (0[,]1)) → (abs‘(ℜ‘((𝐴 / 𝑁) · 𝑡))) ≤ (abs‘((𝐴 / 𝑁) · 𝑡)))
4744rehalfcld 11126 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑡 ∈ (0[,]1)) → (1 / 2) ∈ ℝ)
488nnred 10882 . . . . . . . . . . . . . . . . . . . . . . 23 (𝜑𝑅 ∈ ℝ)
4948adantr 479 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑𝑡 ∈ (0[,]1)) → 𝑅 ∈ ℝ)
5014adantr 479 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑𝑡 ∈ (0[,]1)) → 𝑁 ∈ ℕ)
5149, 50nndivred 10916 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑡 ∈ (0[,]1)) → (𝑅 / 𝑁) ∈ ℝ)
5218abscld 13969 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝜑 → (abs‘(𝐴 / 𝑁)) ∈ ℝ)
5352adantr 479 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑𝑡 ∈ (0[,]1)) → (abs‘(𝐴 / 𝑁)) ∈ ℝ)
5430absge0d 13977 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑𝑡 ∈ (0[,]1)) → 0 ≤ (abs‘(𝐴 / 𝑁)))
55 0re 9896 . . . . . . . . . . . . . . . . . . . . . . . . . 26 0 ∈ ℝ
56 1re 9895 . . . . . . . . . . . . . . . . . . . . . . . . . 26 1 ∈ ℝ
5755, 56elicc2i 12066 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑡 ∈ (0[,]1) ↔ (𝑡 ∈ ℝ ∧ 0 ≤ 𝑡𝑡 ≤ 1))
5857simp2bi 1069 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑡 ∈ (0[,]1) → 0 ≤ 𝑡)
5958adantl 480 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑𝑡 ∈ (0[,]1)) → 0 ≤ 𝑡)
6013, 16, 17absdivd 13988 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝜑 → (abs‘(𝐴 / 𝑁)) = ((abs‘𝐴) / (abs‘𝑁)))
6114nnrpd 11702 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝜑𝑁 ∈ ℝ+)
6261rpge0d 11708 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝜑 → 0 ≤ 𝑁)
6315, 62absidd 13955 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝜑 → (abs‘𝑁) = 𝑁)
6463oveq2d 6543 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝜑 → ((abs‘𝐴) / (abs‘𝑁)) = ((abs‘𝐴) / 𝑁))
6560, 64eqtr2d 2644 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝜑 → ((abs‘𝐴) / 𝑁) = (abs‘(𝐴 / 𝑁)))
6613abscld 13969 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝜑 → (abs‘𝐴) ∈ ℝ)
67 fveq2 6088 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (𝑥 = 𝐴 → (abs‘𝑥) = (abs‘𝐴))
6867breq1d 4587 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (𝑥 = 𝐴 → ((abs‘𝑥) ≤ 𝑅 ↔ (abs‘𝐴) ≤ 𝑅))
69 oveq1 6534 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 (𝑥 = 𝐴 → (𝑥 + 𝑘) = (𝐴 + 𝑘))
7069fveq2d 6092 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (𝑥 = 𝐴 → (abs‘(𝑥 + 𝑘)) = (abs‘(𝐴 + 𝑘)))
7170breq2d 4589 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (𝑥 = 𝐴 → ((1 / 𝑅) ≤ (abs‘(𝑥 + 𝑘)) ↔ (1 / 𝑅) ≤ (abs‘(𝐴 + 𝑘))))
7271ralbidv 2968 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (𝑥 = 𝐴 → (∀𝑘 ∈ ℕ0 (1 / 𝑅) ≤ (abs‘(𝑥 + 𝑘)) ↔ ∀𝑘 ∈ ℕ0 (1 / 𝑅) ≤ (abs‘(𝐴 + 𝑘))))
7368, 72anbi12d 742 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (𝑥 = 𝐴 → (((abs‘𝑥) ≤ 𝑅 ∧ ∀𝑘 ∈ ℕ0 (1 / 𝑅) ≤ (abs‘(𝑥 + 𝑘))) ↔ ((abs‘𝐴) ≤ 𝑅 ∧ ∀𝑘 ∈ ℕ0 (1 / 𝑅) ≤ (abs‘(𝐴 + 𝑘)))))
7473, 9elrab2 3332 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝐴𝑈 ↔ (𝐴 ∈ ℂ ∧ ((abs‘𝐴) ≤ 𝑅 ∧ ∀𝑘 ∈ ℕ0 (1 / 𝑅) ≤ (abs‘(𝐴 + 𝑘)))))
7574simprbi 478 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝐴𝑈 → ((abs‘𝐴) ≤ 𝑅 ∧ ∀𝑘 ∈ ℕ0 (1 / 𝑅) ≤ (abs‘(𝐴 + 𝑘))))
7611, 75syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝜑 → ((abs‘𝐴) ≤ 𝑅 ∧ ∀𝑘 ∈ ℕ0 (1 / 𝑅) ≤ (abs‘(𝐴 + 𝑘))))
7776simpld 473 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝜑 → (abs‘𝐴) ≤ 𝑅)
7866, 48, 61, 77lediv1dd 11762 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝜑 → ((abs‘𝐴) / 𝑁) ≤ (𝑅 / 𝑁))
7965, 78eqbrtrrd 4601 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝜑 → (abs‘(𝐴 / 𝑁)) ≤ (𝑅 / 𝑁))
8079adantr 479 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑𝑡 ∈ (0[,]1)) → (abs‘(𝐴 / 𝑁)) ≤ (𝑅 / 𝑁))
8157simp3bi 1070 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑡 ∈ (0[,]1) → 𝑡 ≤ 1)
8281adantl 480 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑𝑡 ∈ (0[,]1)) → 𝑡 ≤ 1)
8353, 51, 32, 44, 54, 59, 80, 82lemul12ad 10815 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑𝑡 ∈ (0[,]1)) → ((abs‘(𝐴 / 𝑁)) · 𝑡) ≤ ((𝑅 / 𝑁) · 1))
8430, 33absmuld 13987 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑𝑡 ∈ (0[,]1)) → (abs‘((𝐴 / 𝑁) · 𝑡)) = ((abs‘(𝐴 / 𝑁)) · (abs‘𝑡)))
8532, 59absidd 13955 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝜑𝑡 ∈ (0[,]1)) → (abs‘𝑡) = 𝑡)
8685oveq2d 6543 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑𝑡 ∈ (0[,]1)) → ((abs‘(𝐴 / 𝑁)) · (abs‘𝑡)) = ((abs‘(𝐴 / 𝑁)) · 𝑡))
8784, 86eqtr2d 2644 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑𝑡 ∈ (0[,]1)) → ((abs‘(𝐴 / 𝑁)) · 𝑡) = (abs‘((𝐴 / 𝑁) · 𝑡)))
8851recnd 9924 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑𝑡 ∈ (0[,]1)) → (𝑅 / 𝑁) ∈ ℂ)
8988mulid1d 9913 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑𝑡 ∈ (0[,]1)) → ((𝑅 / 𝑁) · 1) = (𝑅 / 𝑁))
9083, 87, 893brtr3d 4608 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑡 ∈ (0[,]1)) → (abs‘((𝐴 / 𝑁) · 𝑡)) ≤ (𝑅 / 𝑁))
91 lgamgulm.l . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝜑 → (2 · 𝑅) ≤ 𝑁)
92 2rp 11669 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 2 ∈ ℝ+
9392a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝜑 → 2 ∈ ℝ+)
9448, 15, 93lemuldiv2d 11754 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝜑 → ((2 · 𝑅) ≤ 𝑁𝑅 ≤ (𝑁 / 2)))
9591, 94mpbid 220 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝜑𝑅 ≤ (𝑁 / 2))
96 2cnd 10940 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝜑 → 2 ∈ ℂ)
97 2ne0 10960 . . . . . . . . . . . . . . . . . . . . . . . . . 26 2 ≠ 0
9897a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝜑 → 2 ≠ 0)
9916, 96, 98divrecd 10653 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝜑 → (𝑁 / 2) = (𝑁 · (1 / 2)))
10095, 99breqtrd 4603 . . . . . . . . . . . . . . . . . . . . . . 23 (𝜑𝑅 ≤ (𝑁 · (1 / 2)))
1014rehalfcld 11126 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝜑 → (1 / 2) ∈ ℝ)
10248, 101, 61ledivmuld 11757 . . . . . . . . . . . . . . . . . . . . . . 23 (𝜑 → ((𝑅 / 𝑁) ≤ (1 / 2) ↔ 𝑅 ≤ (𝑁 · (1 / 2))))
103100, 102mpbird 245 . . . . . . . . . . . . . . . . . . . . . 22 (𝜑 → (𝑅 / 𝑁) ≤ (1 / 2))
104103adantr 479 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑡 ∈ (0[,]1)) → (𝑅 / 𝑁) ≤ (1 / 2))
