MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  taylthlem2 Structured version   Visualization version   GIF version

Theorem taylthlem2 24962
Description: Lemma for taylth 24963. (Contributed by Mario Carneiro, 1-Jan-2017.)
Hypotheses
Ref Expression
taylth.f (𝜑𝐹:𝐴⟶ℝ)
taylth.a (𝜑𝐴 ⊆ ℝ)
taylth.d (𝜑 → dom ((ℝ D𝑛 𝐹)‘𝑁) = 𝐴)
taylth.n (𝜑𝑁 ∈ ℕ)
taylth.b (𝜑𝐵𝐴)
taylth.t 𝑇 = (𝑁(ℝ Tayl 𝐹)𝐵)
taylthlem2.m (𝜑𝑀 ∈ (1..^𝑁))
taylthlem2.i (𝜑 → 0 ∈ ((𝑥 ∈ (𝐴 ∖ {𝐵}) ↦ (((((ℝ D𝑛 𝐹)‘(𝑁𝑀))‘𝑥) − (((ℂ D𝑛 𝑇)‘(𝑁𝑀))‘𝑥)) / ((𝑥𝐵)↑𝑀))) lim 𝐵))
Assertion
Ref Expression
taylthlem2 (𝜑 → 0 ∈ ((𝑥 ∈ (𝐴 ∖ {𝐵}) ↦ (((((ℝ D𝑛 𝐹)‘(𝑁 − (𝑀 + 1)))‘𝑥) − (((ℂ D𝑛 𝑇)‘(𝑁 − (𝑀 + 1)))‘𝑥)) / ((𝑥𝐵)↑(𝑀 + 1)))) lim 𝐵))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝑥,𝐹   𝑥,𝑀   𝑥,𝑇   𝑥,𝑁   𝜑,𝑥

Proof of Theorem taylthlem2
Dummy variables 𝑦 𝑘 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 taylth.a . . 3 (𝜑𝐴 ⊆ ℝ)
2 taylth.f . . . . . . . 8 (𝜑𝐹:𝐴⟶ℝ)
3 fz1ssfz0 13004 . . . . . . . . . . 11 (1...𝑁) ⊆ (0...𝑁)
4 taylthlem2.m . . . . . . . . . . . 12 (𝜑𝑀 ∈ (1..^𝑁))
5 fzofzp1 13135 . . . . . . . . . . . 12 (𝑀 ∈ (1..^𝑁) → (𝑀 + 1) ∈ (1...𝑁))
64, 5syl 17 . . . . . . . . . . 11 (𝜑 → (𝑀 + 1) ∈ (1...𝑁))
73, 6sseldi 3965 . . . . . . . . . 10 (𝜑 → (𝑀 + 1) ∈ (0...𝑁))
8 fznn0sub2 13015 . . . . . . . . . 10 ((𝑀 + 1) ∈ (0...𝑁) → (𝑁 − (𝑀 + 1)) ∈ (0...𝑁))
97, 8syl 17 . . . . . . . . 9 (𝜑 → (𝑁 − (𝑀 + 1)) ∈ (0...𝑁))
10 elfznn0 13001 . . . . . . . . 9 ((𝑁 − (𝑀 + 1)) ∈ (0...𝑁) → (𝑁 − (𝑀 + 1)) ∈ ℕ0)
119, 10syl 17 . . . . . . . 8 (𝜑 → (𝑁 − (𝑀 + 1)) ∈ ℕ0)
12 dvnfre 24549 . . . . . . . 8 ((𝐹:𝐴⟶ℝ ∧ 𝐴 ⊆ ℝ ∧ (𝑁 − (𝑀 + 1)) ∈ ℕ0) → ((ℝ D𝑛 𝐹)‘(𝑁 − (𝑀 + 1))):dom ((ℝ D𝑛 𝐹)‘(𝑁 − (𝑀 + 1)))⟶ℝ)
132, 1, 11, 12syl3anc 1367 . . . . . . 7 (𝜑 → ((ℝ D𝑛 𝐹)‘(𝑁 − (𝑀 + 1))):dom ((ℝ D𝑛 𝐹)‘(𝑁 − (𝑀 + 1)))⟶ℝ)
14 reelprrecn 10629 . . . . . . . . . . . 12 ℝ ∈ {ℝ, ℂ}
1514a1i 11 . . . . . . . . . . 11 (𝜑 → ℝ ∈ {ℝ, ℂ})
16 cnex 10618 . . . . . . . . . . . . 13 ℂ ∈ V
1716a1i 11 . . . . . . . . . . . 12 (𝜑 → ℂ ∈ V)
18 reex 10628 . . . . . . . . . . . . 13 ℝ ∈ V
1918a1i 11 . . . . . . . . . . . 12 (𝜑 → ℝ ∈ V)
20 ax-resscn 10594 . . . . . . . . . . . . 13 ℝ ⊆ ℂ
21 fss 6527 . . . . . . . . . . . . 13 ((𝐹:𝐴⟶ℝ ∧ ℝ ⊆ ℂ) → 𝐹:𝐴⟶ℂ)
222, 20, 21sylancl 588 . . . . . . . . . . . 12 (𝜑𝐹:𝐴⟶ℂ)
23 elpm2r 8424 . . . . . . . . . . . 12 (((ℂ ∈ V ∧ ℝ ∈ V) ∧ (𝐹:𝐴⟶ℂ ∧ 𝐴 ⊆ ℝ)) → 𝐹 ∈ (ℂ ↑pm ℝ))
2417, 19, 22, 1, 23syl22anc 836 . . . . . . . . . . 11 (𝜑𝐹 ∈ (ℂ ↑pm ℝ))
25 dvnbss 24525 . . . . . . . . . . 11 ((ℝ ∈ {ℝ, ℂ} ∧ 𝐹 ∈ (ℂ ↑pm ℝ) ∧ (𝑁 − (𝑀 + 1)) ∈ ℕ0) → dom ((ℝ D𝑛 𝐹)‘(𝑁 − (𝑀 + 1))) ⊆ dom 𝐹)
2615, 24, 11, 25syl3anc 1367 . . . . . . . . . 10 (𝜑 → dom ((ℝ D𝑛 𝐹)‘(𝑁 − (𝑀 + 1))) ⊆ dom 𝐹)
272, 26fssdmd 6529 . . . . . . . . 9 (𝜑 → dom ((ℝ D𝑛 𝐹)‘(𝑁 − (𝑀 + 1))) ⊆ 𝐴)
28 taylth.d . . . . . . . . . 10 (𝜑 → dom ((ℝ D𝑛 𝐹)‘𝑁) = 𝐴)
29 dvn2bss 24527 . . . . . . . . . . 11 ((ℝ ∈ {ℝ, ℂ} ∧ 𝐹 ∈ (ℂ ↑pm ℝ) ∧ (𝑁 − (𝑀 + 1)) ∈ (0...𝑁)) → dom ((ℝ D𝑛 𝐹)‘𝑁) ⊆ dom ((ℝ D𝑛 𝐹)‘(𝑁 − (𝑀 + 1))))
3015, 24, 9, 29syl3anc 1367 . . . . . . . . . 10 (𝜑 → dom ((ℝ D𝑛 𝐹)‘𝑁) ⊆ dom ((ℝ D𝑛 𝐹)‘(𝑁 − (𝑀 + 1))))
3128, 30eqsstrrd 4006 . . . . . . . . 9 (𝜑𝐴 ⊆ dom ((ℝ D𝑛 𝐹)‘(𝑁 − (𝑀 + 1))))
3227, 31eqssd 3984 . . . . . . . 8 (𝜑 → dom ((ℝ D𝑛 𝐹)‘(𝑁 − (𝑀 + 1))) = 𝐴)
3332feq2d 6500 . . . . . . 7 (𝜑 → (((ℝ D𝑛 𝐹)‘(𝑁 − (𝑀 + 1))):dom ((ℝ D𝑛 𝐹)‘(𝑁 − (𝑀 + 1)))⟶ℝ ↔ ((ℝ D𝑛 𝐹)‘(𝑁 − (𝑀 + 1))):𝐴⟶ℝ))
3413, 33mpbid 234 . . . . . 6 (𝜑 → ((ℝ D𝑛 𝐹)‘(𝑁 − (𝑀 + 1))):𝐴⟶ℝ)
3534ffvelrnda 6851 . . . . 5 ((𝜑𝑦𝐴) → (((ℝ D𝑛 𝐹)‘(𝑁 − (𝑀 + 1)))‘𝑦) ∈ ℝ)
361sselda 3967 . . . . . 6 ((𝜑𝑦𝐴) → 𝑦 ∈ ℝ)
37 fvres 6689 . . . . . . . 8 (𝑦 ∈ ℝ → ((((ℂ D𝑛 𝑇)‘(𝑁 − (𝑀 + 1))) ↾ ℝ)‘𝑦) = (((ℂ D𝑛 𝑇)‘(𝑁 − (𝑀 + 1)))‘𝑦))
3837adantl 484 . . . . . . 7 ((𝜑𝑦 ∈ ℝ) → ((((ℂ D𝑛 𝑇)‘(𝑁 − (𝑀 + 1))) ↾ ℝ)‘𝑦) = (((ℂ D𝑛 𝑇)‘(𝑁 − (𝑀 + 1)))‘𝑦))
39 resubdrg 20752 . . . . . . . . . . . 12 (ℝ ∈ (SubRing‘ℂfld) ∧ ℝfld ∈ DivRing)
4039simpli 486 . . . . . . . . . . 11 ℝ ∈ (SubRing‘ℂfld)
4140a1i 11 . . . . . . . . . 10 (𝜑 → ℝ ∈ (SubRing‘ℂfld))
42 taylth.n . . . . . . . . . . . . 13 (𝜑𝑁 ∈ ℕ)
4342nnnn0d 11956 . . . . . . . . . . . 12 (𝜑𝑁 ∈ ℕ0)
44 taylth.b . . . . . . . . . . . . 13 (𝜑𝐵𝐴)
4544, 28eleqtrrd 2916 . . . . . . . . . . . 12 (𝜑𝐵 ∈ dom ((ℝ D𝑛 𝐹)‘𝑁))
46 taylth.t . . . . . . . . . . . 12 𝑇 = (𝑁(ℝ Tayl 𝐹)𝐵)
471, 44sseldd 3968 . . . . . . . . . . . 12 (𝜑𝐵 ∈ ℝ)
48 elfznn0 13001 . . . . . . . . . . . . . . 15 (𝑘 ∈ (0...𝑁) → 𝑘 ∈ ℕ0)
49 dvnfre 24549 . . . . . . . . . . . . . . 15 ((𝐹:𝐴⟶ℝ ∧ 𝐴 ⊆ ℝ ∧ 𝑘 ∈ ℕ0) → ((ℝ D𝑛 𝐹)‘𝑘):dom ((ℝ D𝑛 𝐹)‘𝑘)⟶ℝ)
502, 1, 48, 49syl2an3an 1418 . . . . . . . . . . . . . 14 ((𝜑𝑘 ∈ (0...𝑁)) → ((ℝ D𝑛 𝐹)‘𝑘):dom ((ℝ D𝑛 𝐹)‘𝑘)⟶ℝ)
51 simpr 487 . . . . . . . . . . . . . . . 16 ((𝜑𝑘 ∈ (0...𝑁)) → 𝑘 ∈ (0...𝑁))
52 dvn2bss 24527 . . . . . . . . . . . . . . . 16 ((ℝ ∈ {ℝ, ℂ} ∧ 𝐹 ∈ (ℂ ↑pm ℝ) ∧ 𝑘 ∈ (0...𝑁)) → dom ((ℝ D𝑛 𝐹)‘𝑁) ⊆ dom ((ℝ D𝑛 𝐹)‘𝑘))
5314, 24, 51, 52mp3an2ani 1464 . . . . . . . . . . . . . . 15 ((𝜑𝑘 ∈ (0...𝑁)) → dom ((ℝ D𝑛 𝐹)‘𝑁) ⊆ dom ((ℝ D𝑛 𝐹)‘𝑘))
5445adantr 483 . . . . . . . . . . . . . . 15 ((𝜑𝑘 ∈ (0...𝑁)) → 𝐵 ∈ dom ((ℝ D𝑛 𝐹)‘𝑁))
5553, 54sseldd 3968 . . . . . . . . . . . . . 14 ((𝜑𝑘 ∈ (0...𝑁)) → 𝐵 ∈ dom ((ℝ D𝑛 𝐹)‘𝑘))
5650, 55ffvelrnd 6852 . . . . . . . . . . . . 13 ((𝜑𝑘 ∈ (0...𝑁)) → (((ℝ D𝑛 𝐹)‘𝑘)‘𝐵) ∈ ℝ)
5748adantl 484 . . . . . . . . . . . . . 14 ((𝜑𝑘 ∈ (0...𝑁)) → 𝑘 ∈ ℕ0)
5857faccld 13645 . . . . . . . . . . . . 13 ((𝜑𝑘 ∈ (0...𝑁)) → (!‘𝑘) ∈ ℕ)