10543, 51, 47, 90, 104letrd 10045 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑡 ∈ (0[,]1)) → (abs‘((𝐴 / 𝑁) · 𝑡)) ≤ (1 / 2))
106 halflt1 11097 . . . . . . . . . . . . . . . . . . . . 21 (1 / 2) < 1
107106a1i 11 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑡 ∈ (0[,]1)) → (1 / 2) < 1)
10843, 47, 44, 105, 107lelttrd 10046 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑡 ∈ (0[,]1)) → (abs‘((𝐴 / 𝑁) · 𝑡)) < 1)
10942, 43, 44, 46, 108lelttrd 10046 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑡 ∈ (0[,]1)) → (abs‘(ℜ‘((𝐴 / 𝑁) · 𝑡))) < 1)
11040, 44absltd 13962 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑡 ∈ (0[,]1)) → ((abs‘(ℜ‘((𝐴 / 𝑁) · 𝑡))) < 1 ↔ (-1 < (ℜ‘((𝐴 / 𝑁) · 𝑡)) ∧ (ℜ‘((𝐴 / 𝑁) · 𝑡)) < 1)))
111109, 110mpbid 220 . . . . . . . . . . . . . . . . 17 ((𝜑𝑡 ∈ (0[,]1)) → (-1 < (ℜ‘((𝐴 / 𝑁) · 𝑡)) ∧ (ℜ‘((𝐴 / 𝑁) · 𝑡)) < 1))
112111simpld 473 . . . . . . . . . . . . . . . 16 ((𝜑𝑡 ∈ (0[,]1)) → -1 < (ℜ‘((𝐴 / 𝑁) · 𝑡)))
11344renegcld 10308 . . . . . . . . . . . . . . . . 17 ((𝜑𝑡 ∈ (0[,]1)) → -1 ∈ ℝ)
114113, 40posdifd 10463 . . . . . . . . . . . . . . . 16 ((𝜑𝑡 ∈ (0[,]1)) → (-1 < (ℜ‘((𝐴 / 𝑁) · 𝑡)) ↔ 0 < ((ℜ‘((𝐴 / 𝑁) · 𝑡)) − -1)))
115112, 114mpbid 220 . . . . . . . . . . . . . . 15 ((𝜑𝑡 ∈ (0[,]1)) → 0 < ((ℜ‘((𝐴 / 𝑁) · 𝑡)) − -1))
11641, 35subnegd 10250 . . . . . . . . . . . . . . 15 ((𝜑𝑡 ∈ (0[,]1)) → ((ℜ‘((𝐴 / 𝑁) · 𝑡)) − -1) = ((ℜ‘((𝐴 / 𝑁) · 𝑡)) + 1))
117115, 116breqtrd 4603 . . . . . . . . . . . . . 14 ((𝜑𝑡 ∈ (0[,]1)) → 0 < ((ℜ‘((𝐴 / 𝑁) · 𝑡)) + 1))
11834, 35readdd 13748 . . . . . . . . . . . . . . 15 ((𝜑𝑡 ∈ (0[,]1)) → (ℜ‘(((𝐴 / 𝑁) · 𝑡) + 1)) = ((ℜ‘((𝐴 / 𝑁) · 𝑡)) + (ℜ‘1)))
119 re1 13688 . . . . . . . . . . . . . . . 16 (ℜ‘1) = 1
120119oveq2i 6538 . . . . . . . . . . . . . . 15 ((ℜ‘((𝐴 / 𝑁) · 𝑡)) + (ℜ‘1)) = ((ℜ‘((𝐴 / 𝑁) · 𝑡)) + 1)
121118, 120syl6eq 2659 . . . . . . . . . . . . . 14 ((𝜑𝑡 ∈ (0[,]1)) → (ℜ‘(((𝐴 / 𝑁) · 𝑡) + 1)) = ((ℜ‘((𝐴 / 𝑁) · 𝑡)) + 1))
122117, 121breqtrrd 4605 . . . . . . . . . . . . 13 ((𝜑𝑡 ∈ (0[,]1)) → 0 < (ℜ‘(((𝐴 / 𝑁) · 𝑡) + 1)))
12339, 122elrpd 11701 . . . . . . . . . . . 12 ((𝜑𝑡 ∈ (0[,]1)) → (ℜ‘(((𝐴 / 𝑁) · 𝑡) + 1)) ∈ ℝ+)
124123adantr 479 . . . . . . . . . . 11 (((𝜑𝑡 ∈ (0[,]1)) ∧ (((𝐴 / 𝑁) · 𝑡) + 1) ∈ ℝ) → (ℜ‘(((𝐴 / 𝑁) · 𝑡) + 1)) ∈ ℝ+)
12538, 124eqeltrrd 2688 . . . . . . . . . 10 (((𝜑𝑡 ∈ (0[,]1)) ∧ (((𝐴 / 𝑁) · 𝑡) + 1) ∈ ℝ) → (((𝐴 / 𝑁) · 𝑡) + 1) ∈ ℝ+)
126125ex 448 . . . . . . . . 9 ((𝜑𝑡 ∈ (0[,]1)) → ((((𝐴 / 𝑁) · 𝑡) + 1) ∈ ℝ → (((𝐴 / 𝑁) · 𝑡) + 1) ∈ ℝ+))
127 eqid 2609 . . . . . . . . . 10 (ℂ ∖ (-∞(,]0)) = (ℂ ∖ (-∞(,]0))
128127ellogdm 24102 . . . . . . . . 9 ((((𝐴 / 𝑁) · 𝑡) + 1) ∈ (ℂ ∖ (-∞(,]0)) ↔ ((((𝐴 / 𝑁) · 𝑡) + 1) ∈ ℂ ∧ ((((𝐴 / 𝑁) · 𝑡) + 1) ∈ ℝ → (((𝐴 / 𝑁) · 𝑡) + 1) ∈ ℝ+)))
12936, 126, 128sylanbrc 694 . . . . . . . 8 ((𝜑𝑡 ∈ (0[,]1)) → (((𝐴 / 𝑁) · 𝑡) + 1) ∈ (ℂ ∖ (-∞(,]0)))
130 eqidd 2610 . . . . . . . 8 (𝜑 → (𝑡 ∈ (0[,]1) ↦ (((𝐴 / 𝑁) · 𝑡) + 1)) = (𝑡 ∈ (0[,]1) ↦ (((𝐴 / 𝑁) · 𝑡) + 1)))
131127logcn 24110 . . . . . . . . . . 11 (log ↾ (ℂ ∖ (-∞(,]0))) ∈ ((ℂ ∖ (-∞(,]0))–cn→ℂ)
132131a1i 11 . . . . . . . . . 10 (𝜑 → (log ↾ (ℂ ∖ (-∞(,]0))) ∈ ((ℂ ∖ (-∞(,]0))–cn→ℂ))
133 cncff 22435 . . . . . . . . . 10 ((log ↾ (ℂ ∖ (-∞(,]0))) ∈ ((ℂ ∖ (-∞(,]0))–cn→ℂ) → (log ↾ (ℂ ∖ (-∞(,]0))):(ℂ ∖ (-∞(,]0))⟶ℂ)
134132, 133syl 17 . . . . . . . . 9 (𝜑 → (log ↾ (ℂ ∖ (-∞(,]0))):(ℂ ∖ (-∞(,]0))⟶ℂ)
135134feqmptd 6144 . . . . . . . 8 (𝜑 → (log ↾ (ℂ ∖ (-∞(,]0))) = (𝑦 ∈ (ℂ ∖ (-∞(,]0)) ↦ ((log ↾ (ℂ ∖ (-∞(,]0)))‘𝑦)))
136 fveq2 6088 . . . . . . . 8 (𝑦 = (((𝐴 / 𝑁) · 𝑡) + 1) → ((log ↾ (ℂ ∖ (-∞(,]0)))‘𝑦) = ((log ↾ (ℂ ∖ (-∞(,]0)))‘(((𝐴 / 𝑁) · 𝑡) + 1)))
137129, 130, 135, 136fmptco 6288 . . . . . . 7 (𝜑 → ((log ↾ (ℂ ∖ (-∞(,]0))) ∘ (𝑡 ∈ (0[,]1) ↦ (((𝐴 / 𝑁) · 𝑡) + 1))) = (𝑡 ∈ (0[,]1) ↦ ((log ↾ (ℂ ∖ (-∞(,]0)))‘(((𝐴 / 𝑁) · 𝑡) + 1))))
138 fvres 6102 . . . . . . . . 9 ((((𝐴 / 𝑁) · 𝑡) + 1) ∈ (ℂ ∖ (-∞(,]0)) → ((log ↾ (ℂ ∖ (-∞(,]0)))‘(((𝐴 / 𝑁) · 𝑡) + 1)) = (log‘(((𝐴 / 𝑁) · 𝑡) + 1)))
139129, 138syl 17 . . . . . . . 8 ((𝜑𝑡 ∈ (0[,]1)) → ((log ↾ (ℂ ∖ (-∞(,]0)))‘(((𝐴 / 𝑁) · 𝑡) + 1)) = (log‘(((𝐴 / 𝑁) · 𝑡) + 1)))
140139mpteq2dva 4666 . . . . . . 7 (𝜑 → (𝑡 ∈ (0[,]1) ↦ ((log ↾ (ℂ ∖ (-∞(,]0)))‘(((𝐴 / 𝑁) · 𝑡) + 1))) = (𝑡 ∈ (0[,]1) ↦ (log‘(((𝐴 / 𝑁) · 𝑡) + 1))))
141137, 140eqtrd 2643 . . . . . 6 (𝜑 → ((log ↾ (ℂ ∖ (-∞(,]0))) ∘ (𝑡 ∈ (0[,]1) ↦ (((𝐴 / 𝑁) · 𝑡) + 1))) = (𝑡 ∈ (0[,]1) ↦ (log‘(((𝐴 / 𝑁) · 𝑡) + 1))))
142 eqid 2609 . . . . . . . . 9 (𝑡 ∈ (0[,]1) ↦ (((𝐴 / 𝑁) · 𝑡) + 1)) = (𝑡 ∈ (0[,]1) ↦ (((𝐴 / 𝑁) · 𝑡) + 1))
143129, 142fmptd 6277 . . . . . . . 8 (𝜑 → (𝑡 ∈ (0[,]1) ↦ (((𝐴 / 𝑁) · 𝑡) + 1)):(0[,]1)⟶(ℂ ∖ (-∞(,]0)))
144 difss 3698 . . . . . . . . 9 (ℂ ∖ (-∞(,]0)) ⊆ ℂ
1455addcn 22407 . . . . . . . . . . 11 + ∈ (((TopOpen‘ℂfld) ×t (TopOpen‘ℂfld)) Cn (TopOpen‘ℂfld))
146145a1i 11 . . . . . . . . . 10 (𝜑 → + ∈ (((TopOpen‘ℂfld) ×t (TopOpen‘ℂfld)) Cn (TopOpen‘ℂfld)))
147 1cnd 9912 . . . . . . . . . . 11 (𝜑 → 1 ∈ ℂ)
148 cncfmptc 22453 . . . . . . . . . . 11 ((1 ∈ ℂ ∧ (0[,]1) ⊆ ℂ ∧ ℂ ⊆ ℂ) → (𝑡 ∈ (0[,]1) ↦ 1) ∈ ((0[,]1)–cn→ℂ))
149147, 22, 24, 148syl3anc 1317 . . . . . . . . . 10 (𝜑 → (𝑡 ∈ (0[,]1) ↦ 1) ∈ ((0[,]1)–cn→ℂ))
1505, 146, 29, 149cncfmpt2f 22456 . . . . . . . . 9 (𝜑 → (𝑡 ∈ (0[,]1) ↦ (((𝐴 / 𝑁) · 𝑡) + 1)) ∈ ((0[,]1)–cn→ℂ))
151 cncffvrn 22440 . . . . . . . . 9 (((ℂ ∖ (-∞(,]0)) ⊆ ℂ ∧ (𝑡 ∈ (0[,]1) ↦ (((𝐴 / 𝑁) · 𝑡) + 1)) ∈ ((0[,]1)–cn→ℂ)) → ((𝑡 ∈ (0[,]1) ↦ (((𝐴 / 𝑁) · 𝑡) + 1)) ∈ ((0[,]1)–cn→(ℂ ∖ (-∞(,]0))) ↔ (𝑡 ∈ (0[,]1) ↦ (((𝐴 / 𝑁) · 𝑡) + 1)):(0[,]1)⟶(ℂ ∖ (-∞(,]0))))
152144, 150, 151sylancr 693 . . . . . . . 8 (𝜑 → ((𝑡 ∈ (0[,]1) ↦ (((𝐴 / 𝑁) · 𝑡) + 1)) ∈ ((0[,]1)–cn→(ℂ ∖ (-∞(,]0))) ↔ (𝑡 ∈ (0[,]1) ↦ (((𝐴 / 𝑁) · 𝑡) + 1)):(0[,]1)⟶(ℂ ∖ (-∞(,]0))))
153143, 152mpbird 245 . . . . . . 7 (𝜑 → (𝑡 ∈ (0[,]1) ↦ (((𝐴 / 𝑁) · 𝑡) + 1)) ∈ ((0[,]1)–cn→(ℂ ∖ (-∞(,]0))))
154153, 132cncfco 22449 . . . . . 6 (𝜑 → ((log ↾ (ℂ ∖ (-∞(,]0))) ∘ (𝑡 ∈ (0[,]1) ↦ (((𝐴 / 𝑁) · 𝑡) + 1))) ∈ ((0[,]1)–cn→ℂ))
155141, 154eqeltrrd 2688 . . . . 5 (𝜑 → (𝑡 ∈ (0[,]1) ↦ (log‘(((𝐴 / 𝑁) · 𝑡) + 1))) ∈ ((0[,]1)–cn→ℂ))
1565, 7, 29, 155cncfmpt2f 22456 . . . 4 (𝜑 → (𝑡 ∈ (0[,]1) ↦ (((𝐴 / 𝑁) · 𝑡) − (log‘(((𝐴 / 𝑁) · 𝑡) + 1)))) ∈ ((0[,]1)–cn→ℂ))
15720a1i 11 . . . . . . . 8 (𝜑 → ℝ ⊆ ℂ)
15819a1i 11 . . . . . . . 8 (𝜑 → (0[,]1) ⊆ ℝ)
159127logdmn0 24103 . . . . . . . . . . 11 ((((𝐴 / 𝑁) · 𝑡) + 1) ∈ (ℂ ∖ (-∞(,]0)) → (((𝐴 / 𝑁) · 𝑡) + 1) ≠ 0)