5956, 58nndivred 11692 . . . . . . . . . . . 12 ((𝜑𝑘 ∈ (0...𝑁)) → ((((ℝ D𝑛 𝐹)‘𝑘)‘𝐵) / (!‘𝑘)) ∈ ℝ)
6015, 22, 1, 43, 45, 46, 41, 47, 59taylply2 24956 . . . . . . . . . . 11 (𝜑 → (𝑇 ∈ (Poly‘ℝ) ∧ (deg‘𝑇) ≤ 𝑁))
6160simpld 497 . . . . . . . . . 10 (𝜑𝑇 ∈ (Poly‘ℝ))
62 dvnply2 24876 . . . . . . . . . 10 ((ℝ ∈ (SubRing‘ℂfld) ∧ 𝑇 ∈ (Poly‘ℝ) ∧ (𝑁 − (𝑀 + 1)) ∈ ℕ0) → ((ℂ D𝑛 𝑇)‘(𝑁 − (𝑀 + 1))) ∈ (Poly‘ℝ))
6341, 61, 11, 62syl3anc 1367 . . . . . . . . 9 (𝜑 → ((ℂ D𝑛 𝑇)‘(𝑁 − (𝑀 + 1))) ∈ (Poly‘ℝ))
64 plyreres 24872 . . . . . . . . 9 (((ℂ D𝑛 𝑇)‘(𝑁 − (𝑀 + 1))) ∈ (Poly‘ℝ) → (((ℂ D𝑛 𝑇)‘(𝑁 − (𝑀 + 1))) ↾ ℝ):ℝ⟶ℝ)
6563, 64syl 17 . . . . . . . 8 (𝜑 → (((ℂ D𝑛 𝑇)‘(𝑁 − (𝑀 + 1))) ↾ ℝ):ℝ⟶ℝ)
6665ffvelrnda 6851 . . . . . . 7 ((𝜑𝑦 ∈ ℝ) → ((((ℂ D𝑛 𝑇)‘(𝑁 − (𝑀 + 1))) ↾ ℝ)‘𝑦) ∈ ℝ)
6738, 66eqeltrrd 2914 . . . . . 6 ((𝜑𝑦 ∈ ℝ) → (((ℂ D𝑛 𝑇)‘(𝑁 − (𝑀 + 1)))‘𝑦) ∈ ℝ)
6836, 67syldan 593 . . . . 5 ((𝜑𝑦𝐴) → (((ℂ D𝑛 𝑇)‘(𝑁 − (𝑀 + 1)))‘𝑦) ∈ ℝ)
6935, 68resubcld 11068 . . . 4 ((𝜑𝑦𝐴) → ((((ℝ D𝑛 𝐹)‘(𝑁 − (𝑀 + 1)))‘𝑦) − (((ℂ D𝑛 𝑇)‘(𝑁 − (𝑀 + 1)))‘𝑦)) ∈ ℝ)
7069fmpttd 6879 . . 3 (𝜑 → (𝑦𝐴 ↦ ((((ℝ D𝑛 𝐹)‘(𝑁 − (𝑀 + 1)))‘𝑦) − (((ℂ D𝑛 𝑇)‘(𝑁 − (𝑀 + 1)))‘𝑦))):𝐴⟶ℝ)
7147adantr 483 . . . . . 6 ((𝜑𝑦𝐴) → 𝐵 ∈ ℝ)
7236, 71resubcld 11068 . . . . 5 ((𝜑𝑦𝐴) → (𝑦𝐵) ∈ ℝ)
73 elfzouz 13043 . . . . . . . . . 10 (𝑀 ∈ (1..^𝑁) → 𝑀 ∈ (ℤ‘1))
744, 73syl 17 . . . . . . . . 9 (𝜑𝑀 ∈ (ℤ‘1))
75 nnuz 12282 . . . . . . . . 9 ℕ = (ℤ‘1)
7674, 75eleqtrrdi 2924 . . . . . . . 8 (𝜑𝑀 ∈ ℕ)
7776nnnn0d 11956 . . . . . . 7 (𝜑𝑀 ∈ ℕ0)
7877adantr 483 . . . . . 6 ((𝜑𝑦𝐴) → 𝑀 ∈ ℕ0)
79 1nn0 11914 . . . . . . 7 1 ∈ ℕ0
8079a1i 11 . . . . . 6 ((𝜑𝑦𝐴) → 1 ∈ ℕ0)
8178, 80nn0addcld 11960 . . . . 5 ((𝜑𝑦𝐴) → (𝑀 + 1) ∈ ℕ0)
8272, 81reexpcld 13528 . . . 4 ((𝜑𝑦𝐴) → ((𝑦𝐵)↑(𝑀 + 1)) ∈ ℝ)
8382fmpttd 6879 . . 3 (𝜑 → (𝑦𝐴 ↦ ((𝑦𝐵)↑(𝑀 + 1))):𝐴⟶ℝ)
84 retop 23370 . . . . . 6 (topGen‘ran (,)) ∈ Top
85 uniretop 23371 . . . . . . 7 ℝ = (topGen‘ran (,))
8685ntrss2 21665 . . . . . 6 (((topGen‘ran (,)) ∈ Top ∧ 𝐴 ⊆ ℝ) → ((int‘(topGen‘ran (,)))‘𝐴) ⊆ 𝐴)
8784, 1, 86sylancr 589 . . . . 5 (𝜑 → ((int‘(topGen‘ran (,)))‘𝐴) ⊆ 𝐴)
8842nncnd 11654 . . . . . . . . . . 11 (𝜑𝑁 ∈ ℂ)
8976nncnd 11654 . . . . . . . . . . 11 (𝜑𝑀 ∈ ℂ)
90 1cnd 10636 . . . . . . . . . . 11 (𝜑 → 1 ∈ ℂ)
9188, 89, 90nppcan2d 11023 . . . . . . . . . 10 (𝜑 → ((𝑁 − (𝑀 + 1)) + 1) = (𝑁𝑀))
9291fveq2d 6674 . . . . . . . . 9 (𝜑 → ((ℝ D𝑛 𝐹)‘((𝑁 − (𝑀 + 1)) + 1)) = ((ℝ D𝑛 𝐹)‘(𝑁𝑀)))
9320a1i 11 . . . . . . . . . 10 (𝜑 → ℝ ⊆ ℂ)
94 dvnp1 24522 . . . . . . . . . 10 ((ℝ ⊆ ℂ ∧ 𝐹 ∈ (ℂ ↑pm ℝ) ∧ (𝑁 − (𝑀 + 1)) ∈ ℕ0) → ((ℝ D𝑛 𝐹)‘((𝑁 − (𝑀 + 1)) + 1)) = (ℝ D ((ℝ D𝑛 𝐹)‘(𝑁 − (𝑀 + 1)))))
9593, 24, 11, 94syl3anc 1367 . . . . . . . . 9 (𝜑 → ((ℝ D𝑛 𝐹)‘((𝑁 − (𝑀 + 1)) + 1)) = (ℝ D ((ℝ D𝑛 𝐹)‘(𝑁 − (𝑀 + 1)))))
9692, 95eqtr3d 2858 . . . . . . . 8 (𝜑 → ((ℝ D𝑛 𝐹)‘(𝑁𝑀)) = (ℝ D ((ℝ D𝑛 𝐹)‘(𝑁 − (𝑀 + 1)))))
9796dmeqd 5774 . . . . . . 7 (𝜑 → dom ((ℝ D𝑛 𝐹)‘(𝑁𝑀)) = dom (ℝ D ((ℝ D𝑛 𝐹)‘(𝑁 − (𝑀 + 1)))))
98 fzonnsub 13063 . . . . . . . . . . . 12 (𝑀 ∈ (1..^𝑁) → (𝑁𝑀) ∈ ℕ)
994, 98syl 17 . . . . . . . . . . 11 (𝜑 → (𝑁𝑀) ∈ ℕ)
10099nnnn0d 11956 . . . . . . . . . 10 (𝜑 → (𝑁𝑀) ∈ ℕ0)
101 dvnbss 24525 . . . . . . . . . 10 ((ℝ ∈ {ℝ, ℂ} ∧ 𝐹 ∈ (ℂ ↑pm ℝ) ∧ (𝑁𝑀) ∈ ℕ0) → dom ((ℝ D𝑛 𝐹)‘(𝑁𝑀)) ⊆ dom 𝐹)
10215, 24, 100, 101syl3anc 1367 . . . . . . . . 9 (𝜑 → dom ((ℝ D𝑛 𝐹)‘(𝑁𝑀)) ⊆ dom 𝐹)
1032, 102fssdmd 6529 . . . . . . . 8 (𝜑 → dom ((ℝ D𝑛 𝐹)‘(𝑁𝑀)) ⊆ 𝐴)
104 elfzofz 13054 . . . . . . . . . . . . 13 (𝑀 ∈ (1..^𝑁) → 𝑀 ∈ (1...𝑁))
1054, 104syl 17 . . . . . . . . . . . 12 (𝜑𝑀 ∈ (1...𝑁))
1063, 105sseldi 3965 . . . . . . . . . . 11 (𝜑𝑀 ∈ (0...𝑁))
107 fznn0sub2 13015 . . . . . . . . . . 11 (𝑀 ∈ (0...𝑁) → (𝑁𝑀) ∈ (0...𝑁))
108106, 107syl 17 . . . . . . . . . 10 (𝜑 → (𝑁𝑀) ∈ (0...𝑁))
109 dvn2bss 24527 . . . . . . . . . 10 ((ℝ ∈ {ℝ, ℂ} ∧ 𝐹 ∈ (ℂ ↑pm ℝ) ∧ (𝑁𝑀) ∈ (0...𝑁)) → dom ((ℝ D𝑛 𝐹)‘𝑁) ⊆ dom ((ℝ D𝑛 𝐹)‘(𝑁𝑀)))
11015, 24, 108, 109syl3anc 1367 . . . . . . . . 9 (𝜑 → dom ((ℝ D𝑛 𝐹)‘𝑁) ⊆ dom ((ℝ D𝑛 𝐹)‘(𝑁𝑀)))
11128, 110eqsstrrd 4006 . . . . . . . 8 (𝜑𝐴 ⊆ dom ((ℝ D𝑛 𝐹)‘(𝑁𝑀)))
112103, 111eqssd 3984 . . . . . . 7 (𝜑 → dom ((ℝ D𝑛 𝐹)‘(𝑁𝑀)) = 𝐴)
11397, 112eqtr3d 2858 . . . . . 6 (𝜑 → dom (ℝ D ((ℝ D𝑛 𝐹)‘(𝑁 − (𝑀 + 1)))) = 𝐴)
114 fss 6527 . . . . . . . 8 ((((ℝ D𝑛 𝐹)‘(𝑁 − (𝑀 + 1))):𝐴⟶ℝ ∧ ℝ ⊆ ℂ) → ((ℝ D𝑛 𝐹)‘(𝑁 − (𝑀 + 1))):𝐴⟶ℂ)
11534, 20, 114sylancl 588 . . . . . . 7 (𝜑 → ((ℝ D𝑛 𝐹)‘(𝑁 − (𝑀 + 1))):𝐴⟶ℂ)
116 eqid 2821 . . . . . . . 8 (TopOpen‘ℂfld) = (TopOpen‘ℂfld)
117116tgioo2 23411 . . . . . . 7 (topGen‘ran (,)) = ((TopOpen‘ℂfld) ↾t ℝ)
11893, 115, 1, 117, 116dvbssntr 24498 . . . . . 6 (𝜑 → dom (ℝ D ((ℝ D𝑛 𝐹)‘(𝑁 − (𝑀 + 1)))) ⊆ ((int‘(topGen‘ran (,)))‘𝐴))
119113, 118eqsstrrd 4006 . . . . 5 (𝜑𝐴 ⊆ ((int‘(topGen‘ran (,)))‘𝐴))
12087, 119eqssd 3984 . . . 4 (𝜑 → ((int‘(topGen‘ran (,)))‘𝐴) = 𝐴)
12185isopn3 21674 . . . . 5 (((topGen‘ran (,)) ∈ Top ∧ 𝐴 ⊆ ℝ) → (𝐴 ∈ (topGen‘ran (,)) ↔ ((int‘(topGen‘ran (,)))‘𝐴) = 𝐴))
12284, 1, 121sylancr 589 . . . 4 (𝜑 → (𝐴 ∈ (topGen‘ran (,)) ↔ ((int‘(topGen‘ran (,)))‘𝐴) = 𝐴))
123120, 122mpbird 259 . . 3 (𝜑𝐴 ∈ (topGen‘ran (,)))
124 eqid 2821 . . 3 (𝐴 ∖ {𝐵}) = (𝐴 ∖ {𝐵})
125 difss 4108 . . . 4 (𝐴 ∖ {𝐵}) ⊆ 𝐴
12635recnd 10669 . . . . . . 7 ((𝜑𝑦𝐴) → (((ℝ D𝑛 𝐹)‘(𝑁 − (𝑀 + 1)))‘𝑦) ∈ ℂ)
127 dvnf 24524 . . . . . . . . . 10 ((ℝ ∈ {ℝ, ℂ} ∧ 𝐹 ∈ (ℂ ↑pm ℝ) ∧ (𝑁𝑀) ∈ ℕ0) → ((ℝ D𝑛 𝐹)‘(𝑁𝑀)):dom ((ℝ D𝑛 𝐹)‘(𝑁𝑀))⟶ℂ)
12815, 24, 100, 127syl3anc 1367 . . . . . . . . 9 (𝜑 → ((ℝ D𝑛 𝐹)‘(𝑁𝑀)):dom ((ℝ D𝑛 𝐹)‘(𝑁𝑀))⟶ℂ)