160129, 159syl 17 . . . . . . . . . 10 ((𝜑𝑡 ∈ (0[,]1)) → (((𝐴 / 𝑁) · 𝑡) + 1) ≠ 0)
16136, 160logcld 24038 . . . . . . . . 9 ((𝜑𝑡 ∈ (0[,]1)) → (log‘(((𝐴 / 𝑁) · 𝑡) + 1)) ∈ ℂ)
16234, 161subcld 10243 . . . . . . . 8 ((𝜑𝑡 ∈ (0[,]1)) → (((𝐴 / 𝑁) · 𝑡) − (log‘(((𝐴 / 𝑁) · 𝑡) + 1))) ∈ ℂ)
1635tgioo2 22346 . . . . . . . 8 (topGen‘ran (,)) = ((TopOpen‘ℂfld) ↾t ℝ)
164 iccntr 22364 . . . . . . . . 9 ((0 ∈ ℝ ∧ 1 ∈ ℝ) → ((int‘(topGen‘ran (,)))‘(0[,]1)) = (0(,)1))
16555, 4, 164sylancr 693 . . . . . . . 8 (𝜑 → ((int‘(topGen‘ran (,)))‘(0[,]1)) = (0(,)1))
166157, 158, 162, 163, 5, 165dvmptntr 23457 . . . . . . 7 (𝜑 → (ℝ D (𝑡 ∈ (0[,]1) ↦ (((𝐴 / 𝑁) · 𝑡) − (log‘(((𝐴 / 𝑁) · 𝑡) + 1))))) = (ℝ D (𝑡 ∈ (0(,)1) ↦ (((𝐴 / 𝑁) · 𝑡) − (log‘(((𝐴 / 𝑁) · 𝑡) + 1))))))
167 reelprrecn 9884 . . . . . . . . 9 ℝ ∈ {ℝ, ℂ}
168167a1i 11 . . . . . . . 8 (𝜑 → ℝ ∈ {ℝ, ℂ})
16913adantr 479 . . . . . . . . . 10 ((𝜑𝑡 ∈ (0(,)1)) → 𝐴 ∈ ℂ)
17016adantr 479 . . . . . . . . . 10 ((𝜑𝑡 ∈ (0(,)1)) → 𝑁 ∈ ℂ)
17117adantr 479 . . . . . . . . . 10 ((𝜑𝑡 ∈ (0(,)1)) → 𝑁 ≠ 0)
172169, 170, 171divcld 10650 . . . . . . . . 9 ((𝜑𝑡 ∈ (0(,)1)) → (𝐴 / 𝑁) ∈ ℂ)
173 ioossicc 12086 . . . . . . . . . . 11 (0(,)1) ⊆ (0[,]1)
174173sseli 3563 . . . . . . . . . 10 (𝑡 ∈ (0(,)1) → 𝑡 ∈ (0[,]1))
175174, 33sylan2 489 . . . . . . . . 9 ((𝜑𝑡 ∈ (0(,)1)) → 𝑡 ∈ ℂ)
176172, 175mulcld 9916 . . . . . . . 8 ((𝜑𝑡 ∈ (0(,)1)) → ((𝐴 / 𝑁) · 𝑡) ∈ ℂ)
17713adantr 479 . . . . . . . . . . 11 ((𝜑𝑡 ∈ ℝ) → 𝐴 ∈ ℂ)
17816adantr 479 . . . . . . . . . . 11 ((𝜑𝑡 ∈ ℝ) → 𝑁 ∈ ℂ)
17917adantr 479 . . . . . . . . . . 11 ((𝜑𝑡 ∈ ℝ) → 𝑁 ≠ 0)
180177, 178, 179divcld 10650 . . . . . . . . . 10 ((𝜑𝑡 ∈ ℝ) → (𝐴 / 𝑁) ∈ ℂ)
181157sselda 3567 . . . . . . . . . 10 ((𝜑𝑡 ∈ ℝ) → 𝑡 ∈ ℂ)
182180, 181mulcld 9916 . . . . . . . . 9 ((𝜑𝑡 ∈ ℝ) → ((𝐴 / 𝑁) · 𝑡) ∈ ℂ)
183 1cnd 9912 . . . . . . . . . . 11 ((𝜑𝑡 ∈ ℝ) → 1 ∈ ℂ)
184168dvmptid 23443 . . . . . . . . . . 11 (𝜑 → (ℝ D (𝑡 ∈ ℝ ↦ 𝑡)) = (𝑡 ∈ ℝ ↦ 1))
185168, 181, 183, 184, 18dvmptcmul 23450 . . . . . . . . . 10 (𝜑 → (ℝ D (𝑡 ∈ ℝ ↦ ((𝐴 / 𝑁) · 𝑡))) = (𝑡 ∈ ℝ ↦ ((𝐴 / 𝑁) · 1)))
18618mulid1d 9913 . . . . . . . . . . 11 (𝜑 → ((𝐴 / 𝑁) · 1) = (𝐴 / 𝑁))
187186mpteq2dv 4667 . . . . . . . . . 10 (𝜑 → (𝑡 ∈ ℝ ↦ ((𝐴 / 𝑁) · 1)) = (𝑡 ∈ ℝ ↦ (𝐴 / 𝑁)))
188185, 187eqtrd 2643 . . . . . . . . 9 (𝜑 → (ℝ D (𝑡 ∈ ℝ ↦ ((𝐴 / 𝑁) · 𝑡))) = (𝑡 ∈ ℝ ↦ (𝐴 / 𝑁)))
189173, 158syl5ss 3578 . . . . . . . . 9 (𝜑 → (0(,)1) ⊆ ℝ)
190 retop 22307 . . . . . . . . . . 11 (topGen‘ran (,)) ∈ Top
191 iooretop 22311 . . . . . . . . . . 11 (0(,)1) ∈ (topGen‘ran (,))
192 isopn3i 20638 . . . . . . . . . . 11 (((topGen‘ran (,)) ∈ Top ∧ (0(,)1) ∈ (topGen‘ran (,))) → ((int‘(topGen‘ran (,)))‘(0(,)1)) = (0(,)1))
193190, 191, 192mp2an 703 . . . . . . . . . 10 ((int‘(topGen‘ran (,)))‘(0(,)1)) = (0(,)1)
194193a1i 11 . . . . . . . . 9 (𝜑 → ((int‘(topGen‘ran (,)))‘(0(,)1)) = (0(,)1))
195168, 182, 180, 188, 189, 163, 5, 194dvmptres2 23448 . . . . . . . 8 (𝜑 → (ℝ D (𝑡 ∈ (0(,)1) ↦ ((𝐴 / 𝑁) · 𝑡))) = (𝑡 ∈ (0(,)1) ↦ (𝐴 / 𝑁)))
196174, 161sylan2 489 . . . . . . . 8 ((𝜑𝑡 ∈ (0(,)1)) → (log‘(((𝐴 / 𝑁) · 𝑡) + 1)) ∈ ℂ)
197 1cnd 9912 . . . . . . . . . . 11 ((𝜑𝑡 ∈ (0(,)1)) → 1 ∈ ℂ)
198176, 197addcld 9915 . . . . . . . . . 10 ((𝜑𝑡 ∈ (0(,)1)) → (((𝐴 / 𝑁) · 𝑡) + 1) ∈ ℂ)
199174, 160sylan2 489 . . . . . . . . . 10 ((𝜑𝑡 ∈ (0(,)1)) → (((𝐴 / 𝑁) · 𝑡) + 1) ≠ 0)
200198, 199reccld 10643 . . . . . . . . 9 ((𝜑𝑡 ∈ (0(,)1)) → (1 / (((𝐴 / 𝑁) · 𝑡) + 1)) ∈ ℂ)
201200, 172mulcld 9916 . . . . . . . 8 ((𝜑𝑡 ∈ (0(,)1)) → ((1 / (((𝐴 / 𝑁) · 𝑡) + 1)) · (𝐴 / 𝑁)) ∈ ℂ)
202 cnelprrecn 9885 . . . . . . . . . 10 ℂ ∈ {ℝ, ℂ}
203202a1i 11 . . . . . . . . 9 (𝜑 → ℂ ∈ {ℝ, ℂ})
204174, 129sylan2 489 . . . . . . . . 9 ((𝜑𝑡 ∈ (0(,)1)) → (((𝐴 / 𝑁) · 𝑡) + 1) ∈ (ℂ ∖ (-∞(,]0)))
205 eldifi 3693 . . . . . . . . . . 11 (𝑦 ∈ (ℂ ∖ (-∞(,]0)) → 𝑦 ∈ ℂ)
206205adantl 480 . . . . . . . . . 10 ((𝜑𝑦 ∈ (ℂ ∖ (-∞(,]0))) → 𝑦 ∈ ℂ)
207127logdmn0 24103 . . . . . . . . . . 11 (𝑦 ∈ (ℂ ∖ (-∞(,]0)) → 𝑦 ≠ 0)
208207adantl 480 . . . . . . . . . 10 ((𝜑𝑦 ∈ (ℂ ∖ (-∞(,]0))) → 𝑦 ≠ 0)
209206, 208logcld 24038 . . . . . . . . 9 ((𝜑𝑦 ∈ (ℂ ∖ (-∞(,]0))) → (log‘𝑦) ∈ ℂ)
210206, 208reccld 10643 . . . . . . . . 9 ((𝜑𝑦 ∈ (ℂ ∖ (-∞(,]0))) → (1 / 𝑦) ∈ ℂ)
211182, 183addcld 9915 . . . . . . . . . 10 ((𝜑𝑡 ∈ ℝ) → (((𝐴 / 𝑁) · 𝑡) + 1) ∈ ℂ)
212 0cnd 9889 . . . . . . . . . . . 12 ((𝜑𝑡 ∈ ℝ) → 0 ∈ ℂ)
213168, 147dvmptc 23444 . . . . . . . . . . . 12 (𝜑 → (ℝ D (𝑡 ∈ ℝ ↦ 1)) = (𝑡 ∈ ℝ ↦ 0))
214168, 182, 180, 188, 183, 212, 213dvmptadd 23446 . . . . . . . . . . 11 (𝜑 → (ℝ D (𝑡 ∈ ℝ ↦ (((𝐴 / 𝑁) · 𝑡) + 1))) = (𝑡 ∈ ℝ ↦ ((𝐴 / 𝑁) + 0)))
21518addid1d 10087 . . . . . . . . . . . 12 (𝜑 → ((𝐴 / 𝑁) + 0) = (𝐴 / 𝑁))
216215mpteq2dv 4667 . . . . . . . . . . 11 (𝜑 → (𝑡 ∈ ℝ ↦ ((𝐴 / 𝑁) + 0)) = (𝑡 ∈ ℝ ↦ (𝐴 / 𝑁)))
217214, 216eqtrd 2643 . . . . . . . . . 10 (𝜑 → (ℝ D (𝑡 ∈ ℝ ↦ (((𝐴 / 𝑁) · 𝑡) + 1))) = (𝑡 ∈ ℝ ↦ (𝐴 / 𝑁)))
218168, 211, 180, 217, 189, 163, 5, 194dvmptres2 23448 . . . . . . . . 9 (𝜑 → (ℝ D (𝑡 ∈ (0(,)1) ↦ (((𝐴 / 𝑁) · 𝑡) + 1))) = (𝑡 ∈ (0(,)1) ↦ (𝐴 / 𝑁)))
219 fvres 6102 . . . . . . . . . . . . 13 (𝑦 ∈ (ℂ ∖ (-∞(,]0)) → ((log ↾ (ℂ ∖ (-∞(,]0)))‘𝑦) = (log‘𝑦))
220219mpteq2ia 4662 . . . . . . . . . . . 12 (𝑦 ∈ (ℂ ∖ (-∞(,]0)) ↦ ((log ↾ (ℂ ∖ (-∞(,]0)))‘𝑦)) = (𝑦 ∈ (ℂ ∖ (-∞(,]0)) ↦ (log‘𝑦))
221135, 220syl6req 2660 . . . . . . . . . . 11 (𝜑 → (𝑦 ∈ (ℂ ∖ (-∞(,]0)) ↦ (log‘𝑦)) = (log ↾ (ℂ ∖ (-∞(,]0))))
222221oveq2d 6543 . . . . . . . . . 10 (𝜑 → (ℂ D (𝑦 ∈ (ℂ ∖ (-∞(,]0)) ↦ (log‘𝑦))) = (ℂ D (log ↾ (ℂ ∖ (-∞(,]0)))))
223127dvlog 24114 . . . . . . . . . 10 (ℂ D (log ↾ (ℂ ∖ (-∞(,]0)))) = (𝑦 ∈ (ℂ ∖ (-∞(,]0)) ↦ (1 / 𝑦))
224222, 223syl6eq 2659 . . . . . . . . 9 (𝜑 → (ℂ D (𝑦 ∈ (ℂ ∖ (-∞(,]0)) ↦ (log‘𝑦))) = (𝑦 ∈ (ℂ ∖ (-∞(,]0)) ↦ (1 / 𝑦)))
225 fveq2 6088 . . . . . . . . 9 (𝑦 = (((𝐴 / 𝑁) · 𝑡) + 1) → (log‘𝑦) = (log‘(((𝐴 / 𝑁) · 𝑡) + 1)))
226 oveq2 6535 . . . . . . . . 9 (𝑦 = (((𝐴 / 𝑁) · 𝑡) + 1) → (1 / 𝑦) = (1 / (((𝐴 / 𝑁) · 𝑡) + 1)))
227168, 203, 204, 172, 209, 210, 218, 224, 225, 226dvmptco 23458 . . . . . . . 8 (𝜑 → (ℝ D (𝑡 ∈ (0(,)1) ↦ (log‘(((𝐴 / 𝑁) · 𝑡) + 1)))) = (𝑡 ∈ (0(,)1) ↦ ((1 / (((𝐴 / 𝑁) · 𝑡) + 1)) · (𝐴 / 𝑁))))
228168, 176, 172, 195, 196, 201, 227dvmptsub 23453 . . . . . . 7 (𝜑 → (ℝ D (𝑡 ∈ (0(,)1) ↦ (((𝐴 / 𝑁) · 𝑡) − (log‘(((𝐴 / 𝑁) · 𝑡) + 1))))) = (𝑡 ∈ (0(,)1) ↦ ((𝐴 / 𝑁) − ((1 / (((𝐴 / 𝑁) · 𝑡) + 1)) · (𝐴 / 𝑁)))))