129112feq2d 6500 . . . . . . . . 9 (𝜑 → (((ℝ D𝑛 𝐹)‘(𝑁𝑀)):dom ((ℝ D𝑛 𝐹)‘(𝑁𝑀))⟶ℂ ↔ ((ℝ D𝑛 𝐹)‘(𝑁𝑀)):𝐴⟶ℂ))
130128, 129mpbid 234 . . . . . . . 8 (𝜑 → ((ℝ D𝑛 𝐹)‘(𝑁𝑀)):𝐴⟶ℂ)
131130ffvelrnda 6851 . . . . . . 7 ((𝜑𝑦𝐴) → (((ℝ D𝑛 𝐹)‘(𝑁𝑀))‘𝑦) ∈ ℂ)
132 dvnfre 24549 . . . . . . . . . . 11 ((𝐹:𝐴⟶ℝ ∧ 𝐴 ⊆ ℝ ∧ (𝑁𝑀) ∈ ℕ0) → ((ℝ D𝑛 𝐹)‘(𝑁𝑀)):dom ((ℝ D𝑛 𝐹)‘(𝑁𝑀))⟶ℝ)
1332, 1, 100, 132syl3anc 1367 . . . . . . . . . 10 (𝜑 → ((ℝ D𝑛 𝐹)‘(𝑁𝑀)):dom ((ℝ D𝑛 𝐹)‘(𝑁𝑀))⟶ℝ)
134112feq2d 6500 . . . . . . . . . 10 (𝜑 → (((ℝ D𝑛 𝐹)‘(𝑁𝑀)):dom ((ℝ D𝑛 𝐹)‘(𝑁𝑀))⟶ℝ ↔ ((ℝ D𝑛 𝐹)‘(𝑁𝑀)):𝐴⟶ℝ))
135133, 134mpbid 234 . . . . . . . . 9 (𝜑 → ((ℝ D𝑛 𝐹)‘(𝑁𝑀)):𝐴⟶ℝ)
136135feqmptd 6733 . . . . . . . 8 (𝜑 → ((ℝ D𝑛 𝐹)‘(𝑁𝑀)) = (𝑦𝐴 ↦ (((ℝ D𝑛 𝐹)‘(𝑁𝑀))‘𝑦)))
13734feqmptd 6733 . . . . . . . . 9 (𝜑 → ((ℝ D𝑛 𝐹)‘(𝑁 − (𝑀 + 1))) = (𝑦𝐴 ↦ (((ℝ D𝑛 𝐹)‘(𝑁 − (𝑀 + 1)))‘𝑦)))
138137oveq2d 7172 . . . . . . . 8 (𝜑 → (ℝ D ((ℝ D𝑛 𝐹)‘(𝑁 − (𝑀 + 1)))) = (ℝ D (𝑦𝐴 ↦ (((ℝ D𝑛 𝐹)‘(𝑁 − (𝑀 + 1)))‘𝑦))))
13996, 136, 1383eqtr3rd 2865 . . . . . . 7 (𝜑 → (ℝ D (𝑦𝐴 ↦ (((ℝ D𝑛 𝐹)‘(𝑁 − (𝑀 + 1)))‘𝑦))) = (𝑦𝐴 ↦ (((ℝ D𝑛 𝐹)‘(𝑁𝑀))‘𝑦)))
14068recnd 10669 . . . . . . 7 ((𝜑𝑦𝐴) → (((ℂ D𝑛 𝑇)‘(𝑁 − (𝑀 + 1)))‘𝑦) ∈ ℂ)
141 fvexd 6685 . . . . . . 7 ((𝜑𝑦𝐴) → (((ℂ D𝑛 𝑇)‘(𝑁𝑀))‘𝑦) ∈ V)
14267recnd 10669 . . . . . . . 8 ((𝜑𝑦 ∈ ℝ) → (((ℂ D𝑛 𝑇)‘(𝑁 − (𝑀 + 1)))‘𝑦) ∈ ℂ)
143 recn 10627 . . . . . . . . 9 (𝑦 ∈ ℝ → 𝑦 ∈ ℂ)
144 dvnply2 24876 . . . . . . . . . . . 12 ((ℝ ∈ (SubRing‘ℂfld) ∧ 𝑇 ∈ (Poly‘ℝ) ∧ (𝑁𝑀) ∈ ℕ0) → ((ℂ D𝑛 𝑇)‘(𝑁𝑀)) ∈ (Poly‘ℝ))
14541, 61, 100, 144syl3anc 1367 . . . . . . . . . . 11 (𝜑 → ((ℂ D𝑛 𝑇)‘(𝑁𝑀)) ∈ (Poly‘ℝ))
146 plyf 24788 . . . . . . . . . . 11 (((ℂ D𝑛 𝑇)‘(𝑁𝑀)) ∈ (Poly‘ℝ) → ((ℂ D𝑛 𝑇)‘(𝑁𝑀)):ℂ⟶ℂ)
147145, 146syl 17 . . . . . . . . . 10 (𝜑 → ((ℂ D𝑛 𝑇)‘(𝑁𝑀)):ℂ⟶ℂ)
148147ffvelrnda 6851 . . . . . . . . 9 ((𝜑𝑦 ∈ ℂ) → (((ℂ D𝑛 𝑇)‘(𝑁𝑀))‘𝑦) ∈ ℂ)
149143, 148sylan2 594 . . . . . . . 8 ((𝜑𝑦 ∈ ℝ) → (((ℂ D𝑛 𝑇)‘(𝑁𝑀))‘𝑦) ∈ ℂ)
150116cnfldtopon 23391 . . . . . . . . . 10 (TopOpen‘ℂfld) ∈ (TopOn‘ℂ)
151 toponmax 21534 . . . . . . . . . 10 ((TopOpen‘ℂfld) ∈ (TopOn‘ℂ) → ℂ ∈ (TopOpen‘ℂfld))
152150, 151mp1i 13 . . . . . . . . 9 (𝜑 → ℂ ∈ (TopOpen‘ℂfld))
153 df-ss 3952 . . . . . . . . . 10 (ℝ ⊆ ℂ ↔ (ℝ ∩ ℂ) = ℝ)
15493, 153sylib 220 . . . . . . . . 9 (𝜑 → (ℝ ∩ ℂ) = ℝ)
155 plyf 24788 . . . . . . . . . . 11 (((ℂ D𝑛 𝑇)‘(𝑁 − (𝑀 + 1))) ∈ (Poly‘ℝ) → ((ℂ D𝑛 𝑇)‘(𝑁 − (𝑀 + 1))):ℂ⟶ℂ)
15663, 155syl 17 . . . . . . . . . 10 (𝜑 → ((ℂ D𝑛 𝑇)‘(𝑁 − (𝑀 + 1))):ℂ⟶ℂ)
157156ffvelrnda 6851 . . . . . . . . 9 ((𝜑𝑦 ∈ ℂ) → (((ℂ D𝑛 𝑇)‘(𝑁 − (𝑀 + 1)))‘𝑦) ∈ ℂ)
15891fveq2d 6674 . . . . . . . . . . 11 (𝜑 → ((ℂ D𝑛 𝑇)‘((𝑁 − (𝑀 + 1)) + 1)) = ((ℂ D𝑛 𝑇)‘(𝑁𝑀)))
159 ssid 3989 . . . . . . . . . . . . 13 ℂ ⊆ ℂ
160159a1i 11 . . . . . . . . . . . 12 (𝜑 → ℂ ⊆ ℂ)
161 mapsspm 8440 . . . . . . . . . . . . 13 (ℂ ↑m ℂ) ⊆ (ℂ ↑pm ℂ)
162 plyf 24788 . . . . . . . . . . . . . . 15 (𝑇 ∈ (Poly‘ℝ) → 𝑇:ℂ⟶ℂ)
16361, 162syl 17 . . . . . . . . . . . . . 14 (𝜑𝑇:ℂ⟶ℂ)
16416, 16elmap 8435 . . . . . . . . . . . . . 14 (𝑇 ∈ (ℂ ↑m ℂ) ↔ 𝑇:ℂ⟶ℂ)
165163, 164sylibr 236 . . . . . . . . . . . . 13 (𝜑𝑇 ∈ (ℂ ↑m ℂ))
166161, 165sseldi 3965 . . . . . . . . . . . 12 (𝜑𝑇 ∈ (ℂ ↑pm ℂ))
167 dvnp1 24522 . . . . . . . . . . . 12 ((ℂ ⊆ ℂ ∧ 𝑇 ∈ (ℂ ↑pm ℂ) ∧ (𝑁 − (𝑀 + 1)) ∈ ℕ0) → ((ℂ D𝑛 𝑇)‘((𝑁 − (𝑀 + 1)) + 1)) = (ℂ D ((ℂ D𝑛 𝑇)‘(𝑁 − (𝑀 + 1)))))
168160, 166, 11, 167syl3anc 1367 . . . . . . . . . . 11 (𝜑 → ((ℂ D𝑛 𝑇)‘((𝑁 − (𝑀 + 1)) + 1)) = (ℂ D ((ℂ D𝑛 𝑇)‘(𝑁 − (𝑀 + 1)))))
169158, 168eqtr3d 2858 . . . . . . . . . 10 (𝜑 → ((ℂ D𝑛 𝑇)‘(𝑁𝑀)) = (ℂ D ((ℂ D𝑛 𝑇)‘(𝑁 − (𝑀 + 1)))))
170147feqmptd 6733 . . . . . . . . . 10 (𝜑 → ((ℂ D𝑛 𝑇)‘(𝑁𝑀)) = (𝑦 ∈ ℂ ↦ (((ℂ D𝑛 𝑇)‘(𝑁𝑀))‘𝑦)))
171156feqmptd 6733 . . . . . . . . . . 11 (𝜑 → ((ℂ D𝑛 𝑇)‘(𝑁 − (𝑀 + 1))) = (𝑦 ∈ ℂ ↦ (((ℂ D𝑛 𝑇)‘(𝑁 − (𝑀 + 1)))‘𝑦)))
172171oveq2d 7172 . . . . . . . . . 10 (𝜑 → (ℂ D ((ℂ D𝑛 𝑇)‘(𝑁 − (𝑀 + 1)))) = (ℂ D (𝑦 ∈ ℂ ↦ (((ℂ D𝑛 𝑇)‘(𝑁 − (𝑀 + 1)))‘𝑦))))
173169, 170, 1723eqtr3rd 2865 . . . . . . . . 9 (𝜑 → (ℂ D (𝑦 ∈ ℂ ↦ (((ℂ D𝑛 𝑇)‘(𝑁 − (𝑀 + 1)))‘𝑦))) = (𝑦 ∈ ℂ ↦ (((ℂ D𝑛 𝑇)‘(𝑁𝑀))‘𝑦)))
174116, 15, 152, 154, 157, 148, 173dvmptres3 24553 . . . . . . . 8 (𝜑 → (ℝ D (𝑦 ∈ ℝ ↦ (((ℂ D𝑛 𝑇)‘(𝑁 − (𝑀 + 1)))‘𝑦))) = (𝑦 ∈ ℝ ↦ (((ℂ D𝑛 𝑇)‘(𝑁𝑀))‘𝑦)))
17515, 142, 149, 174, 1, 117, 116, 123dvmptres 24560 . . . . . . 7 (𝜑 → (ℝ D (𝑦𝐴 ↦ (((ℂ D𝑛 𝑇)‘(𝑁 − (𝑀 + 1)))‘𝑦))) = (𝑦𝐴 ↦ (((ℂ D𝑛 𝑇)‘(𝑁𝑀))‘𝑦)))
17615, 126, 131, 139, 140, 141, 175dvmptsub 24564 . . . . . 6 (𝜑 → (ℝ D (𝑦𝐴 ↦ ((((ℝ D𝑛 𝐹)‘(𝑁 − (𝑀 + 1)))‘𝑦) − (((ℂ D𝑛 𝑇)‘(𝑁 − (𝑀 + 1)))‘𝑦)))) = (𝑦𝐴 ↦ ((((ℝ D𝑛 𝐹)‘(𝑁𝑀))‘𝑦) − (((ℂ D𝑛 𝑇)‘(𝑁𝑀))‘𝑦))))
177176dmeqd 5774 . . . . 5 (𝜑 → dom (ℝ D (𝑦𝐴 ↦ ((((ℝ D𝑛 𝐹)‘(𝑁 − (𝑀 + 1)))‘𝑦) − (((ℂ D𝑛 𝑇)‘(𝑁 − (𝑀 + 1)))‘𝑦)))) = dom (𝑦𝐴 ↦ ((((ℝ D𝑛 𝐹)‘(𝑁𝑀))‘𝑦) − (((ℂ D𝑛 𝑇)‘(𝑁𝑀))‘𝑦))))
178 ovex 7189 . . . . . 6 ((((ℝ D𝑛 𝐹)‘(𝑁𝑀))‘𝑦) − (((ℂ D𝑛 𝑇)‘(𝑁𝑀))‘𝑦)) ∈ V
179 eqid 2821 . . . . . 6 (𝑦𝐴 ↦ ((((ℝ D𝑛 𝐹)‘(𝑁𝑀))‘𝑦) − (((ℂ D𝑛 𝑇)‘(𝑁𝑀))‘𝑦))) = (𝑦𝐴 ↦ ((((ℝ D𝑛 𝐹)‘(𝑁𝑀))‘𝑦) − (((ℂ D𝑛 𝑇)‘(𝑁𝑀))‘𝑦)))
180178, 179dmmpti 6492 . . . . 5 dom (𝑦𝐴 ↦ ((((ℝ D𝑛 𝐹)‘(𝑁𝑀))‘𝑦) − (((ℂ D𝑛 𝑇)‘(𝑁𝑀))‘𝑦))) = 𝐴
181177, 180syl6eq 2872 . . . 4 (𝜑 → dom (ℝ D (𝑦𝐴 ↦ ((((ℝ D𝑛 𝐹)‘(𝑁 − (𝑀 + 1)))‘𝑦) − (((ℂ D𝑛 𝑇)‘(𝑁 − (𝑀 + 1)))‘𝑦)))) = 𝐴)
182125, 181sseqtrrid 4020 . . 3 (𝜑 → (𝐴 ∖ {𝐵}) ⊆ dom (ℝ D (𝑦𝐴 ↦ ((((ℝ D𝑛 𝐹)‘(𝑁 − (𝑀 + 1)))‘𝑦) − (((ℂ D𝑛 𝑇)‘(𝑁 − (𝑀 + 1)))‘𝑦)))))
183 simpr 487 . . . . . . . . . 10 ((𝜑𝑦 ∈ ℂ) → 𝑦 ∈ ℂ)
18447adantr 483 . . . . . . . . . . 11 ((𝜑𝑦 ∈ ℂ) → 𝐵 ∈ ℝ)
185184recnd 10669 . . . . . . . . . 10 ((𝜑𝑦 ∈ ℂ) → 𝐵 ∈ ℂ)
186183, 185subcld 10997 . . . . . . . . 9 ((𝜑𝑦 ∈ ℂ) → (𝑦𝐵) ∈ ℂ)