229166, 228eqtrd 2643 . . . . . 6 (𝜑 → (ℝ D (𝑡 ∈ (0[,]1) ↦ (((𝐴 / 𝑁) · 𝑡) − (log‘(((𝐴 / 𝑁) · 𝑡) + 1))))) = (𝑡 ∈ (0(,)1) ↦ ((𝐴 / 𝑁) − ((1 / (((𝐴 / 𝑁) · 𝑡) + 1)) · (𝐴 / 𝑁)))))
230229dmeqd 5235 . . . . 5 (𝜑 → dom (ℝ D (𝑡 ∈ (0[,]1) ↦ (((𝐴 / 𝑁) · 𝑡) − (log‘(((𝐴 / 𝑁) · 𝑡) + 1))))) = dom (𝑡 ∈ (0(,)1) ↦ ((𝐴 / 𝑁) − ((1 / (((𝐴 / 𝑁) · 𝑡) + 1)) · (𝐴 / 𝑁)))))
231 ovex 6555 . . . . . 6 ((𝐴 / 𝑁) − ((1 / (((𝐴 / 𝑁) · 𝑡) + 1)) · (𝐴 / 𝑁))) ∈ V
232 eqid 2609 . . . . . 6 (𝑡 ∈ (0(,)1) ↦ ((𝐴 / 𝑁) − ((1 / (((𝐴 / 𝑁) · 𝑡) + 1)) · (𝐴 / 𝑁)))) = (𝑡 ∈ (0(,)1) ↦ ((𝐴 / 𝑁) − ((1 / (((𝐴 / 𝑁) · 𝑡) + 1)) · (𝐴 / 𝑁))))
233231, 232dmmpti 5922 . . . . 5 dom (𝑡 ∈ (0(,)1) ↦ ((𝐴 / 𝑁) − ((1 / (((𝐴 / 𝑁) · 𝑡) + 1)) · (𝐴 / 𝑁)))) = (0(,)1)
234230, 233syl6eq 2659 . . . 4 (𝜑 → dom (ℝ D (𝑡 ∈ (0[,]1) ↦ (((𝐴 / 𝑁) · 𝑡) − (log‘(((𝐴 / 𝑁) · 𝑡) + 1))))) = (0(,)1))
235 2re 10937 . . . . . . . . . . 11 2 ∈ ℝ
236235a1i 11 . . . . . . . . . 10 (𝜑 → 2 ∈ ℝ)
237236, 48remulcld 9926 . . . . . . . . 9 (𝜑 → (2 · 𝑅) ∈ ℝ)
2388nnrpd 11702 . . . . . . . . . . 11 (𝜑𝑅 ∈ ℝ+)
23948, 238ltaddrpd 11737 . . . . . . . . . 10 (𝜑𝑅 < (𝑅 + 𝑅))
24048recnd 9924 . . . . . . . . . . 11 (𝜑𝑅 ∈ ℂ)
2412402timesd 11122 . . . . . . . . . 10 (𝜑 → (2 · 𝑅) = (𝑅 + 𝑅))
242239, 241breqtrrd 4605 . . . . . . . . 9 (𝜑𝑅 < (2 · 𝑅))
24348, 237, 15, 242, 91ltletrd 10048 . . . . . . . 8 (𝜑𝑅 < 𝑁)
244 difrp 11700 . . . . . . . . 9 ((𝑅 ∈ ℝ ∧ 𝑁 ∈ ℝ) → (𝑅 < 𝑁 ↔ (𝑁𝑅) ∈ ℝ+))
24548, 15, 244syl2anc 690 . . . . . . . 8 (𝜑 → (𝑅 < 𝑁 ↔ (𝑁𝑅) ∈ ℝ+))
246243, 245mpbid 220 . . . . . . 7 (𝜑 → (𝑁𝑅) ∈ ℝ+)
247246rprecred 11715 . . . . . 6 (𝜑 → (1 / (𝑁𝑅)) ∈ ℝ)
24814nnrecred 10913 . . . . . 6 (𝜑 → (1 / 𝑁) ∈ ℝ)
249247, 248resubcld 10309 . . . . 5 (𝜑 → ((1 / (𝑁𝑅)) − (1 / 𝑁)) ∈ ℝ)
25048, 249remulcld 9926 . . . 4 (𝜑 → (𝑅 · ((1 / (𝑁𝑅)) − (1 / 𝑁))) ∈ ℝ)
251229fveq1d 6090 . . . . . . 7 (𝜑 → ((ℝ D (𝑡 ∈ (0[,]1) ↦ (((𝐴 / 𝑁) · 𝑡) − (log‘(((𝐴 / 𝑁) · 𝑡) + 1)))))‘𝑦) = ((𝑡 ∈ (0(,)1) ↦ ((𝐴 / 𝑁) − ((1 / (((𝐴 / 𝑁) · 𝑡) + 1)) · (𝐴 / 𝑁))))‘𝑦))
252251fveq2d 6092 . . . . . 6 (𝜑 → (abs‘((ℝ D (𝑡 ∈ (0[,]1) ↦ (((𝐴 / 𝑁) · 𝑡) − (log‘(((𝐴 / 𝑁) · 𝑡) + 1)))))‘𝑦)) = (abs‘((𝑡 ∈ (0(,)1) ↦ ((𝐴 / 𝑁) − ((1 / (((𝐴 / 𝑁) · 𝑡) + 1)) · (𝐴 / 𝑁))))‘𝑦)))
253252adantr 479 . . . . 5 ((𝜑𝑦 ∈ (0(,)1)) → (abs‘((ℝ D (𝑡 ∈ (0[,]1) ↦ (((𝐴 / 𝑁) · 𝑡) − (log‘(((𝐴 / 𝑁) · 𝑡) + 1)))))‘𝑦)) = (abs‘((𝑡 ∈ (0(,)1) ↦ ((𝐴 / 𝑁) − ((1 / (((𝐴 / 𝑁) · 𝑡) + 1)) · (𝐴 / 𝑁))))‘𝑦)))
254 nfv 1829 . . . . . . 7 𝑡(𝜑𝑦 ∈ (0(,)1))
255 nfcv 2750 . . . . . . . . 9 𝑡abs
256 nffvmpt1 6096 . . . . . . . . 9 𝑡((𝑡 ∈ (0(,)1) ↦ ((𝐴 / 𝑁) − ((1 / (((𝐴 / 𝑁) · 𝑡) + 1)) · (𝐴 / 𝑁))))‘𝑦)
257255, 256nffv 6095 . . . . . . . 8 𝑡(abs‘((𝑡 ∈ (0(,)1) ↦ ((𝐴 / 𝑁) − ((1 / (((𝐴 / 𝑁) · 𝑡) + 1)) · (𝐴 / 𝑁))))‘𝑦))
258 nfcv 2750 . . . . . . . 8 𝑡
259 nfcv 2750 . . . . . . . 8 𝑡(𝑅 · ((1 / (𝑁𝑅)) − (1 / 𝑁)))
260257, 258, 259nfbr 4623 . . . . . . 7 𝑡(abs‘((𝑡 ∈ (0(,)1) ↦ ((𝐴 / 𝑁) − ((1 / (((𝐴 / 𝑁) · 𝑡) + 1)) · (𝐴 / 𝑁))))‘𝑦)) ≤ (𝑅 · ((1 / (𝑁𝑅)) − (1 / 𝑁)))
261254, 260nfim 1812 . . . . . 6 𝑡((𝜑𝑦 ∈ (0(,)1)) → (abs‘((𝑡 ∈ (0(,)1) ↦ ((𝐴 / 𝑁) − ((1 / (((𝐴 / 𝑁) · 𝑡) + 1)) · (𝐴 / 𝑁))))‘𝑦)) ≤ (𝑅 · ((1 / (𝑁𝑅)) − (1 / 𝑁))))
262 eleq1 2675 . . . . . . . 8 (𝑡 = 𝑦 → (𝑡 ∈ (0(,)1) ↔ 𝑦 ∈ (0(,)1)))
263262anbi2d 735 . . . . . . 7 (𝑡 = 𝑦 → ((𝜑𝑡 ∈ (0(,)1)) ↔ (𝜑𝑦 ∈ (0(,)1))))
264 fveq2 6088 . . . . . . . . 9 (𝑡 = 𝑦 → ((𝑡 ∈ (0(,)1) ↦ ((𝐴 / 𝑁) − ((1 / (((𝐴 / 𝑁) · 𝑡) + 1)) · (𝐴 / 𝑁))))‘𝑡) = ((𝑡 ∈ (0(,)1) ↦ ((𝐴 / 𝑁) − ((1 / (((𝐴 / 𝑁) · 𝑡) + 1)) · (𝐴 / 𝑁))))‘𝑦))
265264fveq2d 6092 . . . . . . . 8 (𝑡 = 𝑦 → (abs‘((𝑡 ∈ (0(,)1) ↦ ((𝐴 / 𝑁) − ((1 / (((𝐴 / 𝑁) · 𝑡) + 1)) · (𝐴 / 𝑁))))‘𝑡)) = (abs‘((𝑡 ∈ (0(,)1) ↦ ((𝐴 / 𝑁) − ((1 / (((𝐴 / 𝑁) · 𝑡) + 1)) · (𝐴 / 𝑁))))‘𝑦)))
266265breq1d 4587 . . . . . . 7 (𝑡 = 𝑦 → ((abs‘((𝑡 ∈ (0(,)1) ↦ ((𝐴 / 𝑁) − ((1 / (((𝐴 / 𝑁) · 𝑡) + 1)) · (𝐴 / 𝑁))))‘𝑡)) ≤ (𝑅 · ((1 / (𝑁𝑅)) − (1 / 𝑁))) ↔ (abs‘((𝑡 ∈ (0(,)1) ↦ ((𝐴 / 𝑁) − ((1 / (((𝐴 / 𝑁) · 𝑡) + 1)) · (𝐴 / 𝑁))))‘𝑦)) ≤ (𝑅 · ((1 / (𝑁𝑅)) − (1 / 𝑁)))))
267263, 266imbi12d 332 . . . . . 6 (𝑡 = 𝑦 → (((𝜑𝑡 ∈ (0(,)1)) → (abs‘((𝑡 ∈ (0(,)1) ↦ ((𝐴 / 𝑁) − ((1 / (((𝐴 / 𝑁) · 𝑡) + 1)) · (𝐴 / 𝑁))))‘𝑡)) ≤ (𝑅 · ((1 / (𝑁𝑅)) − (1 / 𝑁)))) ↔ ((𝜑𝑦 ∈ (0(,)1)) → (abs‘((𝑡 ∈ (0(,)1) ↦ ((𝐴 / 𝑁) − ((1 / (((𝐴 / 𝑁) · 𝑡) + 1)) · (𝐴 / 𝑁))))‘𝑦)) ≤ (𝑅 · ((1 / (𝑁𝑅)) − (1 / 𝑁))))))
268 simpr 475 . . . . . . . . . 10 ((𝜑𝑡 ∈ (0(,)1)) → 𝑡 ∈ (0(,)1))
269232fvmpt2 6185 . . . . . . . . . 10 ((𝑡 ∈ (0(,)1) ∧ ((𝐴 / 𝑁) − ((1 / (((𝐴 / 𝑁) · 𝑡) + 1)) · (𝐴 / 𝑁))) ∈ V) → ((𝑡 ∈ (0(,)1) ↦ ((𝐴 / 𝑁) − ((1 / (((𝐴 / 𝑁) · 𝑡) + 1)) · (𝐴 / 𝑁))))‘𝑡) = ((𝐴 / 𝑁) − ((1 / (((𝐴 / 𝑁) · 𝑡) + 1)) · (𝐴 / 𝑁))))
270268, 231, 269sylancl 692 . . . . . . . . 9 ((𝜑𝑡 ∈ (0(,)1)) → ((𝑡 ∈ (0(,)1) ↦ ((𝐴 / 𝑁) − ((1 / (((𝐴 / 𝑁) · 𝑡) + 1)) · (𝐴 / 𝑁))))‘𝑡) = ((𝐴 / 𝑁) − ((1 / (((𝐴 / 𝑁) · 𝑡) + 1)) · (𝐴 / 𝑁))))
271270fveq2d 6092 . . . . . . . 8 ((𝜑𝑡 ∈ (0(,)1)) → (abs‘((𝑡 ∈ (0(,)1) ↦ ((𝐴 / 𝑁) − ((1 / (((𝐴 / 𝑁) · 𝑡) + 1)) · (𝐴 / 𝑁))))‘𝑡)) = (abs‘((𝐴 / 𝑁) − ((1 / (((𝐴 / 𝑁) · 𝑡) + 1)) · (𝐴 / 𝑁)))))
272172, 197, 200subdid 10336 . . . . . . . . . 10 ((𝜑𝑡 ∈ (0(,)1)) → ((𝐴 / 𝑁) · (1 − (1 / (((𝐴 / 𝑁) · 𝑡) + 1)))) = (((𝐴 / 𝑁) · 1) − ((𝐴 / 𝑁) · (1 / (((𝐴 / 𝑁) · 𝑡) + 1)))))
273172mulid1d 9913 . . . . . . . . . . 11 ((𝜑𝑡 ∈ (0(,)1)) → ((𝐴 / 𝑁) · 1) = (𝐴 / 𝑁))
274172, 200mulcomd 9917 . . . . . . . . . . 11 ((𝜑𝑡 ∈ (0(,)1)) → ((𝐴 / 𝑁) · (1 / (((𝐴 / 𝑁) · 𝑡) + 1))) = ((1 / (((𝐴 / 𝑁) · 𝑡) + 1)) · (𝐴 / 𝑁)))
275273, 274oveq12d 6545 . . . . . . . . . 10 ((𝜑𝑡 ∈ (0(,)1)) → (((𝐴 / 𝑁) · 1) − ((𝐴 / 𝑁) · (1 / (((𝐴 / 𝑁) · 𝑡) + 1)))) = ((𝐴 / 𝑁) − ((1 / (((𝐴 / 𝑁) · 𝑡) + 1)) · (𝐴 / 𝑁))))
276272, 275eqtr2d 2644 . . . . . . . . 9 ((𝜑𝑡 ∈ (0(,)1)) → ((𝐴 / 𝑁) − ((1 / (((𝐴 / 𝑁) · 𝑡) + 1)) · (𝐴 / 𝑁))) = ((𝐴 / 𝑁) · (1 − (1 / (((𝐴 / 𝑁) · 𝑡) + 1)))))
277276fveq2d 6092 . . . . . . . 8 ((𝜑𝑡 ∈ (0(,)1)) → (abs‘((𝐴 / 𝑁) − ((1 / (((𝐴 / 𝑁) · 𝑡) + 1)) · (𝐴 / 𝑁)))) = (abs‘((𝐴 / 𝑁) · (1 − (1 / (((𝐴 / 𝑁) · 𝑡) + 1))))))
278169, 170, 171absdivd 13988 . . . . . . . . . . 11 ((𝜑𝑡 ∈ (0(,)1)) → (abs‘(𝐴 / 𝑁)) = ((abs‘𝐴) / (abs‘𝑁)))
27915adantr 479 . . . . . . . . . . . . 13 ((𝜑𝑡 ∈ (0(,)1)) → 𝑁 ∈ ℝ)
28062adantr 479 . . . . . . . . . . . . 13 ((𝜑𝑡 ∈ (0(,)1)) → 0 ≤ 𝑁)
281279, 280absidd 13955 . . . . . . . . . . . 12 ((𝜑𝑡 ∈ (0(,)1)) → (abs‘𝑁) = 𝑁)
282281oveq2d 6543 . . . . . . . . . . 11 ((𝜑𝑡 ∈ (0(,)1)) → ((abs‘𝐴) / (abs‘𝑁)) = ((abs‘𝐴) / 𝑁))
283278, 282eqtrd 2643 . . . . . . . . . 10 ((𝜑𝑡 ∈ (0(,)1)) → (abs‘(𝐴 / 𝑁)) = ((abs‘𝐴) / 𝑁))
284283oveq1d 6542 . . . . . . . . 9 ((𝜑𝑡 ∈ (0(,)1)) → ((abs‘(𝐴 / 𝑁)) · (abs‘(1 − (1 / (((𝐴 / 𝑁) · 𝑡) + 1))))) = (((abs‘𝐴) / 𝑁) · (abs‘(1 − (1 / (((𝐴 / 𝑁) · 𝑡) + 1))))))
285197, 200subcld 10243 . . . . . . . . . 10 ((𝜑𝑡 ∈ (0(,)1)) → (1 − (1 / (((𝐴 / 𝑁) · 𝑡) + 1))) ∈ ℂ)
286172, 285absmuld 13987 . . . . . . . . 9 ((𝜑𝑡 ∈ (0(,)1)) → (abs‘((𝐴 / 𝑁) · (1 − (1 / (((𝐴 / 𝑁) · 𝑡) + 1))))) = ((abs‘(𝐴 / 𝑁)) · (abs‘(1 − (1 / (((𝐴 / 𝑁) · 𝑡) + 1))))))
28766adantr 479 . . . . . . . . . . 11 ((𝜑𝑡 ∈ (0(,)1)) → (abs‘𝐴) ∈ ℝ)
288287recnd 9924 . . . . . . . . . 10 ((𝜑𝑡 ∈ (0(,)1)) → (abs‘𝐴) ∈ ℂ)
289285abscld 13969 . . . . . . . . . . 11 ((𝜑𝑡 ∈ (0(,)1)) → (abs‘(1 − (1 / (((𝐴 / 𝑁) · 𝑡) + 1)))) ∈ ℝ)
290289recnd 9924 . . . . . . . . . 10 ((𝜑𝑡 ∈ (0(,)1)) → (abs‘(1 − (1 / (((𝐴 / 𝑁) · 𝑡) + 1)))) ∈ ℂ)
291288, 290, 170, 171div23d 10687 . . . . . . . . 9 ((𝜑𝑡 ∈ (0(,)1)) → (((abs‘𝐴) · (abs‘(1 − (1 / (((𝐴 / 𝑁) · 𝑡) + 1))))) / 𝑁) = (((abs‘𝐴) / 𝑁) · (abs‘(1 − (1 / (((𝐴 / 𝑁) · 𝑡) + 1))))))
292284, 286, 2913eqtr4d 2653 . . . . . . . 8 ((𝜑𝑡 ∈ (0(,)1)) → (abs‘((𝐴 / 𝑁) · (1 − (1 / (((𝐴 / 𝑁) · 𝑡) + 1))))) = (((abs‘𝐴) · (abs‘(1 − (1 / (((𝐴 / 𝑁) · 𝑡) + 1))))) / 𝑁))
293271, 277, 2923eqtrd 2647 . . . . . . 7 ((𝜑𝑡 ∈ (0(,)1)) → (abs‘((𝑡 ∈ (0(,)1) ↦ ((𝐴 / 𝑁) − ((1 / (((𝐴 / 𝑁) · 𝑡) + 1)) · (𝐴 / 𝑁))))‘𝑡)) = (((abs‘𝐴) · (abs‘(1 − (1 / (((𝐴 / 𝑁) · 𝑡) + 1))))) / 𝑁))
29448adantr 479 . . . . . . . . . 10 ((𝜑𝑡 ∈ (0(,)1)) → 𝑅 ∈ ℝ)
295247adantr 479 . . . . . . . . . . . 12 ((𝜑𝑡 ∈ (0(,)1)) → (1 / (𝑁𝑅)) ∈ ℝ)
296248adantr 479 . . . . . . . . . . . 12 ((𝜑𝑡 ∈ (0(,)1)) → (1 / 𝑁) ∈ ℝ)
297295, 296resubcld 10309 . . . . . . . . . . 11 ((𝜑𝑡 ∈ (0(,)1)) → ((1 / (𝑁𝑅)) − (1 / 𝑁)) ∈ ℝ)
298279, 297remulcld 9926 . . . . . . . . . 10 ((𝜑𝑡 ∈ (0(,)1)) → (𝑁 · ((1 / (𝑁𝑅)) − (1 / 𝑁))) ∈ ℝ)
29913absge0d 13977 . . . . . . . . . . 11 (𝜑 → 0 ≤ (abs‘𝐴))
300299adantr 479 . . . . . . . . . 10 ((𝜑𝑡 ∈ (0(,)1)) → 0 ≤ (abs‘𝐴))
301285absge0d 13977 . . . . . . . . . 10 ((𝜑𝑡 ∈ (0(,)1)) → 0 ≤ (abs‘(1 − (1 / (((𝐴 / 𝑁) · 𝑡) + 1)))))
30277adantr 479 . . . . . . . . . 10 ((𝜑𝑡 ∈ (0(,)1)) → (abs‘𝐴) ≤ 𝑅)
303246adantr 479 . . . . . . . . . . . . . 14 ((𝜑𝑡 ∈ (0(,)1)) → (𝑁𝑅) ∈ ℝ+)
304238adantr 479 . . . . . . . . . . . . . 14 ((𝜑𝑡 ∈ (0(,)1)) → 𝑅 ∈ ℝ+)
305303, 304rpdivcld 11721 . . . . . . . . . . . . 13 ((𝜑𝑡 ∈ (0(,)1)) → ((𝑁𝑅) / 𝑅) ∈ ℝ+)
30612dmgmn0 24469 . . . . . . . . . . . . . . . . . . 19 (𝜑𝐴 ≠ 0)
307306adantr 479 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑡 ∈ (0(,)1)) → 𝐴 ≠ 0)
308169, 170, 307, 171divne0d 10666 . . . . . . . . . . . . . . . . 17 ((𝜑𝑡 ∈ (0(,)1)) → (𝐴 / 𝑁) ≠ 0)
309 eliooord 12060 . . . . . . . . . . . . . . . . . . . 20 (𝑡 ∈ (0(,)1) → (0 < 𝑡𝑡 < 1))
310309adantl 480 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑡 ∈ (0(,)1)) → (0 < 𝑡𝑡 < 1))
311310simpld 473 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑡 ∈ (0(,)1)) → 0 < 𝑡)
312311gt0ne0d 10441 . . . . . . . . . . . . . . . . 17 ((𝜑𝑡 ∈ (0(,)1)) → 𝑡 ≠ 0)
313172, 175, 308, 312mulne0d 10528 . . . . . . . . . . . . . . . 16 ((𝜑𝑡 ∈ (0(,)1)) → ((𝐴 / 𝑁) · 𝑡) ≠ 0)
314176, 313reccld 10643 . . . . . . . . . . . . . . 15 ((𝜑𝑡 ∈ (0(,)1)) → (1 / ((𝐴 / 𝑁) · 𝑡)) ∈ ℂ)
315197, 314addcld 9915 . . . . . . . . . . . . . 14 ((𝜑𝑡 ∈ (0(,)1)) → (1 + (1 / ((𝐴 / 𝑁) · 𝑡))) ∈ ℂ)
316176, 197, 176, 313divdird 10688 . . . . . . . . . . . . . . . 16 ((𝜑𝑡 ∈ (0(,)1)) → ((((𝐴 / 𝑁) · 𝑡) + 1) / ((𝐴 / 𝑁) · 𝑡)) = ((((𝐴 / 𝑁) · 𝑡) / ((𝐴 / 𝑁) · 𝑡)) + (1 / ((𝐴 / 𝑁) · 𝑡))))
317176, 313dividd 10648 . . . . . . . . . . . . . . . . 17 ((𝜑𝑡 ∈ (0(,)1)) → (((𝐴 / 𝑁) · 𝑡) / ((𝐴 / 𝑁) · 𝑡)) = 1)
318317oveq1d 6542 . . . . . . . . . . . . . . . 16 ((𝜑𝑡 ∈ (0(,)1)) → ((((𝐴 / 𝑁) · 𝑡) / ((𝐴 / 𝑁) · 𝑡)) + (1 / ((𝐴 / 𝑁) · 𝑡))) = (1 + (1 / ((𝐴 / 𝑁) · 𝑡))))
319316, 318eqtrd 2643 . . . . . . . . . . . . . . 15 ((𝜑𝑡 ∈ (0(,)1)) → ((((𝐴 / 𝑁) · 𝑡) + 1) / ((𝐴 / 𝑁) · 𝑡)) = (1 + (1 / ((𝐴 / 𝑁) · 𝑡))))
320198, 176, 199, 313divne0d 10666 . . . . . . . . . . . . . . 15 ((𝜑𝑡 ∈ (0(,)1)) → ((((𝐴 / 𝑁) · 𝑡) + 1) / ((𝐴 / 𝑁) · 𝑡)) ≠ 0)
321319, 320eqnetrrd 2849 . . . . . . . . . . . . . 14 ((𝜑𝑡 ∈ (0(,)1)) → (1 + (1 / ((𝐴 / 𝑁) · 𝑡))) ≠ 0)
322315, 321absrpcld 13981 . . . . . . . . . . . . 13 ((𝜑𝑡 ∈ (0(,)1)) → (abs‘(1 + (1 / ((𝐴 / 𝑁) · 𝑡)))) ∈ ℝ+)
323 1red 9911 . . . . . . . . . . . . 13 ((𝜑𝑡 ∈ (0(,)1)) → 1 ∈ ℝ)
324 0le1 10400 . . . . . . . . . . . . . 14 0 ≤ 1
325324a1i 11 . . . . . . . . . . . . 13 ((𝜑𝑡 ∈ (0(,)1)) → 0 ≤ 1)
326305rpred 11704 . . . . . . . . . . . . . 14 ((𝜑𝑡 ∈ (0(,)1)) → ((𝑁𝑅) / 𝑅) ∈ ℝ)
327314negcld 10230 . . . . . . . . . . . . . . . 16 ((𝜑𝑡 ∈ (0(,)1)) → -(1 / ((𝐴 / 𝑁) · 𝑡)) ∈ ℂ)
328327abscld 13969 . . . . . . . . . . . . . . 15 ((𝜑𝑡 ∈ (0(,)1)) → (abs‘-(1 / ((𝐴 / 𝑁) · 𝑡))) ∈ ℝ)
329328, 323resubcld 10309 . . . . . . . . . . . . . 14 ((𝜑𝑡 ∈ (0(,)1)) → ((abs‘-(1 / ((𝐴 / 𝑁) · 𝑡))) − 1) ∈ ℝ)
330315abscld 13969 . . . . . . . . . . . . . 14 ((𝜑𝑡 ∈ (0(,)1)) → (abs‘(1 + (1 / ((𝐴 / 𝑁) · 𝑡)))) ∈ ℝ)
331240adantr 479 . . . . . . . . . . . . . . . . 17 ((𝜑𝑡 ∈ (0(,)1)) → 𝑅 ∈ ℂ)
332304rpne0d 11709 . . . . . . . . . . . . . . . . 17 ((𝜑𝑡 ∈ (0(,)1)) → 𝑅 ≠ 0)
333170, 331, 331, 332divsubdird 10689 . . . . . . . . . . . . . . . 16 ((𝜑𝑡 ∈ (0(,)1)) → ((𝑁𝑅) / 𝑅) = ((𝑁 / 𝑅) − (𝑅 / 𝑅)))
334331, 332dividd 10648 . . . . . . . . . . . . . . . . 17 ((𝜑𝑡 ∈ (0(,)1)) → (𝑅 / 𝑅) = 1)
335334oveq2d 6543 . . . . . . . . . . . . . . . 16 ((𝜑𝑡 ∈ (0(,)1)) → ((𝑁 / 𝑅) − (𝑅 / 𝑅)) = ((𝑁 / 𝑅) − 1))
336333, 335eqtrd 2643 . . . . . . . . . . . . . . 15 ((𝜑𝑡 ∈ (0(,)1)) → ((𝑁𝑅) / 𝑅) = ((𝑁 / 𝑅) − 1))
337279, 304rerpdivcld 11735 . . . . . . . . . . . . . . . 16 ((𝜑𝑡 ∈ (0(,)1)) → (𝑁 / 𝑅) ∈ ℝ)
338331, 170, 332, 171recdivd 10667 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑡 ∈ (0(,)1)) → (1 / (𝑅 / 𝑁)) = (𝑁 / 𝑅))
339174, 90sylan2 489 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑡 ∈ (0(,)1)) → (abs‘((𝐴 / 𝑁) · 𝑡)) ≤ (𝑅 / 𝑁))
340176, 313absrpcld 13981 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑡 ∈ (0(,)1)) → (abs‘((𝐴 / 𝑁) · 𝑡)) ∈ ℝ+)
34161adantr 479 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑡 ∈ (0(,)1)) → 𝑁 ∈ ℝ+)
342304, 341rpdivcld 11721 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑡 ∈ (0(,)1)) → (𝑅 / 𝑁) ∈ ℝ+)