18777adantr 483 . . . . . . . . . 10 ((𝜑𝑦 ∈ ℂ) → 𝑀 ∈ ℕ0)
18879a1i 11 . . . . . . . . . 10 ((𝜑𝑦 ∈ ℂ) → 1 ∈ ℕ0)
189187, 188nn0addcld 11960 . . . . . . . . 9 ((𝜑𝑦 ∈ ℂ) → (𝑀 + 1) ∈ ℕ0)
190186, 189expcld 13511 . . . . . . . 8 ((𝜑𝑦 ∈ ℂ) → ((𝑦𝐵)↑(𝑀 + 1)) ∈ ℂ)
191143, 190sylan2 594 . . . . . . 7 ((𝜑𝑦 ∈ ℝ) → ((𝑦𝐵)↑(𝑀 + 1)) ∈ ℂ)
19289adantr 483 . . . . . . . . . 10 ((𝜑𝑦 ∈ ℂ) → 𝑀 ∈ ℂ)
193 1cnd 10636 . . . . . . . . . 10 ((𝜑𝑦 ∈ ℂ) → 1 ∈ ℂ)
194192, 193addcld 10660 . . . . . . . . 9 ((𝜑𝑦 ∈ ℂ) → (𝑀 + 1) ∈ ℂ)
195186, 187expcld 13511 . . . . . . . . 9 ((𝜑𝑦 ∈ ℂ) → ((𝑦𝐵)↑𝑀) ∈ ℂ)
196194, 195mulcld 10661 . . . . . . . 8 ((𝜑𝑦 ∈ ℂ) → ((𝑀 + 1) · ((𝑦𝐵)↑𝑀)) ∈ ℂ)
197143, 196sylan2 594 . . . . . . 7 ((𝜑𝑦 ∈ ℝ) → ((𝑀 + 1) · ((𝑦𝐵)↑𝑀)) ∈ ℂ)
19816prid2 4699 . . . . . . . . . . 11 ℂ ∈ {ℝ, ℂ}
199198a1i 11 . . . . . . . . . 10 (𝜑 → ℂ ∈ {ℝ, ℂ})
200 simpr 487 . . . . . . . . . . 11 ((𝜑𝑥 ∈ ℂ) → 𝑥 ∈ ℂ)
201 elfznn 12937 . . . . . . . . . . . . . 14 ((𝑀 + 1) ∈ (1...𝑁) → (𝑀 + 1) ∈ ℕ)
2026, 201syl 17 . . . . . . . . . . . . 13 (𝜑 → (𝑀 + 1) ∈ ℕ)
203202nnnn0d 11956 . . . . . . . . . . . 12 (𝜑 → (𝑀 + 1) ∈ ℕ0)
204203adantr 483 . . . . . . . . . . 11 ((𝜑𝑥 ∈ ℂ) → (𝑀 + 1) ∈ ℕ0)
205200, 204expcld 13511 . . . . . . . . . 10 ((𝜑𝑥 ∈ ℂ) → (𝑥↑(𝑀 + 1)) ∈ ℂ)
206 ovexd 7191 . . . . . . . . . 10 ((𝜑𝑥 ∈ ℂ) → ((𝑀 + 1) · (𝑥𝑀)) ∈ V)
207199dvmptid 24554 . . . . . . . . . . . 12 (𝜑 → (ℂ D (𝑦 ∈ ℂ ↦ 𝑦)) = (𝑦 ∈ ℂ ↦ 1))
208 0cnd 10634 . . . . . . . . . . . 12 ((𝜑𝑦 ∈ ℂ) → 0 ∈ ℂ)
20947recnd 10669 . . . . . . . . . . . . 13 (𝜑𝐵 ∈ ℂ)
210199, 209dvmptc 24555 . . . . . . . . . . . 12 (𝜑 → (ℂ D (𝑦 ∈ ℂ ↦ 𝐵)) = (𝑦 ∈ ℂ ↦ 0))
211199, 183, 193, 207, 185, 208, 210dvmptsub 24564 . . . . . . . . . . 11 (𝜑 → (ℂ D (𝑦 ∈ ℂ ↦ (𝑦𝐵))) = (𝑦 ∈ ℂ ↦ (1 − 0)))
212 1m0e1 11759 . . . . . . . . . . . 12 (1 − 0) = 1
213212mpteq2i 5158 . . . . . . . . . . 11 (𝑦 ∈ ℂ ↦ (1 − 0)) = (𝑦 ∈ ℂ ↦ 1)
214211, 213syl6eq 2872 . . . . . . . . . 10 (𝜑 → (ℂ D (𝑦 ∈ ℂ ↦ (𝑦𝐵))) = (𝑦 ∈ ℂ ↦ 1))
215 dvexp 24550 . . . . . . . . . . . 12 ((𝑀 + 1) ∈ ℕ → (ℂ D (𝑥 ∈ ℂ ↦ (𝑥↑(𝑀 + 1)))) = (𝑥 ∈ ℂ ↦ ((𝑀 + 1) · (𝑥↑((𝑀 + 1) − 1)))))
216202, 215syl 17 . . . . . . . . . . 11 (𝜑 → (ℂ D (𝑥 ∈ ℂ ↦ (𝑥↑(𝑀 + 1)))) = (𝑥 ∈ ℂ ↦ ((𝑀 + 1) · (𝑥↑((𝑀 + 1) − 1)))))
21789, 90pncand 10998 . . . . . . . . . . . . . 14 (𝜑 → ((𝑀 + 1) − 1) = 𝑀)
218217oveq2d 7172 . . . . . . . . . . . . 13 (𝜑 → (𝑥↑((𝑀 + 1) − 1)) = (𝑥𝑀))
219218oveq2d 7172 . . . . . . . . . . . 12 (𝜑 → ((𝑀 + 1) · (𝑥↑((𝑀 + 1) − 1))) = ((𝑀 + 1) · (𝑥𝑀)))
220219mpteq2dv 5162 . . . . . . . . . . 11 (𝜑 → (𝑥 ∈ ℂ ↦ ((𝑀 + 1) · (𝑥↑((𝑀 + 1) − 1)))) = (𝑥 ∈ ℂ ↦ ((𝑀 + 1) · (𝑥𝑀))))
221216, 220eqtrd 2856 . . . . . . . . . 10 (𝜑 → (ℂ D (𝑥 ∈ ℂ ↦ (𝑥↑(𝑀 + 1)))) = (𝑥 ∈ ℂ ↦ ((𝑀 + 1) · (𝑥𝑀))))
222 oveq1 7163 . . . . . . . . . 10 (𝑥 = (𝑦𝐵) → (𝑥↑(𝑀 + 1)) = ((𝑦𝐵)↑(𝑀 + 1)))
223 oveq1 7163 . . . . . . . . . . 11 (𝑥 = (𝑦𝐵) → (𝑥𝑀) = ((𝑦𝐵)↑𝑀))
224223oveq2d 7172 . . . . . . . . . 10 (𝑥 = (𝑦𝐵) → ((𝑀 + 1) · (𝑥𝑀)) = ((𝑀 + 1) · ((𝑦𝐵)↑𝑀)))
225199, 199, 186, 193, 205, 206, 214, 221, 222, 224dvmptco 24569 . . . . . . . . 9 (𝜑 → (ℂ D (𝑦 ∈ ℂ ↦ ((𝑦𝐵)↑(𝑀 + 1)))) = (𝑦 ∈ ℂ ↦ (((𝑀 + 1) · ((𝑦𝐵)↑𝑀)) · 1)))
226196mulid1d 10658 . . . . . . . . . 10 ((𝜑𝑦 ∈ ℂ) → (((𝑀 + 1) · ((𝑦𝐵)↑𝑀)) · 1) = ((𝑀 + 1) · ((𝑦𝐵)↑𝑀)))
227226mpteq2dva 5161 . . . . . . . . 9 (𝜑 → (𝑦 ∈ ℂ ↦ (((𝑀 + 1) · ((𝑦𝐵)↑𝑀)) · 1)) = (𝑦 ∈ ℂ ↦ ((𝑀 + 1) · ((𝑦𝐵)↑𝑀))))
228225, 227eqtrd 2856 . . . . . . . 8 (𝜑 → (ℂ D (𝑦 ∈ ℂ ↦ ((𝑦𝐵)↑(𝑀 + 1)))) = (𝑦 ∈ ℂ ↦ ((𝑀 + 1) · ((𝑦𝐵)↑𝑀))))
229116, 15, 152, 154, 190, 196, 228dvmptres3 24553 . . . . . . 7 (𝜑 → (ℝ D (𝑦 ∈ ℝ ↦ ((𝑦𝐵)↑(𝑀 + 1)))) = (𝑦 ∈ ℝ ↦ ((𝑀 + 1) · ((𝑦𝐵)↑𝑀))))
23015, 191, 197, 229, 1, 117, 116, 123dvmptres 24560 . . . . . 6 (𝜑 → (ℝ D (𝑦𝐴 ↦ ((𝑦𝐵)↑(𝑀 + 1)))) = (𝑦𝐴 ↦ ((𝑀 + 1) · ((𝑦𝐵)↑𝑀))))
231230dmeqd 5774 . . . . 5 (𝜑 → dom (ℝ D (𝑦𝐴 ↦ ((𝑦𝐵)↑(𝑀 + 1)))) = dom (𝑦𝐴 ↦ ((𝑀 + 1) · ((𝑦𝐵)↑𝑀))))
232 ovex 7189 . . . . . 6 ((𝑀 + 1) · ((𝑦𝐵)↑𝑀)) ∈ V
233 eqid 2821 . . . . . 6 (𝑦𝐴 ↦ ((𝑀 + 1) · ((𝑦𝐵)↑𝑀))) = (𝑦𝐴 ↦ ((𝑀 + 1) · ((𝑦𝐵)↑𝑀)))
234232, 233dmmpti 6492 . . . . 5 dom (𝑦𝐴 ↦ ((𝑀 + 1) · ((𝑦𝐵)↑𝑀))) = 𝐴
235231, 234syl6eq 2872 . . . 4 (𝜑 → dom (ℝ D (𝑦𝐴 ↦ ((𝑦𝐵)↑(𝑀 + 1)))) = 𝐴)
236125, 235sseqtrrid 4020 . . 3 (𝜑 → (𝐴 ∖ {𝐵}) ⊆ dom (ℝ D (𝑦𝐴 ↦ ((𝑦𝐵)↑(𝑀 + 1)))))
23715, 22, 1, 9, 45, 46dvntaylp0 24960 . . . . . 6 (𝜑 → (((ℂ D𝑛 𝑇)‘(𝑁 − (𝑀 + 1)))‘𝐵) = (((ℝ D𝑛 𝐹)‘(𝑁 − (𝑀 + 1)))‘𝐵))
238237oveq2d 7172 . . . . 5 (𝜑 → ((((ℝ D𝑛 𝐹)‘(𝑁 − (𝑀 + 1)))‘𝐵) − (((ℂ D𝑛 𝑇)‘(𝑁 − (𝑀 + 1)))‘𝐵)) = ((((ℝ D𝑛 𝐹)‘(𝑁 − (𝑀 + 1)))‘𝐵) − (((ℝ D𝑛 𝐹)‘(𝑁 − (𝑀 + 1)))‘𝐵)))
239115, 44ffvelrnd 6852 . . . . . 6 (𝜑 → (((ℝ D𝑛 𝐹)‘(𝑁 − (𝑀 + 1)))‘𝐵) ∈ ℂ)
240239subidd 10985 . . . . 5 (𝜑 → ((((ℝ D𝑛 𝐹)‘(𝑁 − (𝑀 + 1)))‘𝐵) − (((ℝ D𝑛 𝐹)‘(𝑁 − (𝑀 + 1)))‘𝐵)) = 0)
241238, 240eqtrd 2856 . . . 4 (𝜑 → ((((ℝ D𝑛 𝐹)‘(𝑁 − (𝑀 + 1)))‘𝐵) − (((ℂ D𝑛 𝑇)‘(𝑁 − (𝑀 + 1)))‘𝐵)) = 0)
242116subcn 23474 . . . . . . 7 − ∈ (((TopOpen‘ℂfld) ×t (TopOpen‘ℂfld)) Cn (TopOpen‘ℂfld))
243242a1i 11 . . . . . 6 (𝜑 → − ∈ (((TopOpen‘ℂfld) ×t (TopOpen‘ℂfld)) Cn (TopOpen‘ℂfld)))
244 dvcn 24518 . . . . . . . 8 (((ℝ ⊆ ℂ ∧ ((ℝ D𝑛 𝐹)‘(𝑁 − (𝑀 + 1))):𝐴⟶ℂ ∧ 𝐴 ⊆ ℝ) ∧ dom (ℝ D ((ℝ D𝑛 𝐹)‘(𝑁 − (𝑀 + 1)))) = 𝐴) → ((ℝ D𝑛 𝐹)‘(𝑁 − (𝑀 + 1))) ∈ (𝐴cn→ℂ))
24593, 115, 1, 113, 244syl31anc 1369 . . . . . . 7 (𝜑 → ((ℝ D𝑛 𝐹)‘(𝑁 − (𝑀 + 1))) ∈ (𝐴cn→ℂ))
246137, 245eqeltrrd 2914 . . . . . 6 (𝜑 → (𝑦𝐴 ↦ (((ℝ D𝑛 𝐹)‘(𝑁 − (𝑀 + 1)))‘𝑦)) ∈ (𝐴cn→ℂ))
247 plycn 24851 . . . . . . . 8 (((ℂ D𝑛 𝑇)‘(𝑁 − (𝑀 + 1))) ∈ (Poly‘ℝ) → ((ℂ D𝑛 𝑇)‘(𝑁 − (𝑀 + 1))) ∈ (ℂ–cn→ℂ))