343340, 342lerecd 11723 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑡 ∈ (0(,)1)) → ((abs‘((𝐴 / 𝑁) · 𝑡)) ≤ (𝑅 / 𝑁) ↔ (1 / (𝑅 / 𝑁)) ≤ (1 / (abs‘((𝐴 / 𝑁) · 𝑡)))))
344339, 343mpbid 220 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑡 ∈ (0(,)1)) → (1 / (𝑅 / 𝑁)) ≤ (1 / (abs‘((𝐴 / 𝑁) · 𝑡))))
345338, 344eqbrtrrd 4601 . . . . . . . . . . . . . . . . 17 ((𝜑𝑡 ∈ (0(,)1)) → (𝑁 / 𝑅) ≤ (1 / (abs‘((𝐴 / 𝑁) · 𝑡))))
346314absnegd 13982 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑡 ∈ (0(,)1)) → (abs‘-(1 / ((𝐴 / 𝑁) · 𝑡))) = (abs‘(1 / ((𝐴 / 𝑁) · 𝑡))))
347197, 176, 313absdivd 13988 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑡 ∈ (0(,)1)) → (abs‘(1 / ((𝐴 / 𝑁) · 𝑡))) = ((abs‘1) / (abs‘((𝐴 / 𝑁) · 𝑡))))
348 abs1 13831 . . . . . . . . . . . . . . . . . . . 20 (abs‘1) = 1
349348oveq1i 6537 . . . . . . . . . . . . . . . . . . 19 ((abs‘1) / (abs‘((𝐴 / 𝑁) · 𝑡))) = (1 / (abs‘((𝐴 / 𝑁) · 𝑡)))
350347, 349syl6eq 2659 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑡 ∈ (0(,)1)) → (abs‘(1 / ((𝐴 / 𝑁) · 𝑡))) = (1 / (abs‘((𝐴 / 𝑁) · 𝑡))))
351346, 350eqtrd 2643 . . . . . . . . . . . . . . . . 17 ((𝜑𝑡 ∈ (0(,)1)) → (abs‘-(1 / ((𝐴 / 𝑁) · 𝑡))) = (1 / (abs‘((𝐴 / 𝑁) · 𝑡))))
352345, 351breqtrrd 4605 . . . . . . . . . . . . . . . 16 ((𝜑𝑡 ∈ (0(,)1)) → (𝑁 / 𝑅) ≤ (abs‘-(1 / ((𝐴 / 𝑁) · 𝑡))))
353337, 328, 323, 352lesub1dd 10492 . . . . . . . . . . . . . . 15 ((𝜑𝑡 ∈ (0(,)1)) → ((𝑁 / 𝑅) − 1) ≤ ((abs‘-(1 / ((𝐴 / 𝑁) · 𝑡))) − 1))
354336, 353eqbrtrd 4599 . . . . . . . . . . . . . 14 ((𝜑𝑡 ∈ (0(,)1)) → ((𝑁𝑅) / 𝑅) ≤ ((abs‘-(1 / ((𝐴 / 𝑁) · 𝑡))) − 1))
355348oveq2i 6538 . . . . . . . . . . . . . . . 16 ((abs‘-(1 / ((𝐴 / 𝑁) · 𝑡))) − (abs‘1)) = ((abs‘-(1 / ((𝐴 / 𝑁) · 𝑡))) − 1)
356327, 197abs2difd 13990 . . . . . . . . . . . . . . . 16 ((𝜑𝑡 ∈ (0(,)1)) → ((abs‘-(1 / ((𝐴 / 𝑁) · 𝑡))) − (abs‘1)) ≤ (abs‘(-(1 / ((𝐴 / 𝑁) · 𝑡)) − 1)))
357355, 356syl5eqbrr 4613 . . . . . . . . . . . . . . 15 ((𝜑𝑡 ∈ (0(,)1)) → ((abs‘-(1 / ((𝐴 / 𝑁) · 𝑡))) − 1) ≤ (abs‘(-(1 / ((𝐴 / 𝑁) · 𝑡)) − 1)))
358197, 314addcomd 10089 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑡 ∈ (0(,)1)) → (1 + (1 / ((𝐴 / 𝑁) · 𝑡))) = ((1 / ((𝐴 / 𝑁) · 𝑡)) + 1))
359358negeqd 10126 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑡 ∈ (0(,)1)) → -(1 + (1 / ((𝐴 / 𝑁) · 𝑡))) = -((1 / ((𝐴 / 𝑁) · 𝑡)) + 1))
360314, 197negdi2d 10257 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑡 ∈ (0(,)1)) → -((1 / ((𝐴 / 𝑁) · 𝑡)) + 1) = (-(1 / ((𝐴 / 𝑁) · 𝑡)) − 1))
361359, 360eqtrd 2643 . . . . . . . . . . . . . . . . 17 ((𝜑𝑡 ∈ (0(,)1)) → -(1 + (1 / ((𝐴 / 𝑁) · 𝑡))) = (-(1 / ((𝐴 / 𝑁) · 𝑡)) − 1))
362361fveq2d 6092 . . . . . . . . . . . . . . . 16 ((𝜑𝑡 ∈ (0(,)1)) → (abs‘-(1 + (1 / ((𝐴 / 𝑁) · 𝑡)))) = (abs‘(-(1 / ((𝐴 / 𝑁) · 𝑡)) − 1)))
363315absnegd 13982 . . . . . . . . . . . . . . . 16 ((𝜑𝑡 ∈ (0(,)1)) → (abs‘-(1 + (1 / ((𝐴 / 𝑁) · 𝑡)))) = (abs‘(1 + (1 / ((𝐴 / 𝑁) · 𝑡)))))
364362, 363eqtr3d 2645 . . . . . . . . . . . . . . 15 ((𝜑𝑡 ∈ (0(,)1)) → (abs‘(-(1 / ((𝐴 / 𝑁) · 𝑡)) − 1)) = (abs‘(1 + (1 / ((𝐴 / 𝑁) · 𝑡)))))
365357, 364breqtrd 4603 . . . . . . . . . . . . . 14 ((𝜑𝑡 ∈ (0(,)1)) → ((abs‘-(1 / ((𝐴 / 𝑁) · 𝑡))) − 1) ≤ (abs‘(1 + (1 / ((𝐴 / 𝑁) · 𝑡)))))
366326, 329, 330, 354, 365letrd 10045 . . . . . . . . . . . . 13 ((𝜑𝑡 ∈ (0(,)1)) → ((𝑁𝑅) / 𝑅) ≤ (abs‘(1 + (1 / ((𝐴 / 𝑁) · 𝑡)))))
367305, 322, 323, 325, 366lediv2ad 11726 . . . . . . . . . . . 12 ((𝜑𝑡 ∈ (0(,)1)) → (1 / (abs‘(1 + (1 / ((𝐴 / 𝑁) · 𝑡))))) ≤ (1 / ((𝑁𝑅) / 𝑅)))
36816, 240subcld 10243 . . . . . . . . . . . . . . 15 (𝜑 → (𝑁𝑅) ∈ ℂ)
369368adantr 479 . . . . . . . . . . . . . 14 ((𝜑𝑡 ∈ (0(,)1)) → (𝑁𝑅) ∈ ℂ)
37048, 243gtned 10023 . . . . . . . . . . . . . . . 16 (𝜑𝑁𝑅)
37116, 240, 370subne0d 10252 . . . . . . . . . . . . . . 15 (𝜑 → (𝑁𝑅) ≠ 0)
372371adantr 479 . . . . . . . . . . . . . 14 ((𝜑𝑡 ∈ (0(,)1)) → (𝑁𝑅) ≠ 0)
373369, 331, 372, 332recdivd 10667 . . . . . . . . . . . . 13 ((𝜑𝑡 ∈ (0(,)1)) → (1 / ((𝑁𝑅) / 𝑅)) = (𝑅 / (𝑁𝑅)))
374170, 331nncand 10248 . . . . . . . . . . . . . . 15 ((𝜑𝑡 ∈ (0(,)1)) → (𝑁 − (𝑁𝑅)) = 𝑅)
375374oveq1d 6542 . . . . . . . . . . . . . 14 ((𝜑𝑡 ∈ (0(,)1)) → ((𝑁 − (𝑁𝑅)) / (𝑁𝑅)) = (𝑅 / (𝑁𝑅)))
376170, 369, 369, 372divsubdird 10689 . . . . . . . . . . . . . 14 ((𝜑𝑡 ∈ (0(,)1)) → ((𝑁 − (𝑁𝑅)) / (𝑁𝑅)) = ((𝑁 / (𝑁𝑅)) − ((𝑁𝑅) / (𝑁𝑅))))
377375, 376eqtr3d 2645 . . . . . . . . . . . . 13 ((𝜑𝑡 ∈ (0(,)1)) → (𝑅 / (𝑁𝑅)) = ((𝑁 / (𝑁𝑅)) − ((𝑁𝑅) / (𝑁𝑅))))
378369, 372dividd 10648 . . . . . . . . . . . . . 14 ((𝜑𝑡 ∈ (0(,)1)) → ((𝑁𝑅) / (𝑁𝑅)) = 1)
379378oveq2d 6543 . . . . . . . . . . . . 13 ((𝜑𝑡 ∈ (0(,)1)) → ((𝑁 / (𝑁𝑅)) − ((𝑁𝑅) / (𝑁𝑅))) = ((𝑁 / (𝑁𝑅)) − 1))
380373, 377, 3793eqtrd 2647 . . . . . . . . . . . 12 ((𝜑𝑡 ∈ (0(,)1)) → (1 / ((𝑁𝑅) / 𝑅)) = ((𝑁 / (𝑁𝑅)) − 1))
381367, 380breqtrd 4603 . . . . . . . . . . 11 ((𝜑𝑡 ∈ (0(,)1)) → (1 / (abs‘(1 + (1 / ((𝐴 / 𝑁) · 𝑡))))) ≤ ((𝑁 / (𝑁𝑅)) − 1))
382198, 197, 198, 199divsubdird 10689 . . . . . . . . . . . . . . 15 ((𝜑𝑡 ∈ (0(,)1)) → (((((𝐴 / 𝑁) · 𝑡) + 1) − 1) / (((𝐴 / 𝑁) · 𝑡) + 1)) = (((((𝐴 / 𝑁) · 𝑡) + 1) / (((𝐴 / 𝑁) · 𝑡) + 1)) − (1 / (((𝐴 / 𝑁) · 𝑡) + 1))))
383176, 197pncand 10244 . . . . . . . . . . . . . . . 16 ((𝜑𝑡 ∈ (0(,)1)) → ((((𝐴 / 𝑁) · 𝑡) + 1) − 1) = ((𝐴 / 𝑁) · 𝑡))
384383oveq1d 6542 . . . . . . . . . . . . . . 15 ((𝜑𝑡 ∈ (0(,)1)) → (((((𝐴 / 𝑁) · 𝑡) + 1) − 1) / (((𝐴 / 𝑁) · 𝑡) + 1)) = (((𝐴 / 𝑁) · 𝑡) / (((𝐴 / 𝑁) · 𝑡) + 1)))
385198, 199dividd 10648 . . . . . . . . . . . . . . . 16 ((𝜑𝑡 ∈ (0(,)1)) → ((((𝐴 / 𝑁) · 𝑡) + 1) / (((𝐴 / 𝑁) · 𝑡) + 1)) = 1)
386385oveq1d 6542 . . . . . . . . . . . . . . 15 ((𝜑𝑡 ∈ (0(,)1)) → (((((𝐴 / 𝑁) · 𝑡) + 1) / (((𝐴 / 𝑁) · 𝑡) + 1)) − (1 / (((𝐴 / 𝑁) · 𝑡) + 1))) = (1 − (1 / (((𝐴 / 𝑁) · 𝑡) + 1))))
387382, 384, 3863eqtr3rd 2652 . . . . . . . . . . . . . 14 ((𝜑𝑡 ∈ (0(,)1)) → (1 − (1 / (((𝐴 / 𝑁) · 𝑡) + 1))) = (((𝐴 / 𝑁) · 𝑡) / (((𝐴 / 𝑁) · 𝑡) + 1)))
388198, 176, 199, 313recdivd 10667 . . . . . . . . . . . . . 14 ((𝜑𝑡 ∈ (0(,)1)) → (1 / ((((𝐴 / 𝑁) · 𝑡) + 1) / ((𝐴 / 𝑁) · 𝑡))) = (((𝐴 / 𝑁) · 𝑡) / (((𝐴 / 𝑁) · 𝑡) + 1)))
389319oveq2d 6543 . . . . . . . . . . . . . 14 ((𝜑𝑡 ∈ (0(,)1)) → (1 / ((((𝐴 / 𝑁) · 𝑡) + 1) / ((𝐴 / 𝑁) · 𝑡))) = (1 / (1 + (1 / ((𝐴 / 𝑁) · 𝑡)))))
390387, 388, 3893eqtr2d 2649 . . . . . . . . . . . . 13 ((𝜑𝑡 ∈ (0(,)1)) → (1 − (1 / (((𝐴 / 𝑁) · 𝑡) + 1))) = (1 / (1 + (1 / ((𝐴 / 𝑁) · 𝑡)))))