24863, 247syl 17 . . . . . . 7 (𝜑 → ((ℂ D𝑛 𝑇)‘(𝑁 − (𝑀 + 1))) ∈ (ℂ–cn→ℂ))
2491, 20sstrdi 3979 . . . . . . . 8 (𝜑𝐴 ⊆ ℂ)
250 cncfmptid 23520 . . . . . . . 8 ((𝐴 ⊆ ℂ ∧ ℂ ⊆ ℂ) → (𝑦𝐴𝑦) ∈ (𝐴cn→ℂ))
251249, 159, 250sylancl 588 . . . . . . 7 (𝜑 → (𝑦𝐴𝑦) ∈ (𝐴cn→ℂ))
252248, 251cncfmpt1f 23521 . . . . . 6 (𝜑 → (𝑦𝐴 ↦ (((ℂ D𝑛 𝑇)‘(𝑁 − (𝑀 + 1)))‘𝑦)) ∈ (𝐴cn→ℂ))
253116, 243, 246, 252cncfmpt2f 23522 . . . . 5 (𝜑 → (𝑦𝐴 ↦ ((((ℝ D𝑛 𝐹)‘(𝑁 − (𝑀 + 1)))‘𝑦) − (((ℂ D𝑛 𝑇)‘(𝑁 − (𝑀 + 1)))‘𝑦))) ∈ (𝐴cn→ℂ))
254 fveq2 6670 . . . . . 6 (𝑦 = 𝐵 → (((ℝ D𝑛 𝐹)‘(𝑁 − (𝑀 + 1)))‘𝑦) = (((ℝ D𝑛 𝐹)‘(𝑁 − (𝑀 + 1)))‘𝐵))
255 fveq2 6670 . . . . . 6 (𝑦 = 𝐵 → (((ℂ D𝑛 𝑇)‘(𝑁 − (𝑀 + 1)))‘𝑦) = (((ℂ D𝑛 𝑇)‘(𝑁 − (𝑀 + 1)))‘𝐵))
256254, 255oveq12d 7174 . . . . 5 (𝑦 = 𝐵 → ((((ℝ D𝑛 𝐹)‘(𝑁 − (𝑀 + 1)))‘𝑦) − (((ℂ D𝑛 𝑇)‘(𝑁 − (𝑀 + 1)))‘𝑦)) = ((((ℝ D𝑛 𝐹)‘(𝑁 − (𝑀 + 1)))‘𝐵) − (((ℂ D𝑛 𝑇)‘(𝑁 − (𝑀 + 1)))‘𝐵)))
257253, 44, 256cnmptlimc 24488 . . . 4 (𝜑 → ((((ℝ D𝑛 𝐹)‘(𝑁 − (𝑀 + 1)))‘𝐵) − (((ℂ D𝑛 𝑇)‘(𝑁 − (𝑀 + 1)))‘𝐵)) ∈ ((𝑦𝐴 ↦ ((((ℝ D𝑛 𝐹)‘(𝑁 − (𝑀 + 1)))‘𝑦) − (((ℂ D𝑛 𝑇)‘(𝑁 − (𝑀 + 1)))‘𝑦))) lim 𝐵))
258241, 257eqeltrrd 2914 . . 3 (𝜑 → 0 ∈ ((𝑦𝐴 ↦ ((((ℝ D𝑛 𝐹)‘(𝑁 − (𝑀 + 1)))‘𝑦) − (((ℂ D𝑛 𝑇)‘(𝑁 − (𝑀 + 1)))‘𝑦))) lim 𝐵))
259209subidd 10985 . . . . . 6 (𝜑 → (𝐵𝐵) = 0)
260259oveq1d 7171 . . . . 5 (𝜑 → ((𝐵𝐵)↑(𝑀 + 1)) = (0↑(𝑀 + 1)))
2612020expd 13504 . . . . 5 (𝜑 → (0↑(𝑀 + 1)) = 0)
262260, 261eqtrd 2856 . . . 4 (𝜑 → ((𝐵𝐵)↑(𝑀 + 1)) = 0)
263249sselda 3967 . . . . . . . 8 ((𝜑𝑦𝐴) → 𝑦 ∈ ℂ)
264263, 190syldan 593 . . . . . . 7 ((𝜑𝑦𝐴) → ((𝑦𝐵)↑(𝑀 + 1)) ∈ ℂ)
265264fmpttd 6879 . . . . . 6 (𝜑 → (𝑦𝐴 ↦ ((𝑦𝐵)↑(𝑀 + 1))):𝐴⟶ℂ)
266 dvcn 24518 . . . . . 6 (((ℝ ⊆ ℂ ∧ (𝑦𝐴 ↦ ((𝑦𝐵)↑(𝑀 + 1))):𝐴⟶ℂ ∧ 𝐴 ⊆ ℝ) ∧ dom (ℝ D (𝑦𝐴 ↦ ((𝑦𝐵)↑(𝑀 + 1)))) = 𝐴) → (𝑦𝐴 ↦ ((𝑦𝐵)↑(𝑀 + 1))) ∈ (𝐴cn→ℂ))
26793, 265, 1, 235, 266syl31anc 1369 . . . . 5 (𝜑 → (𝑦𝐴 ↦ ((𝑦𝐵)↑(𝑀 + 1))) ∈ (𝐴cn→ℂ))
268 oveq1 7163 . . . . . 6 (𝑦 = 𝐵 → (𝑦𝐵) = (𝐵𝐵))
269268oveq1d 7171 . . . . 5 (𝑦 = 𝐵 → ((𝑦𝐵)↑(𝑀 + 1)) = ((𝐵𝐵)↑(𝑀 + 1)))
270267, 44, 269cnmptlimc 24488 . . . 4 (𝜑 → ((𝐵𝐵)↑(𝑀 + 1)) ∈ ((𝑦𝐴 ↦ ((𝑦𝐵)↑(𝑀 + 1))) lim 𝐵))
271262, 270eqeltrrd 2914 . . 3 (𝜑 → 0 ∈ ((𝑦𝐴 ↦ ((𝑦𝐵)↑(𝑀 + 1))) lim 𝐵))
272249ssdifssd 4119 . . . . . . . . . 10 (𝜑 → (𝐴 ∖ {𝐵}) ⊆ ℂ)
273272sselda 3967 . . . . . . . . 9 ((𝜑𝑦 ∈ (𝐴 ∖ {𝐵})) → 𝑦 ∈ ℂ)
274209adantr 483 . . . . . . . . 9 ((𝜑𝑦 ∈ (𝐴 ∖ {𝐵})) → 𝐵 ∈ ℂ)
275273, 274subcld 10997 . . . . . . . 8 ((𝜑𝑦 ∈ (𝐴 ∖ {𝐵})) → (𝑦𝐵) ∈ ℂ)
276 eldifsni 4722 . . . . . . . . . 10 (𝑦 ∈ (𝐴 ∖ {𝐵}) → 𝑦𝐵)
277276adantl 484 . . . . . . . . 9 ((𝜑𝑦 ∈ (𝐴 ∖ {𝐵})) → 𝑦𝐵)
278273, 274, 277subne0d 11006 . . . . . . . 8 ((𝜑𝑦 ∈ (𝐴 ∖ {𝐵})) → (𝑦𝐵) ≠ 0)
279202adantr 483 . . . . . . . . 9 ((𝜑𝑦 ∈ (𝐴 ∖ {𝐵})) → (𝑀 + 1) ∈ ℕ)
280279nnzd 12087 . . . . . . . 8 ((𝜑𝑦 ∈ (𝐴 ∖ {𝐵})) → (𝑀 + 1) ∈ ℤ)
281275, 278, 280expne0d 13517 . . . . . . 7 ((𝜑𝑦 ∈ (𝐴 ∖ {𝐵})) → ((𝑦𝐵)↑(𝑀 + 1)) ≠ 0)
282281necomd 3071 . . . . . 6 ((𝜑𝑦 ∈ (𝐴 ∖ {𝐵})) → 0 ≠ ((𝑦𝐵)↑(𝑀 + 1)))
283282neneqd 3021 . . . . 5 ((𝜑𝑦 ∈ (𝐴 ∖ {𝐵})) → ¬ 0 = ((𝑦𝐵)↑(𝑀 + 1)))
284283nrexdv 3270 . . . 4 (𝜑 → ¬ ∃𝑦 ∈ (𝐴 ∖ {𝐵})0 = ((𝑦𝐵)↑(𝑀 + 1)))
285 df-ima 5568 . . . . . 6 ((𝑦𝐴 ↦ ((𝑦𝐵)↑(𝑀 + 1))) “ (𝐴 ∖ {𝐵})) = ran ((𝑦𝐴 ↦ ((𝑦𝐵)↑(𝑀 + 1))) ↾ (𝐴 ∖ {𝐵}))
286285eleq2i 2904 . . . . 5 (0 ∈ ((𝑦𝐴 ↦ ((𝑦𝐵)↑(𝑀 + 1))) “ (𝐴 ∖ {𝐵})) ↔ 0 ∈ ran ((𝑦𝐴 ↦ ((𝑦𝐵)↑(𝑀 + 1))) ↾ (𝐴 ∖ {𝐵})))
287 resmpt 5905 . . . . . . 7 ((𝐴 ∖ {𝐵}) ⊆ 𝐴 → ((𝑦𝐴 ↦ ((𝑦𝐵)↑(𝑀 + 1))) ↾ (𝐴 ∖ {𝐵})) = (𝑦 ∈ (𝐴 ∖ {𝐵}) ↦ ((𝑦𝐵)↑(𝑀 + 1))))
288125, 287ax-mp 5 . . . . . 6 ((𝑦𝐴 ↦ ((𝑦𝐵)↑(𝑀 + 1))) ↾ (𝐴 ∖ {𝐵})) = (𝑦 ∈ (𝐴 ∖ {𝐵}) ↦ ((𝑦𝐵)↑(𝑀 + 1)))
289 ovex 7189 . . . . . 6 ((𝑦𝐵)↑(𝑀 + 1)) ∈ V
290288, 289elrnmpti 5832 . . . . 5 (0 ∈ ran ((𝑦𝐴 ↦ ((𝑦𝐵)↑(𝑀 + 1))) ↾ (𝐴 ∖ {𝐵})) ↔ ∃𝑦 ∈ (𝐴 ∖ {𝐵})0 = ((𝑦𝐵)↑(𝑀 + 1)))
291286, 290bitri 277 . . . 4 (0 ∈ ((𝑦𝐴 ↦ ((𝑦𝐵)↑(𝑀 + 1))) “ (𝐴 ∖ {𝐵})) ↔ ∃𝑦 ∈ (𝐴 ∖ {𝐵})0 = ((𝑦𝐵)↑(𝑀 + 1)))
292284, 291sylnibr 331 . . 3 (𝜑 → ¬ 0 ∈ ((𝑦𝐴 ↦ ((𝑦𝐵)↑(𝑀 + 1))) “ (𝐴 ∖ {𝐵})))
29389adantr 483 . . . . . . . . 9 ((𝜑𝑦 ∈ (𝐴 ∖ {𝐵})) → 𝑀 ∈ ℂ)
294 1cnd 10636 . . . . . . . . 9 ((𝜑𝑦 ∈ (𝐴 ∖ {𝐵})) → 1 ∈ ℂ)
295293, 294addcld 10660 . . . . . . . 8 ((𝜑𝑦 ∈ (𝐴 ∖ {𝐵})) → (𝑀 + 1) ∈ ℂ)
296273, 195syldan 593 . . . . . . . 8 ((𝜑𝑦 ∈ (𝐴 ∖ {𝐵})) → ((𝑦𝐵)↑𝑀) ∈ ℂ)
297279nnne0d 11688 . . . . . . . 8 ((𝜑𝑦 ∈ (𝐴 ∖ {𝐵})) → (𝑀 + 1) ≠ 0)
29876adantr 483 . . . . . . . . . 10 ((𝜑𝑦 ∈ (𝐴 ∖ {𝐵})) → 𝑀 ∈ ℕ)
299298nnzd 12087 . . . . . . . . 9 ((𝜑𝑦 ∈ (𝐴 ∖ {𝐵})) → 𝑀 ∈ ℤ)
300275, 278, 299expne0d 13517 . . . . . . . 8 ((𝜑𝑦 ∈ (𝐴 ∖ {𝐵})) → ((𝑦𝐵)↑𝑀) ≠ 0)
301295, 296, 297, 300mulne0d 11292 . . . . . . 7 ((𝜑𝑦 ∈ (𝐴 ∖ {𝐵})) → ((𝑀 + 1) · ((𝑦𝐵)↑𝑀)) ≠ 0)
302301necomd 3071 . . . . . 6 ((𝜑𝑦 ∈ (𝐴 ∖ {𝐵})) → 0 ≠ ((𝑀 + 1) · ((𝑦𝐵)↑𝑀)))
303302neneqd 3021 . . . . 5 ((𝜑𝑦 ∈ (𝐴 ∖ {𝐵})) → ¬ 0 = ((𝑀 + 1) · ((𝑦𝐵)↑𝑀)))
304303nrexdv 3270 . . . 4 (𝜑 → ¬ ∃𝑦 ∈ (𝐴 ∖ {𝐵})0 = ((𝑀 + 1) · ((𝑦𝐵)↑𝑀)))
305230imaeq1d 5928 . . . . . . 7 (𝜑 → ((ℝ D (𝑦𝐴 ↦ ((𝑦𝐵)↑(𝑀 + 1)))) “ (𝐴 ∖ {𝐵})) = ((𝑦𝐴 ↦ ((𝑀 + 1) · ((𝑦𝐵)↑𝑀))) “ (𝐴 ∖ {𝐵})))
306 df-ima 5568 . . . . . . 7 ((𝑦𝐴 ↦ ((𝑀 + 1) · ((𝑦𝐵)↑𝑀))) “ (𝐴 ∖ {𝐵})) = ran ((𝑦𝐴 ↦ ((𝑀 + 1) · ((𝑦𝐵)↑𝑀))) ↾ (𝐴 ∖ {𝐵}))
307305, 306syl6eq 2872 . . . . . 6 (𝜑 → ((ℝ D (𝑦𝐴 ↦ ((𝑦𝐵)↑(𝑀 + 1)))) “ (𝐴 ∖ {𝐵})) = ran ((𝑦𝐴 ↦ ((𝑀 + 1) · ((𝑦𝐵)↑𝑀))) ↾ (𝐴 ∖ {𝐵})))
308307eleq2d 2898 . . . . 5 (𝜑 → (0 ∈ ((ℝ D (𝑦𝐴 ↦ ((𝑦𝐵)↑(𝑀 + 1)))) “ (𝐴 ∖ {𝐵})) ↔ 0 ∈ ran ((𝑦𝐴 ↦ ((𝑀 + 1) · ((𝑦𝐵)↑𝑀))) ↾ (𝐴 ∖ {𝐵}))))
309 resmpt 5905 . . . . . . 7 ((𝐴 ∖ {𝐵}) ⊆ 𝐴 → ((𝑦𝐴 ↦ ((𝑀 + 1) · ((𝑦𝐵)↑𝑀))) ↾ (𝐴 ∖ {𝐵})) = (𝑦 ∈ (𝐴 ∖ {𝐵}) ↦ ((𝑀 + 1) · ((𝑦𝐵)↑𝑀))))
310125, 309ax-mp 5 . . . . . 6 ((𝑦𝐴 ↦ ((𝑀 + 1) · ((𝑦𝐵)↑𝑀))) ↾ (𝐴 ∖ {𝐵})) = (𝑦 ∈ (𝐴 ∖ {𝐵}) ↦ ((𝑀 + 1) · ((𝑦𝐵)↑𝑀)))
311310, 232elrnmpti 5832 . . . . 5 (0 ∈ ran ((𝑦𝐴 ↦ ((𝑀 + 1) · ((𝑦𝐵)↑𝑀))) ↾ (𝐴 ∖ {𝐵})) ↔ ∃𝑦 ∈ (𝐴 ∖ {𝐵})0 = ((𝑀 + 1) · ((𝑦𝐵)↑𝑀)))
312308, 311syl6bb 289 . . . 4 (𝜑 → (0 ∈ ((ℝ D (𝑦𝐴 ↦ ((𝑦𝐵)↑(𝑀 + 1)))) “ (𝐴 ∖ {𝐵})) ↔ ∃𝑦 ∈ (𝐴 ∖ {𝐵})0 = ((𝑀 + 1) · ((𝑦𝐵)↑𝑀))))
313304, 312mtbird 327 . . 3 (𝜑 → ¬ 0 ∈ ((ℝ D (𝑦𝐴 ↦ ((𝑦𝐵)↑(𝑀 + 1)))) “ (𝐴 ∖ {𝐵})))
314 eldifi 4103 . . . . . . . 8 (𝑥 ∈ (𝐴 ∖ {𝐵}) → 𝑥𝐴)
315130ffvelrnda 6851 . . . . . . . 8 ((𝜑𝑥𝐴) → (((ℝ D𝑛 𝐹)‘(𝑁𝑀))‘𝑥) ∈ ℂ)
316314, 315sylan2 594 . . . . . . 7 ((𝜑𝑥 ∈ (𝐴 ∖ {𝐵})) → (((ℝ D𝑛 𝐹)‘(𝑁𝑀))‘𝑥) ∈ ℂ)
3171ssdifssd 4119 . . . . . . . . . 10 (𝜑 → (𝐴 ∖ {𝐵}) ⊆ ℝ)
318317sselda 3967 . . . . . . . . 9 ((𝜑𝑥 ∈ (𝐴 ∖ {𝐵})) → 𝑥 ∈ ℝ)
319318recnd 10669 . . . . . . . 8 ((𝜑𝑥 ∈ (𝐴 ∖ {𝐵})) → 𝑥 ∈ ℂ)
320147ffvelrnda 6851 . . . . . . . 8 ((𝜑𝑥 ∈ ℂ) → (((ℂ D𝑛 𝑇)‘(𝑁𝑀))‘𝑥) ∈ ℂ)
321319, 320syldan 593 . . . . . . 7 ((𝜑𝑥 ∈ (𝐴 ∖ {𝐵})) → (((ℂ D𝑛 𝑇)‘(𝑁𝑀))‘𝑥) ∈ ℂ)
322316, 321subcld 10997 . . . . . 6 ((𝜑𝑥 ∈ (𝐴 ∖ {𝐵})) → ((((ℝ D𝑛 𝐹)‘(𝑁𝑀))‘𝑥) − (((ℂ D𝑛 𝑇)‘(𝑁𝑀))‘𝑥)) ∈ ℂ)
32347adantr 483 . . . . . . . . 9 ((𝜑𝑥 ∈ (𝐴 ∖ {𝐵})) → 𝐵 ∈ ℝ)
324318, 323resubcld 11068 . . . . . . . 8 ((𝜑𝑥 ∈ (𝐴 ∖ {𝐵})) → (𝑥𝐵) ∈ ℝ)
32577adantr 483 . . . . . . . 8 ((𝜑𝑥 ∈ (𝐴 ∖ {𝐵})) → 𝑀 ∈ ℕ0)
326324, 325reexpcld 13528 . . . . . . 7 ((𝜑𝑥 ∈ (𝐴 ∖ {𝐵})) → ((𝑥𝐵)↑𝑀) ∈ ℝ)
327326recnd 10669 . . . . . 6 ((𝜑𝑥 ∈ (𝐴 ∖ {𝐵})) → ((𝑥𝐵)↑𝑀) ∈ ℂ)
328323recnd 10669 . . . . . . . 8 ((𝜑𝑥 ∈ (𝐴 ∖ {𝐵})) → 𝐵 ∈ ℂ)
329319, 328subcld 10997 . . . . . . 7 ((𝜑𝑥 ∈ (𝐴 ∖ {𝐵})) → (𝑥𝐵) ∈ ℂ)
330 eldifsni 4722 . . . . . . . . 9 (𝑥 ∈ (𝐴 ∖ {𝐵}) → 𝑥𝐵)
331330adantl 484 . . . . . . . 8 ((𝜑𝑥 ∈ (𝐴 ∖ {𝐵})) → 𝑥𝐵)
332319, 328, 331subne0d 11006 . . . . . . 7 ((𝜑𝑥 ∈ (𝐴 ∖ {𝐵})) → (𝑥𝐵) ≠ 0)
333325nn0zd 12086 . . . . . . 7 ((𝜑𝑥 ∈ (𝐴 ∖ {𝐵})) → 𝑀 ∈ ℤ)
334329, 332, 333expne0d 13517 . . . . . 6 ((𝜑𝑥 ∈ (𝐴 ∖ {𝐵})) → ((𝑥𝐵)↑𝑀) ≠ 0)
335322, 327, 334divcld 11416 . . . . 5 ((𝜑𝑥 ∈ (𝐴 ∖ {𝐵})) → (((((ℝ D𝑛 𝐹)‘(𝑁𝑀))‘𝑥) − (((ℂ D𝑛 𝑇)‘(𝑁𝑀))‘𝑥)) / ((𝑥𝐵)↑𝑀)) ∈ ℂ)
336202nnrecred 11689 . . . . . . 7 (𝜑 → (1 / (𝑀 + 1)) ∈ ℝ)
337336recnd 10669 . . . . . 6 (𝜑 → (1 / (𝑀 + 1)) ∈ ℂ)
338337adantr 483 . . . . 5 ((𝜑𝑥 ∈ (𝐴 ∖ {𝐵})) → (1 / (𝑀 + 1)) ∈ ℂ)
339 txtopon 22199 . . . . . . 7 (((TopOpen‘ℂfld) ∈ (TopOn‘ℂ) ∧ (TopOpen‘ℂfld) ∈ (TopOn‘ℂ)) → ((TopOpen‘ℂfld) ×t (TopOpen‘ℂfld)) ∈ (TopOn‘(ℂ × ℂ)))
340150, 150, 339mp2an 690 . . . . . 6 ((TopOpen‘ℂfld) ×t (TopOpen‘ℂfld)) ∈ (TopOn‘(ℂ × ℂ))
341340toponrestid 21529 . . . . 5 ((TopOpen‘ℂfld) ×t (TopOpen‘ℂfld)) = (((TopOpen‘ℂfld) ×t (TopOpen‘ℂfld)) ↾t (ℂ × ℂ))
342 taylthlem2.i . . . . 5 (𝜑 → 0 ∈ ((𝑥 ∈ (𝐴 ∖ {𝐵}) ↦ (((((ℝ D𝑛 𝐹)‘(𝑁𝑀))‘𝑥) − (((ℂ D𝑛 𝑇)‘(𝑁𝑀))‘𝑥)) / ((𝑥𝐵)↑𝑀))) lim 𝐵))
343 limcresi 24483 . . . . . . 7 ((𝑥𝐴 ↦ (1 / (𝑀 + 1))) lim 𝐵) ⊆ (((𝑥𝐴 ↦ (1 / (𝑀 + 1))) ↾ (𝐴 ∖ {𝐵})) lim 𝐵)
344 resmpt 5905 . . . . . . . . 9 ((𝐴 ∖ {𝐵}) ⊆ 𝐴 → ((𝑥𝐴 ↦ (1 / (𝑀 + 1))) ↾ (𝐴 ∖ {𝐵})) = (𝑥 ∈ (𝐴 ∖ {𝐵}) ↦ (1 / (𝑀 + 1))))
345125, 344ax-mp 5 . . . . . . . 8 ((𝑥𝐴 ↦ (1 / (𝑀 + 1))) ↾ (𝐴 ∖ {𝐵})) = (𝑥 ∈ (𝐴 ∖ {𝐵}) ↦ (1 / (𝑀 + 1)))
346345oveq1i 7166 . . . . . . 7 (((𝑥𝐴 ↦ (1 / (𝑀 + 1))) ↾ (𝐴 ∖ {𝐵})) lim 𝐵) = ((𝑥 ∈ (𝐴 ∖ {𝐵}) ↦ (1 / (𝑀 + 1))) lim 𝐵)
347343, 346sseqtri 4003 . . . . . 6 ((𝑥𝐴 ↦ (1 / (𝑀 + 1))) lim 𝐵) ⊆ ((𝑥 ∈ (𝐴 ∖ {𝐵}) ↦ (1 / (𝑀 + 1))) lim 𝐵)
348 cncfmptc 23519 . . . . . . . 8 (((1 / (𝑀 + 1)) ∈ ℝ ∧ 𝐴 ⊆ ℂ ∧ ℝ ⊆ ℂ) → (𝑥𝐴 ↦ (1 / (𝑀 + 1))) ∈ (𝐴cn→ℝ))
349336, 249, 93, 348syl3anc 1367 . . . . . . 7 (𝜑 → (𝑥𝐴 ↦ (1 / (𝑀 + 1))) ∈ (𝐴cn→ℝ))
350 eqidd 2822 . . . . . . 7 (𝑥 = 𝐵 → (1 / (𝑀 + 1)) = (1 / (𝑀 + 1)))
351349, 44, 350cnmptlimc 24488 . . . . . 6 (𝜑 → (1 / (𝑀 + 1)) ∈ ((𝑥𝐴 ↦ (1 / (𝑀 + 1))) lim 𝐵))
352347, 351sseldi 3965 . . . . 5 (𝜑 → (1 / (𝑀 + 1)) ∈ ((𝑥 ∈ (𝐴 ∖ {𝐵}) ↦ (1 / (𝑀 + 1))) lim 𝐵))
353116mulcn 23475 . . . . . 6 · ∈ (((TopOpen‘ℂfld) ×t (TopOpen‘ℂfld)) Cn (TopOpen‘ℂfld))
354 0cn 10633 . . . . . . 7 0 ∈ ℂ
355 opelxpi 5592 . . . . . . 7 ((0 ∈ ℂ ∧ (1 / (𝑀 + 1)) ∈ ℂ) → ⟨0, (1 / (𝑀 + 1))⟩ ∈ (ℂ × ℂ))
356354, 337, 355sylancr 589 . . . . . 6 (𝜑 → ⟨0, (1 / (𝑀 + 1))⟩ ∈ (ℂ × ℂ))
357340toponunii 21524 . . . . . . 7 (ℂ × ℂ) = ((TopOpen‘ℂfld) ×t (TopOpen‘ℂfld))
358357cncnpi 21886 . . . . . 6 (( · ∈ (((TopOpen‘ℂfld) ×t (TopOpen‘ℂfld)) Cn (TopOpen‘ℂfld)) ∧ ⟨0, (1 / (𝑀 + 1))⟩ ∈ (ℂ × ℂ)) → · ∈ ((((TopOpen‘ℂfld) ×t (TopOpen‘ℂfld)) CnP (TopOpen‘ℂfld))‘⟨0, (1 / (𝑀 + 1))⟩))
359353, 356, 358sylancr 589 . . . . 5 (𝜑 → · ∈ ((((TopOpen‘ℂfld) ×t (TopOpen‘ℂfld)) CnP (TopOpen‘ℂfld))‘⟨0, (1 / (𝑀 + 1))⟩))
360335, 338, 160, 160, 116, 341, 342, 352, 359limccnp2 24490 . . . 4 (𝜑 → (0 · (1 / (𝑀 + 1))) ∈ ((𝑥 ∈ (𝐴 ∖ {𝐵}) ↦ ((((((ℝ D𝑛 𝐹)‘(𝑁𝑀))‘𝑥) − (((ℂ D𝑛 𝑇)‘(𝑁𝑀))‘𝑥)) / ((𝑥𝐵)↑𝑀)) · (1 / (𝑀 + 1)))) lim 𝐵))
361337mul02d 10838 . . . 4 (𝜑 → (0 · (1 / (𝑀 + 1))) = 0)
362176fveq1d 6672 . . . . . . . . 9 (𝜑 → ((ℝ D (𝑦𝐴 ↦ ((((ℝ D𝑛 𝐹)‘(𝑁 − (𝑀 + 1)))‘𝑦) − (((ℂ D𝑛 𝑇)‘(𝑁 − (𝑀 + 1)))‘𝑦))))‘𝑥) = ((𝑦𝐴 ↦ ((((ℝ D𝑛 𝐹)‘(𝑁𝑀))‘𝑦) − (((ℂ D𝑛 𝑇)‘(𝑁𝑀))‘𝑦)))‘𝑥))
363 fveq2 6670 . . . . . . . . . . . 12 (𝑦 = 𝑥 → (((ℝ D𝑛 𝐹)‘(𝑁𝑀))‘𝑦) = (((ℝ D𝑛 𝐹)‘(𝑁𝑀))‘𝑥))
364 fveq2 6670 . . . . . . . . . . . 12 (𝑦 = 𝑥 → (((ℂ D𝑛 𝑇)‘(𝑁𝑀))‘𝑦) = (((ℂ D𝑛 𝑇)‘(𝑁𝑀))‘𝑥))
365363, 364oveq12d 7174 . . . . . . . . . . 11 (𝑦 = 𝑥 → ((((ℝ D𝑛 𝐹)‘(𝑁𝑀))‘𝑦) − (((ℂ D𝑛 𝑇)‘(𝑁𝑀))‘𝑦)) = ((((ℝ D𝑛 𝐹)‘(𝑁𝑀))‘𝑥) − (((ℂ D𝑛 𝑇)‘(𝑁𝑀))‘𝑥)))
366 ovex 7189 . . . . . . . . . . 11 ((((ℝ D𝑛 𝐹)‘(𝑁𝑀))‘𝑥) − (((ℂ D𝑛 𝑇)‘(𝑁𝑀))‘𝑥)) ∈ V