391390fveq2d 6092 . . . . . . . . . . . 12 ((𝜑𝑡 ∈ (0(,)1)) → (abs‘(1 − (1 / (((𝐴 / 𝑁) · 𝑡) + 1)))) = (abs‘(1 / (1 + (1 / ((𝐴 / 𝑁) · 𝑡))))))
392197, 315, 321absdivd 13988 . . . . . . . . . . . . 13 ((𝜑𝑡 ∈ (0(,)1)) → (abs‘(1 / (1 + (1 / ((𝐴 / 𝑁) · 𝑡))))) = ((abs‘1) / (abs‘(1 + (1 / ((𝐴 / 𝑁) · 𝑡))))))
393348oveq1i 6537 . . . . . . . . . . . . 13 ((abs‘1) / (abs‘(1 + (1 / ((𝐴 / 𝑁) · 𝑡))))) = (1 / (abs‘(1 + (1 / ((𝐴 / 𝑁) · 𝑡)))))
394392, 393syl6eq 2659 . . . . . . . . . . . 12 ((𝜑𝑡 ∈ (0(,)1)) → (abs‘(1 / (1 + (1 / ((𝐴 / 𝑁) · 𝑡))))) = (1 / (abs‘(1 + (1 / ((𝐴 / 𝑁) · 𝑡))))))
395391, 394eqtrd 2643 . . . . . . . . . . 11 ((𝜑𝑡 ∈ (0(,)1)) → (abs‘(1 − (1 / (((𝐴 / 𝑁) · 𝑡) + 1)))) = (1 / (abs‘(1 + (1 / ((𝐴 / 𝑁) · 𝑡))))))
396368, 371reccld 10643 . . . . . . . . . . . . . 14 (𝜑 → (1 / (𝑁𝑅)) ∈ ℂ)
397396adantr 479 . . . . . . . . . . . . 13 ((𝜑𝑡 ∈ (0(,)1)) → (1 / (𝑁𝑅)) ∈ ℂ)
398248recnd 9924 . . . . . . . . . . . . . 14 (𝜑 → (1 / 𝑁) ∈ ℂ)
399398adantr 479 . . . . . . . . . . . . 13 ((𝜑𝑡 ∈ (0(,)1)) → (1 / 𝑁) ∈ ℂ)
400170, 397, 399subdid 10336 . . . . . . . . . . . 12 ((𝜑𝑡 ∈ (0(,)1)) → (𝑁 · ((1 / (𝑁𝑅)) − (1 / 𝑁))) = ((𝑁 · (1 / (𝑁𝑅))) − (𝑁 · (1 / 𝑁))))
401170, 369, 372divrecd 10653 . . . . . . . . . . . . . 14 ((𝜑𝑡 ∈ (0(,)1)) → (𝑁 / (𝑁𝑅)) = (𝑁 · (1 / (𝑁𝑅))))
402401eqcomd 2615 . . . . . . . . . . . . 13 ((𝜑𝑡 ∈ (0(,)1)) → (𝑁 · (1 / (𝑁𝑅))) = (𝑁 / (𝑁𝑅)))
403170, 171recidd 10645 . . . . . . . . . . . . 13 ((𝜑𝑡 ∈ (0(,)1)) → (𝑁 · (1 / 𝑁)) = 1)
404402, 403oveq12d 6545 . . . . . . . . . . . 12 ((𝜑𝑡 ∈ (0(,)1)) → ((𝑁 · (1 / (𝑁𝑅))) − (𝑁 · (1 / 𝑁))) = ((𝑁 / (𝑁𝑅)) − 1))
405400, 404eqtrd 2643 . . . . . . . . . . 11 ((𝜑𝑡 ∈ (0(,)1)) → (𝑁 · ((1 / (𝑁𝑅)) − (1 / 𝑁))) = ((𝑁 / (𝑁𝑅)) − 1))
406381, 395, 4053brtr4d 4609 . . . . . . . . . 10 ((𝜑𝑡 ∈ (0(,)1)) → (abs‘(1 − (1 / (((𝐴 / 𝑁) · 𝑡) + 1)))) ≤ (𝑁 · ((1 / (𝑁𝑅)) − (1 / 𝑁))))
407287, 294, 289, 298, 300, 301, 302, 406lemul12ad 10815 . . . . . . . . 9 ((𝜑𝑡 ∈ (0(,)1)) → ((abs‘𝐴) · (abs‘(1 − (1 / (((𝐴 / 𝑁) · 𝑡) + 1))))) ≤ (𝑅 · (𝑁 · ((1 / (𝑁𝑅)) − (1 / 𝑁)))))
408249recnd 9924 . . . . . . . . . . 11 (𝜑 → ((1 / (𝑁𝑅)) − (1 / 𝑁)) ∈ ℂ)
409408adantr 479 . . . . . . . . . 10 ((𝜑𝑡 ∈ (0(,)1)) → ((1 / (𝑁𝑅)) − (1 / 𝑁)) ∈ ℂ)
410331, 170, 409mul12d 10096 . . . . . . . . 9 ((𝜑𝑡 ∈ (0(,)1)) → (𝑅 · (𝑁 · ((1 / (𝑁𝑅)) − (1 / 𝑁)))) = (𝑁 · (𝑅 · ((1 / (𝑁𝑅)) − (1 / 𝑁)))))
411407, 410breqtrd 4603 . . . . . . . 8 ((𝜑𝑡 ∈ (0(,)1)) → ((abs‘𝐴) · (abs‘(1 − (1 / (((𝐴 / 𝑁) · 𝑡) + 1))))) ≤ (𝑁 · (𝑅 · ((1 / (𝑁𝑅)) − (1 / 𝑁)))))
412287, 289remulcld 9926 . . . . . . . . 9 ((𝜑𝑡 ∈ (0(,)1)) → ((abs‘𝐴) · (abs‘(1 − (1 / (((𝐴 / 𝑁) · 𝑡) + 1))))) ∈ ℝ)
413250adantr 479 . . . . . . . . 9 ((𝜑𝑡 ∈ (0(,)1)) → (𝑅 · ((1 / (𝑁𝑅)) − (1 / 𝑁))) ∈ ℝ)
414412, 413, 341ledivmuld 11757 . . . . . . . 8 ((𝜑𝑡 ∈ (0(,)1)) → ((((abs‘𝐴) · (abs‘(1 − (1 / (((𝐴 / 𝑁) · 𝑡) + 1))))) / 𝑁) ≤ (𝑅 · ((1 / (𝑁𝑅)) − (1 / 𝑁))) ↔ ((abs‘𝐴) · (abs‘(1 − (1 / (((𝐴 / 𝑁) · 𝑡) + 1))))) ≤ (𝑁 · (𝑅 · ((1 / (𝑁𝑅)) − (1 / 𝑁))))))
415411, 414mpbird 245 . . . . . . 7 ((𝜑𝑡 ∈ (0(,)1)) → (((abs‘𝐴) · (abs‘(1 − (1 / (((𝐴 / 𝑁) · 𝑡) + 1))))) / 𝑁) ≤ (𝑅 · ((1 / (𝑁𝑅)) − (1 / 𝑁))))
416293, 415eqbrtrd 4599 . . . . . 6 ((𝜑𝑡 ∈ (0(,)1)) → (abs‘((𝑡 ∈ (0(,)1) ↦ ((𝐴 / 𝑁) − ((1 / (((𝐴 / 𝑁) · 𝑡) + 1)) · (𝐴 / 𝑁))))‘𝑡)) ≤ (𝑅 · ((1 / (𝑁𝑅)) − (1 / 𝑁))))
417261, 267, 416chvar 2249 . . . . 5 ((𝜑𝑦 ∈ (0(,)1)) → (abs‘((𝑡 ∈ (0(,)1) ↦ ((𝐴 / 𝑁) − ((1 / (((𝐴 / 𝑁) · 𝑡) + 1)) · (𝐴 / 𝑁))))‘𝑦)) ≤ (𝑅 · ((1 / (𝑁𝑅)) − (1 / 𝑁))))
418253, 417eqbrtrd 4599 . . . 4 ((𝜑𝑦 ∈ (0(,)1)) → (abs‘((ℝ D (𝑡 ∈ (0[,]1) ↦ (((𝐴 / 𝑁) · 𝑡) − (log‘(((𝐴 / 𝑁) · 𝑡) + 1)))))‘𝑦)) ≤ (𝑅 · ((1 / (𝑁𝑅)) − (1 / 𝑁))))
4193, 4, 156, 234, 250, 418dvlip 23477 . . 3 ((𝜑 ∧ (1 ∈ (0[,]1) ∧ 0 ∈ (0[,]1))) → (abs‘(((𝑡 ∈ (0[,]1) ↦ (((𝐴 / 𝑁) · 𝑡) − (log‘(((𝐴 / 𝑁) · 𝑡) + 1))))‘1) − ((𝑡 ∈ (0[,]1) ↦ (((𝐴 / 𝑁) · 𝑡) − (log‘(((𝐴 / 𝑁) · 𝑡) + 1))))‘0))) ≤ ((𝑅 · ((1 / (𝑁𝑅)) − (1 / 𝑁))) · (abs‘(1 − 0))))
4201, 2, 419mpanr12 716 . 2 (𝜑 → (abs‘(((𝑡 ∈ (0[,]1) ↦ (((𝐴 / 𝑁) · 𝑡) − (log‘(((𝐴 / 𝑁) · 𝑡) + 1))))‘1) − ((𝑡 ∈ (0[,]1) ↦ (((𝐴 / 𝑁) · 𝑡) − (log‘(((𝐴 / 𝑁) · 𝑡) + 1))))‘0))) ≤ ((𝑅 · ((1 / (𝑁𝑅)) − (1 / 𝑁))) · (abs‘(1 − 0))))
421 eqidd 2610 . . . . . 6 (𝜑 → (𝑡 ∈ (0[,]1) ↦ (((𝐴 / 𝑁) · 𝑡) − (log‘(((𝐴 / 𝑁) · 𝑡) + 1)))) = (𝑡 ∈ (0[,]1) ↦ (((𝐴 / 𝑁) · 𝑡) − (log‘(((𝐴 / 𝑁) · 𝑡) + 1)))))
422 oveq2 6535 . . . . . . . 8 (𝑡 = 1 → ((𝐴 / 𝑁) · 𝑡) = ((𝐴 / 𝑁) · 1))
423422, 186sylan9eqr 2665 . . . . . . 7 ((𝜑𝑡 = 1) → ((𝐴 / 𝑁) · 𝑡) = (𝐴 / 𝑁))
424423oveq1d 6542 . . . . . . . 8 ((𝜑𝑡 = 1) → (((𝐴 / 𝑁) · 𝑡) + 1) = ((𝐴 / 𝑁) + 1))
425424fveq2d 6092 . . . . . . 7 ((𝜑𝑡 = 1) → (log‘(((𝐴 / 𝑁) · 𝑡) + 1)) = (log‘((𝐴 / 𝑁) + 1)))
426423, 425oveq12d 6545 . . . . . 6 ((𝜑𝑡 = 1) → (((𝐴 / 𝑁) · 𝑡) − (log‘(((𝐴 / 𝑁) · 𝑡) + 1))) = ((𝐴 / 𝑁) − (log‘((𝐴 / 𝑁) + 1))))
4271a1i 11 . . . . . 6 (𝜑 → 1 ∈ (0[,]1))
428 ovex 6555 . . . . . . 7 ((𝐴 / 𝑁) − (log‘((𝐴 / 𝑁) + 1))) ∈ V
429428a1i 11 . . . . . 6 (𝜑 → ((𝐴 / 𝑁) − (log‘((𝐴 / 𝑁) + 1))) ∈ V)
430421, 426, 427, 429fvmptd 6182 . . . . 5 (𝜑 → ((𝑡 ∈ (0[,]1) ↦ (((𝐴 / 𝑁) · 𝑡) − (log‘(((𝐴 / 𝑁) · 𝑡) + 1))))‘1) = ((𝐴 / 𝑁) − (log‘((𝐴 / 𝑁) + 1))))
431 oveq2 6535 . . . . . . . . 9 (𝑡 = 0 → ((𝐴 / 𝑁) · 𝑡) = ((𝐴 / 𝑁) · 0))
43218mul01d 10086 . . . . . . . . 9 (𝜑 → ((𝐴 / 𝑁) · 0) = 0)
433431, 432sylan9eqr 2665 . . . . . . . 8 ((𝜑𝑡 = 0) → ((𝐴 / 𝑁) · 𝑡) = 0)
434433oveq1d 6542 . . . . . . . . . . 11 ((𝜑𝑡 = 0) → (((𝐴 / 𝑁) · 𝑡) + 1) = (0 + 1))
435 0p1e1 10979 . . . . . . . . . . 11 (0 + 1) = 1
436434, 435syl6eq 2659 . . . . . . . . . 10 ((𝜑𝑡 = 0) → (((𝐴 / 𝑁) · 𝑡) + 1) = 1)
437436fveq2d 6092 . . . . . . . . 9 ((𝜑𝑡 = 0) → (log‘(((𝐴 / 𝑁) · 𝑡) + 1)) = (log‘1))
438 log1 24053 . . . . . . . . 9 (log‘1) = 0
439437, 438syl6eq 2659 . . . . . . . 8 ((𝜑𝑡 = 0) → (log‘(((𝐴 / 𝑁) · 𝑡) + 1)) = 0)
440433, 439oveq12d 6545 . . . . . . 7 ((𝜑𝑡 = 0) → (((𝐴 / 𝑁) · 𝑡) − (log‘(((𝐴 / 𝑁) · 𝑡) + 1))) = (0 − 0))
441 0m0e0 10977 . . . . . . 7 (0 − 0) = 0
442440, 441syl6eq 2659 . . . . . 6 ((𝜑𝑡 = 0) → (((𝐴 / 𝑁) · 𝑡) − (log‘(((𝐴 / 𝑁) · 𝑡) + 1))) = 0)
4432a1i 11 . . . . . 6 (𝜑 → 0 ∈ (0[,]1))
444421, 442, 443, 443fvmptd 6182 . . . . 5 (𝜑 → ((𝑡 ∈ (0[,]1) ↦ (((𝐴 / 𝑁) · 𝑡) − (log‘(((𝐴 / 𝑁) · 𝑡) + 1))))‘0) = 0)
445430, 444oveq12d 6545 . . . 4 (𝜑 → (((𝑡 ∈ (0[,]1) ↦ (((𝐴 / 𝑁) · 𝑡) − (log‘(((𝐴 / 𝑁) · 𝑡) + 1))))‘1) − ((𝑡 ∈ (0[,]1) ↦ (((𝐴 / 𝑁) · 𝑡) − (log‘(((𝐴 / 𝑁) · 𝑡) + 1))))‘0)) = (((𝐴 / 𝑁) − (log‘((𝐴 / 𝑁) + 1))) − 0))