367365, 179, 366fvmpt 6768 . . . . . . . . . 10 (𝑥𝐴 → ((𝑦𝐴 ↦ ((((ℝ D𝑛 𝐹)‘(𝑁𝑀))‘𝑦) − (((ℂ D𝑛 𝑇)‘(𝑁𝑀))‘𝑦)))‘𝑥) = ((((ℝ D𝑛 𝐹)‘(𝑁𝑀))‘𝑥) − (((ℂ D𝑛 𝑇)‘(𝑁𝑀))‘𝑥)))
368314, 367syl 17 . . . . . . . . 9 (𝑥 ∈ (𝐴 ∖ {𝐵}) → ((𝑦𝐴 ↦ ((((ℝ D𝑛 𝐹)‘(𝑁𝑀))‘𝑦) − (((ℂ D𝑛 𝑇)‘(𝑁𝑀))‘𝑦)))‘𝑥) = ((((ℝ D𝑛 𝐹)‘(𝑁𝑀))‘𝑥) − (((ℂ D𝑛 𝑇)‘(𝑁𝑀))‘𝑥)))
369362, 368sylan9eq 2876 . . . . . . . 8 ((𝜑𝑥 ∈ (𝐴 ∖ {𝐵})) → ((ℝ D (𝑦𝐴 ↦ ((((ℝ D𝑛 𝐹)‘(𝑁 − (𝑀 + 1)))‘𝑦) − (((ℂ D𝑛 𝑇)‘(𝑁 − (𝑀 + 1)))‘𝑦))))‘𝑥) = ((((ℝ D𝑛 𝐹)‘(𝑁𝑀))‘𝑥) − (((ℂ D𝑛 𝑇)‘(𝑁𝑀))‘𝑥)))
370230fveq1d 6672 . . . . . . . . . 10 (𝜑 → ((ℝ D (𝑦𝐴 ↦ ((𝑦𝐵)↑(𝑀 + 1))))‘𝑥) = ((𝑦𝐴 ↦ ((𝑀 + 1) · ((𝑦𝐵)↑𝑀)))‘𝑥))
371 oveq1 7163 . . . . . . . . . . . . . 14 (𝑦 = 𝑥 → (𝑦𝐵) = (𝑥𝐵))
372371oveq1d 7171 . . . . . . . . . . . . 13 (𝑦 = 𝑥 → ((𝑦𝐵)↑𝑀) = ((𝑥𝐵)↑𝑀))
373372oveq2d 7172 . . . . . . . . . . . 12 (𝑦 = 𝑥 → ((𝑀 + 1) · ((𝑦𝐵)↑𝑀)) = ((𝑀 + 1) · ((𝑥𝐵)↑𝑀)))
374 ovex 7189 . . . . . . . . . . . 12 ((𝑀 + 1) · ((𝑥𝐵)↑𝑀)) ∈ V
375373, 233, 374fvmpt 6768 . . . . . . . . . . 11 (𝑥𝐴 → ((𝑦𝐴 ↦ ((𝑀 + 1) · ((𝑦𝐵)↑𝑀)))‘𝑥) = ((𝑀 + 1) · ((𝑥𝐵)↑𝑀)))
376314, 375syl 17 . . . . . . . . . 10 (𝑥 ∈ (𝐴 ∖ {𝐵}) → ((𝑦𝐴 ↦ ((𝑀 + 1) · ((𝑦𝐵)↑𝑀)))‘𝑥) = ((𝑀 + 1) · ((𝑥𝐵)↑𝑀)))
377370, 376sylan9eq 2876 . . . . . . . . 9 ((𝜑𝑥 ∈ (𝐴 ∖ {𝐵})) → ((ℝ D (𝑦𝐴 ↦ ((𝑦𝐵)↑(𝑀 + 1))))‘𝑥) = ((𝑀 + 1) · ((𝑥𝐵)↑𝑀)))
378202adantr 483 . . . . . . . . . . 11 ((𝜑𝑥 ∈ (𝐴 ∖ {𝐵})) → (𝑀 + 1) ∈ ℕ)
379378nncnd 11654 . . . . . . . . . 10 ((𝜑𝑥 ∈ (𝐴 ∖ {𝐵})) → (𝑀 + 1) ∈ ℂ)
380379, 327mulcomd 10662 . . . . . . . . 9 ((𝜑𝑥 ∈ (𝐴 ∖ {𝐵})) → ((𝑀 + 1) · ((𝑥𝐵)↑𝑀)) = (((𝑥𝐵)↑𝑀) · (𝑀 + 1)))
381377, 380eqtrd 2856 . . . . . . . 8 ((𝜑𝑥 ∈ (𝐴 ∖ {𝐵})) → ((ℝ D (𝑦𝐴 ↦ ((𝑦𝐵)↑(𝑀 + 1))))‘𝑥) = (((𝑥𝐵)↑𝑀) · (𝑀 + 1)))
382369, 381oveq12d 7174 . . . . . . 7 ((𝜑𝑥 ∈ (𝐴 ∖ {𝐵})) → (((ℝ D (𝑦𝐴 ↦ ((((ℝ D𝑛 𝐹)‘(𝑁 − (𝑀 + 1)))‘𝑦) − (((ℂ D𝑛 𝑇)‘(𝑁 − (𝑀 + 1)))‘𝑦))))‘𝑥) / ((ℝ D (𝑦𝐴 ↦ ((𝑦𝐵)↑(𝑀 + 1))))‘𝑥)) = (((((ℝ D𝑛 𝐹)‘(𝑁𝑀))‘𝑥) − (((ℂ D𝑛 𝑇)‘(𝑁𝑀))‘𝑥)) / (((𝑥𝐵)↑𝑀) · (𝑀 + 1))))
383378nnne0d 11688 . . . . . . . 8 ((𝜑𝑥 ∈ (𝐴 ∖ {𝐵})) → (𝑀 + 1) ≠ 0)
384322, 327, 379, 334, 383divdiv1d 11447 . . . . . . 7 ((𝜑𝑥 ∈ (𝐴 ∖ {𝐵})) → ((((((ℝ D𝑛 𝐹)‘(𝑁𝑀))‘𝑥) − (((ℂ D𝑛 𝑇)‘(𝑁𝑀))‘𝑥)) / ((𝑥𝐵)↑𝑀)) / (𝑀 + 1)) = (((((ℝ D𝑛 𝐹)‘(𝑁𝑀))‘𝑥) − (((ℂ D𝑛 𝑇)‘(𝑁𝑀))‘𝑥)) / (((𝑥𝐵)↑𝑀) · (𝑀 + 1))))
385335, 379, 383divrecd 11419 . . . . . . 7 ((𝜑𝑥 ∈ (𝐴 ∖ {𝐵})) → ((((((ℝ D𝑛 𝐹)‘(𝑁𝑀))‘𝑥) − (((ℂ D𝑛 𝑇)‘(𝑁𝑀))‘𝑥)) / ((𝑥𝐵)↑𝑀)) / (𝑀 + 1)) = ((((((ℝ D𝑛 𝐹)‘(𝑁𝑀))‘𝑥) − (((ℂ D𝑛 𝑇)‘(𝑁𝑀))‘𝑥)) / ((𝑥𝐵)↑𝑀)) · (1 / (𝑀 + 1))))
386382, 384, 3853eqtr2rd 2863 . . . . . 6 ((𝜑𝑥 ∈ (𝐴 ∖ {𝐵})) → ((((((ℝ D𝑛 𝐹)‘(𝑁𝑀))‘𝑥) − (((ℂ D𝑛 𝑇)‘(𝑁𝑀))‘𝑥)) / ((𝑥𝐵)↑𝑀)) · (1 / (𝑀 + 1))) = (((ℝ D (𝑦𝐴 ↦ ((((ℝ D𝑛 𝐹)‘(𝑁 − (𝑀 + 1)))‘𝑦) − (((ℂ D𝑛 𝑇)‘(𝑁 − (𝑀 + 1)))‘𝑦))))‘𝑥) / ((ℝ D (𝑦𝐴 ↦ ((𝑦𝐵)↑(𝑀 + 1))))‘𝑥)))
387386mpteq2dva 5161 . . . . 5 (𝜑 → (𝑥 ∈ (𝐴 ∖ {𝐵}) ↦ ((((((ℝ D𝑛 𝐹)‘(𝑁𝑀))‘𝑥) − (((ℂ D𝑛 𝑇)‘(𝑁𝑀))‘𝑥)) / ((𝑥𝐵)↑𝑀)) · (1 / (𝑀 + 1)))) = (𝑥 ∈ (𝐴 ∖ {𝐵}) ↦ (((ℝ D (𝑦𝐴 ↦ ((((ℝ D𝑛 𝐹)‘(𝑁 − (𝑀 + 1)))‘𝑦) − (((ℂ D𝑛 𝑇)‘(𝑁 − (𝑀 + 1)))‘𝑦))))‘𝑥) / ((ℝ D (𝑦𝐴 ↦ ((𝑦𝐵)↑(𝑀 + 1))))‘𝑥))))
388387oveq1d 7171 . . . 4 (𝜑 → ((𝑥 ∈ (𝐴 ∖ {𝐵}) ↦ ((((((ℝ D𝑛 𝐹)‘(𝑁𝑀))‘𝑥) − (((ℂ D𝑛 𝑇)‘(𝑁𝑀))‘𝑥)) / ((𝑥𝐵)↑𝑀)) · (1 / (𝑀 + 1)))) lim 𝐵) = ((𝑥 ∈ (𝐴 ∖ {𝐵}) ↦ (((ℝ D (𝑦𝐴 ↦ ((((ℝ D𝑛 𝐹)‘(𝑁 − (𝑀 + 1)))‘𝑦) − (((ℂ D𝑛 𝑇)‘(𝑁 − (𝑀 + 1)))‘𝑦))))‘𝑥) / ((ℝ D (𝑦𝐴 ↦ ((𝑦𝐵)↑(𝑀 + 1))))‘𝑥))) lim 𝐵))
389360, 361, 3883eltr3d 2927 . . 3 (𝜑 → 0 ∈ ((𝑥 ∈ (𝐴 ∖ {𝐵}) ↦ (((ℝ D (𝑦𝐴 ↦ ((((ℝ D𝑛 𝐹)‘(𝑁 − (𝑀 + 1)))‘𝑦) − (((ℂ D𝑛 𝑇)‘(𝑁 − (𝑀 + 1)))‘𝑦))))‘𝑥) / ((ℝ D (𝑦𝐴 ↦ ((𝑦𝐵)↑(𝑀 + 1))))‘𝑥))) lim 𝐵))
3901, 70, 83, 123, 44, 124, 182, 236, 258, 271, 292, 313, 389lhop 24613 . 2 (𝜑 → 0 ∈ ((𝑥 ∈ (𝐴 ∖ {𝐵}) ↦ (((𝑦𝐴 ↦ ((((ℝ D𝑛 𝐹)‘(𝑁 − (𝑀 + 1)))‘𝑦) − (((ℂ D𝑛 𝑇)‘(𝑁 − (𝑀 + 1)))‘𝑦)))‘𝑥) / ((𝑦𝐴 ↦ ((𝑦𝐵)↑(𝑀 + 1)))‘𝑥))) lim 𝐵))
391314adantl 484 . . . . . 6 ((𝜑𝑥 ∈ (𝐴 ∖ {𝐵})) → 𝑥𝐴)
392 fveq2 6670 . . . . . . . 8 (𝑦 = 𝑥 → (((ℝ D𝑛 𝐹)‘(𝑁 − (𝑀 + 1)))‘𝑦) = (((ℝ D𝑛 𝐹)‘(𝑁 − (𝑀 + 1)))‘𝑥))
393 fveq2 6670 . . . . . . . 8 (𝑦 = 𝑥 → (((ℂ D𝑛 𝑇)‘(𝑁 − (𝑀 + 1)))‘𝑦) = (((ℂ D𝑛 𝑇)‘(𝑁 − (𝑀 + 1)))‘𝑥))
394392, 393oveq12d 7174 . . . . . . 7 (𝑦 = 𝑥 → ((((ℝ D𝑛 𝐹)‘(𝑁 − (𝑀 + 1)))‘𝑦) − (((ℂ D𝑛 𝑇)‘(𝑁 − (𝑀 + 1)))‘𝑦)) = ((((ℝ D𝑛 𝐹)‘(𝑁 − (𝑀 + 1)))‘𝑥) − (((ℂ D𝑛 𝑇)‘(𝑁 − (𝑀 + 1)))‘𝑥)))
395 eqid 2821 . . . . . . 7 (𝑦𝐴 ↦ ((((ℝ D𝑛 𝐹)‘(𝑁 − (𝑀 + 1)))‘𝑦) − (((ℂ D𝑛 𝑇)‘(𝑁 − (𝑀 + 1)))‘𝑦))) = (𝑦𝐴 ↦ ((((ℝ D𝑛 𝐹)‘(𝑁 − (𝑀 + 1)))‘𝑦) − (((ℂ D𝑛 𝑇)‘(𝑁 − (𝑀 + 1)))‘𝑦)))
396 ovex 7189 . . . . . . 7 ((((ℝ D𝑛 𝐹)‘(𝑁 − (𝑀 + 1)))‘𝑥) − (((ℂ D𝑛 𝑇)‘(𝑁 − (𝑀 + 1)))‘𝑥)) ∈ V
397394, 395, 396fvmpt 6768 . . . . . 6 (𝑥𝐴 → ((𝑦𝐴 ↦ ((((ℝ D𝑛 𝐹)‘(𝑁 − (𝑀 + 1)))‘𝑦) − (((ℂ D𝑛 𝑇)‘(𝑁 − (𝑀 + 1)))‘𝑦)))‘𝑥) = ((((ℝ D𝑛 𝐹)‘(𝑁 − (𝑀 + 1)))‘𝑥) − (((ℂ D𝑛 𝑇)‘(𝑁 − (𝑀 + 1)))‘𝑥)))
398391, 397syl 17 . . . . 5 ((𝜑𝑥 ∈ (𝐴 ∖ {𝐵})) → ((𝑦𝐴 ↦ ((((ℝ D𝑛 𝐹)‘(𝑁 − (𝑀 + 1)))‘𝑦) − (((ℂ D𝑛 𝑇)‘(𝑁 − (𝑀 + 1)))‘𝑦)))‘𝑥) = ((((ℝ D𝑛 𝐹)‘(𝑁 − (𝑀 + 1)))‘𝑥) − (((ℂ D𝑛 𝑇)‘(𝑁 − (𝑀 + 1)))‘𝑥)))
399371oveq1d 7171 . . . . . . 7 (𝑦 = 𝑥 → ((𝑦𝐵)↑(𝑀 + 1)) = ((𝑥𝐵)↑(𝑀 + 1)))
400 eqid 2821 . . . . . . 7 (𝑦𝐴 ↦ ((𝑦𝐵)↑(𝑀 + 1))) = (𝑦𝐴 ↦ ((𝑦𝐵)↑(𝑀 + 1)))
401 ovex 7189 . . . . . . 7 ((𝑥𝐵)↑(𝑀 + 1)) ∈ V
402399, 400, 401fvmpt 6768 . . . . . 6 (𝑥𝐴 → ((𝑦𝐴 ↦ ((𝑦𝐵)↑(𝑀 + 1)))‘𝑥) = ((𝑥𝐵)↑(𝑀 + 1)))
403391, 402syl 17 . . . . 5 ((𝜑𝑥 ∈ (𝐴 ∖ {𝐵})) → ((𝑦𝐴 ↦ ((𝑦𝐵)↑(𝑀 + 1)))‘𝑥) = ((𝑥𝐵)↑(𝑀 + 1)))
404398, 403oveq12d 7174 . . . 4 ((𝜑𝑥 ∈ (𝐴 ∖ {𝐵})) → (((𝑦𝐴 ↦ ((((ℝ D𝑛 𝐹)‘(𝑁 − (𝑀 + 1)))‘𝑦) − (((ℂ D𝑛 𝑇)‘(𝑁 − (𝑀 + 1)))‘𝑦)))‘𝑥) / ((𝑦𝐴 ↦ ((𝑦𝐵)↑(𝑀 + 1)))‘𝑥)) = (((((ℝ D𝑛 𝐹)‘(𝑁 − (𝑀 + 1)))‘𝑥) − (((ℂ D𝑛 𝑇)‘(𝑁 − (𝑀 + 1)))‘𝑥)) / ((𝑥𝐵)↑(𝑀 + 1))))