44618, 147addcld 9915 . . . . . . 7 (𝜑 → ((𝐴 / 𝑁) + 1) ∈ ℂ)
44712, 14dmgmdivn0 24471 . . . . . . 7 (𝜑 → ((𝐴 / 𝑁) + 1) ≠ 0)
448446, 447logcld 24038 . . . . . 6 (𝜑 → (log‘((𝐴 / 𝑁) + 1)) ∈ ℂ)
44918, 448subcld 10243 . . . . 5 (𝜑 → ((𝐴 / 𝑁) − (log‘((𝐴 / 𝑁) + 1))) ∈ ℂ)
450449subid1d 10232 . . . 4 (𝜑 → (((𝐴 / 𝑁) − (log‘((𝐴 / 𝑁) + 1))) − 0) = ((𝐴 / 𝑁) − (log‘((𝐴 / 𝑁) + 1))))
451445, 450eqtr2d 2644 . . 3 (𝜑 → ((𝐴 / 𝑁) − (log‘((𝐴 / 𝑁) + 1))) = (((𝑡 ∈ (0[,]1) ↦ (((𝐴 / 𝑁) · 𝑡) − (log‘(((𝐴 / 𝑁) · 𝑡) + 1))))‘1) − ((𝑡 ∈ (0[,]1) ↦ (((𝐴 / 𝑁) · 𝑡) − (log‘(((𝐴 / 𝑁) · 𝑡) + 1))))‘0)))
452451fveq2d 6092 . 2 (𝜑 → (abs‘((𝐴 / 𝑁) − (log‘((𝐴 / 𝑁) + 1)))) = (abs‘(((𝑡 ∈ (0[,]1) ↦ (((𝐴 / 𝑁) · 𝑡) − (log‘(((𝐴 / 𝑁) · 𝑡) + 1))))‘1) − ((𝑡 ∈ (0[,]1) ↦ (((𝐴 / 𝑁) · 𝑡) − (log‘(((𝐴 / 𝑁) · 𝑡) + 1))))‘0))))
453 1m0e1 10978 . . . . . 6 (1 − 0) = 1
454453fveq2i 6091 . . . . 5 (abs‘(1 − 0)) = (abs‘1)
455454, 348eqtri 2631 . . . 4 (abs‘(1 − 0)) = 1
456455oveq2i 6538 . . 3 ((𝑅 · ((1 / (𝑁𝑅)) − (1 / 𝑁))) · (abs‘(1 − 0))) = ((𝑅 · ((1 / (𝑁𝑅)) − (1 / 𝑁))) · 1)
457240, 408mulcld 9916 . . . 4 (𝜑 → (𝑅 · ((1 / (𝑁𝑅)) − (1 / 𝑁))) ∈ ℂ)
458457mulid1d 9913 . . 3 (𝜑 → ((𝑅 · ((1 / (𝑁𝑅)) − (1 / 𝑁))) · 1) = (𝑅 · ((1 / (𝑁𝑅)) − (1 / 𝑁))))
459456, 458syl5req 2656 . 2 (𝜑 → (𝑅 · ((1 / (𝑁𝑅)) − (1 / 𝑁))) = ((𝑅 · ((1 / (𝑁𝑅)) − (1 / 𝑁))) · (abs‘(1 − 0))))
460420, 452, 4593brtr4d 4609 1 (𝜑 → (abs‘((𝐴 / 𝑁) − (log‘((𝐴 / 𝑁) + 1)))) ≤ (𝑅 · ((1 / (𝑁𝑅)) − (1 / 𝑁))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 194  wa 382   = wceq 1474  wcel 1976  wne 2779  wral 2895  {crab 2899  Vcvv 3172  cdif 3536  wss 3539  {cpr 4126   class class class wbr 4577  cmpt 4637  dom cdm 5028  ran crn 5029  cres 5030  ccom 5032  wf 5786  cfv 5790  (class class class)co 6527  cc 9790  cr 9791  0cc0 9792  1c1 9793   + caddc 9795   · cmul 9797  -∞cmnf 9928   < clt 9930  cle 9931  cmin 10117  -cneg 10118   / cdiv 10533  cn 10867  2c2 10917  0cn0 11139  cz 11210  +crp 11664  (,)cioo 12002  (,]cioc 12003  [,]cicc 12005  cre 13631  abscabs 13768  TopOpenctopn 15851  topGenctg 15867  fldccnfld 19513  Topctop 20459  intcnt 20573   Cn ccn 20780   ×t ctx 21115  cnccncf 22418   D cdv 23350  logclog 24022
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1712  ax-4 1727  ax-5 1826  ax-6 1874  ax-7 1921  ax-8 1978  ax-9 1985  ax-10 2005  ax-11 2020  ax-12 2033  ax-13 2233  ax-ext 2589  ax-rep 4693  ax-sep 4703  ax-nul 4712  ax-pow 4764  ax-pr 4828  ax-un 6824  ax-inf2 8398  ax-cnex 9848  ax-resscn 9849  ax-1cn 9850  ax-icn 9851  ax-addcl 9852  ax-addrcl 9853  ax-mulcl 9854  ax-mulrcl 9855  ax-mulcom 9856  ax-addass 9857  ax-mulass 9858  ax-distr 9859  ax-i2m1 9860  ax-1ne0 9861  ax-1rid 9862  ax-rnegex 9863  ax-rrecex 9864  ax-cnre 9865  ax-pre-lttri 9866  ax-pre-lttrn 9867  ax-pre-ltadd 9868  ax-pre-mulgt0 9869  ax-pre-sup 9870  ax-addf 9871  ax-mulf 9872
This theorem depends on definitions:  df-bi 195  df-or 383  df-an 384  df-3or 1031  df-3an 1032  df-tru 1477  df-fal 1480  df-ex 1695  df-nf 1700  df-sb 1867  df-eu 2461  df-mo 2462  df-clab 2596  df-cleq 2602  df-clel 2605  df-nfc 2739  df-ne 2781  df-nel 2782  df-ral 2900  df-rex 2901  df-reu 2902  df-rmo 2903  df-rab 2904  df-v 3174  df-sbc 3402  df-csb 3499  df-dif 3542  df-un 3544  df-in 3546  df-ss 3553  df-pss 3555  df-nul 3874  df-if 4036  df-pw 4109  df-sn 4125  df-pr 4127  df-tp 4129  df-op 4131  df-uni 4367  df-int 4405  df-iun 4451  df-iin 4452  df-br 4578  df-opab 4638  df-mpt 4639  df-tr 4675  df-eprel 4939  df-id 4943  df-po 4949  df-so 4950  df-fr 4987  df-se 4988  df-we 4989  df-xp 5034  df-rel 5035  df-cnv 5036  df-co 5037  df-dm 5038  df-rn 5039  df-res 5040  df-ima 5041  df-pred 5583  df-ord 5629  df-on 5630  df-lim 5631  df-suc 5632  df-iota 5754  df-fun 5792  df-fn 5793  df-f 5794  df-f1 5795  df-fo 5796  df-f1o 5797  df-fv 5798  df-isom 5799  df-riota 6489  df-ov 6530  df-oprab 6531  df-mpt2 6532  df-of 6772  df-om 6935  df-1st 7036  df-2nd 7037  df-supp 7160  df-wrecs 7271  df-recs 7332  df-rdg 7370  df-1o 7424  df-2o 7425  df-oadd 7428  df-er 7606  df-map 7723  df-pm 7724  df-ixp 7772  df-en 7819  df-dom 7820  df-sdom 7821  df-fin 7822  df-fsupp 8136  df-fi 8177  df-sup 8208  df-inf 8209  df-oi 8275  df-card 8625  df-cda 8850  df-pnf 9932  df-mnf 9933  df-xr 9934  df-ltxr 9935  df-le 9936  df-sub 10119  df-neg 10120  df-div 10534  df-nn 10868  df-2 10926  df-3 10927  df-4 10928  df-5 10929  df-6 10930  df-7 10931  df-8 10932  df-9 10933  df-n0 11140  df-z 11211  df-dec 11326  df-uz 11520  df-q 11621  df-rp 11665  df-xneg 11778  df-xadd 11779  df-xmul 11780  df-ioo 12006  df-ioc 12007  df-ico 12008  df-icc 12009  df-fz 12153  df-fzo 12290  df-fl 12410  df-mod 12486  df-seq 12619  df-exp 12678  df-fac 12878  df-bc 12907  df-hash 12935  df-shft 13601  df-cj 13633  df-re 13634  df-im 13635  df-sqrt 13769  df-abs 13770  df-limsup 13996  df-clim 14013  df-rlim 14014  df-sum 14211  df-ef 14583  df-sin 14585  df-cos 14586  df-tan 14587  df-pi 14588  df-struct 15643  df-ndx 15644  df-slot 15645  df-base 15646  df-sets 15647  df-ress 15648  df-plusg 15727  df-mulr 15728  df-starv 15729  df-sca 15730  df-vsca 15731  df-ip 15732  df-tset 15733  df-ple 15734  df-ds 15737  df-unif 15738  df-hom 15739  df-cco 15740  df-rest 15852  df-topn 15853  df-0g 15871  df-gsum 15872  df-topgen 15873  df-pt 15874  df-prds 15877  df-xrs 15931  df-qtop 15936  df-imas 15937  df-xps 15939  df-mre 16015  df-mrc 16016  df-acs 16018  df-mgm 17011  df-sgrp 17053  df-mnd 17064  df-submnd 17105  df-mulg 17310  df-cntz 17519  df-cmn 17964  df-psmet 19505  df-xmet 19506  df-met 19507  df-bl 19508  df-mopn 19509  df-fbas 19510  df-fg 19511  df-cnfld 19514  df-top 20463  df-bases 20464  df-topon 20465  df-topsp 20466  df-cld 20575  df-ntr 20576  df-cls 20577  df-nei 20654  df-lp 20692  df-perf 20693  df-cn 20783  df-cnp 20784  df-haus 20871  df-cmp 20942  df-tx 21117  df-hmeo 21310  df-fil 21402  df-fm 21494  df-flim 21495  df-flf 21496  df-xms 21876  df-ms 21877  df-tms 21878  df-cncf 22420  df-limc 23353  df-dv 23354  df-log 24024
This theorem is referenced by:  lgamgulmlem3  24474
  Copyright terms: Public domain W3C validator