405404mpteq2dva 5161 . . 3 (𝜑 → (𝑥 ∈ (𝐴 ∖ {𝐵}) ↦ (((𝑦𝐴 ↦ ((((ℝ D𝑛 𝐹)‘(𝑁 − (𝑀 + 1)))‘𝑦) − (((ℂ D𝑛 𝑇)‘(𝑁 − (𝑀 + 1)))‘𝑦)))‘𝑥) / ((𝑦𝐴 ↦ ((𝑦𝐵)↑(𝑀 + 1)))‘𝑥))) = (𝑥 ∈ (𝐴 ∖ {𝐵}) ↦ (((((ℝ D𝑛 𝐹)‘(𝑁 − (𝑀 + 1)))‘𝑥) − (((ℂ D𝑛 𝑇)‘(𝑁 − (𝑀 + 1)))‘𝑥)) / ((𝑥𝐵)↑(𝑀 + 1)))))
406405oveq1d 7171 . 2 (𝜑 → ((𝑥 ∈ (𝐴 ∖ {𝐵}) ↦ (((𝑦𝐴 ↦ ((((ℝ D𝑛 𝐹)‘(𝑁 − (𝑀 + 1)))‘𝑦) − (((ℂ D𝑛 𝑇)‘(𝑁 − (𝑀 + 1)))‘𝑦)))‘𝑥) / ((𝑦𝐴 ↦ ((𝑦𝐵)↑(𝑀 + 1)))‘𝑥))) lim 𝐵) = ((𝑥 ∈ (𝐴 ∖ {𝐵}) ↦ (((((ℝ D𝑛 𝐹)‘(𝑁 − (𝑀 + 1)))‘𝑥) − (((ℂ D𝑛 𝑇)‘(𝑁 − (𝑀 + 1)))‘𝑥)) / ((𝑥𝐵)↑(𝑀 + 1)))) lim 𝐵))
407390, 406eleqtrd 2915 1 (𝜑 → 0 ∈ ((𝑥 ∈ (𝐴 ∖ {𝐵}) ↦ (((((ℝ D𝑛 𝐹)‘(𝑁 − (𝑀 + 1)))‘𝑥) − (((ℂ D𝑛 𝑇)‘(𝑁 − (𝑀 + 1)))‘𝑥)) / ((𝑥𝐵)↑(𝑀 + 1)))) lim 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398   = wceq 1537  wcel 2114  wne 3016  wrex 3139  Vcvv 3494  cdif 3933  cin 3935  wss 3936  {csn 4567  {cpr 4569  cop 4573   class class class wbr 5066  cmpt 5146   × cxp 5553  dom cdm 5555  ran crn 5556  cres 5557  cima 5558  wf 6351  cfv 6355  (class class class)co 7156  m cmap 8406  pm cpm 8407  cc 10535  cr 10536  0cc0 10537  1c1 10538   + caddc 10540   · cmul 10542  cle 10676  cmin 10870   / cdiv 11297  cn 11638  0cn0 11898  cuz 12244  (,)cioo 12739  ...cfz 12893  ..^cfzo 13034  cexp 13430  !cfa 13634  TopOpenctopn 16695  topGenctg 16711  DivRingcdr 19502  SubRingcsubrg 19531  fldccnfld 20545  fldcrefld 20748  Topctop 21501  TopOnctopon 21518  intcnt 21625   Cn ccn 21832   CnP ccnp 21833   ×t ctx 22168  cnccncf 23484   lim climc 24460   D cdv 24461   D𝑛 cdvn 24462  Polycply 24774  degcdgr 24777   Tayl ctayl 24941
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2793  ax-rep 5190  ax-sep 5203  ax-nul 5210  ax-pow 5266  ax-pr 5330  ax-un 7461  ax-inf2 9104  ax-cnex 10593  ax-resscn 10594  ax-1cn 10595  ax-icn 10596  ax-addcl 10597  ax-addrcl 10598  ax-mulcl 10599  ax-mulrcl 10600  ax-mulcom 10601  ax-addass 10602  ax-mulass 10603  ax-distr 10604  ax-i2m1 10605  ax-1ne0 10606  ax-1rid 10607  ax-rnegex 10608  ax-rrecex 10609  ax-cnre 10610  ax-pre-lttri 10611  ax-pre-lttrn 10612  ax-pre-ltadd 10613  ax-pre-mulgt0 10614  ax-pre-sup 10615  ax-addf 10616  ax-mulf 10617
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-fal 1550  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3496  df-sbc 3773  df-csb 3884  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-pss 3954  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4568  df-pr 4570  df-tp 4572  df-op 4574  df-uni 4839  df-int 4877  df-iun 4921  df-iin 4922  df-br 5067  df-opab 5129  df-mpt 5147  df-tr 5173  df-id 5460  df-eprel 5465  df-po 5474  df-so 5475  df-fr 5514  df-se 5515  df-we 5516  df-xp 5561  df-rel 5562  df-cnv 5563  df-co 5564  df-dm 5565  df-rn 5566  df-res 5567  df-ima 5568  df-pred 6148  df-ord 6194  df-on 6195  df-lim 6196  df-suc 6197  df-iota 6314  df-fun 6357  df-fn 6358  df-f 6359  df-f1 6360  df-fo 6361  df-f1o 6362  df-fv 6363  df-isom 6364  df-riota 7114  df-ov 7159  df-oprab 7160  df-mpo 7161  df-of 7409  df-om 7581  df-1st 7689  df-2nd 7690  df-supp 7831  df-tpos 7892  df-wrecs 7947  df-recs 8008  df-rdg 8046  df-1o 8102  df-2o 8103  df-oadd 8106  df-er 8289  df-map 8408  df-pm 8409  df-ixp 8462  df-en 8510  df-dom 8511  df-sdom 8512  df-fin 8513  df-fsupp 8834  df-fi 8875  df-sup 8906  df-inf 8907  df-oi 8974  df-card 9368  df-pnf 10677  df-mnf 10678  df-xr 10679  df-ltxr 10680  df-le 10681  df-sub 10872  df-neg 10873  df-div 11298  df-nn 11639  df-2 11701  df-3 11702  df-4 11703  df-5 11704  df-6 11705  df-7 11706  df-8 11707  df-9 11708  df-n0 11899  df-xnn0 11969  df-z 11983  df-dec 12100  df-uz 12245  df-q 12350  df-rp 12391  df-xneg 12508  df-xadd 12509  df-xmul 12510  df-ioo 12743  df-ioc 12744  df-ico 12745  df-icc 12746  df-fz 12894  df-fzo 13035  df-fl 13163  df-seq 13371  df-exp 13431  df-fac 13635  df-hash 13692  df-cj 14458  df-re 14459  df-im 14460  df-sqrt 14594  df-abs 14595  df-clim 14845  df-rlim 14846  df-sum 15043  df-struct 16485  df-ndx 16486  df-slot 16487  df-base 16489  df-sets 16490  df-ress 16491  df-plusg 16578  df-mulr 16579  df-starv 16580  df-sca 16581  df-vsca 16582  df-ip 16583  df-tset 16584  df-ple 16585  df-ds 16587  df-unif 16588  df-hom 16589  df-cco 16590  df-rest 16696  df-topn 16697  df-0g 16715  df-gsum 16716  df-topgen 16717  df-pt 16718  df-prds 16721  df-xrs 16775  df-qtop 16780  df-imas 16781  df-xps 16783  df-mre 16857  df-mrc 16858  df-acs 16860  df-mgm 17852  df-sgrp 17901  df-mnd 17912  df-submnd 17957  df-grp 18106  df-minusg 18107  df-mulg 18225  df-subg 18276  df-cntz 18447  df-cmn 18908  df-abl 18909  df-mgp 19240  df-ur 19252  df-ring 19299  df-cring 19300  df-oppr 19373  df-dvdsr 19391  df-unit 19392  df-invr 19422  df-dvr 19433  df-drng 19504  df-subrg 19533  df-psmet 20537  df-xmet 20538  df-met 20539  df-bl 20540  df-mopn 20541  df-fbas 20542  df-fg 20543  df-cnfld 20546  df-refld 20749  df-top 21502  df-topon 21519  df-topsp 21541  df-bases 21554  df-cld 21627  df-ntr 21628  df-cls 21629  df-nei 21706  df-lp 21744  df-perf 21745  df-cn 21835  df-cnp 21836  df-haus 21923  df-cmp 21995  df-tx 22170  df-hmeo 22363  df-fil 22454  df-fm 22546  df-flim 22547  df-flf 22548  df-tsms 22735  df-xms 22930  df-ms 22931  df-tms 22932  df-cncf 23486  df-0p 24271  df-limc 24464  df-dv 24465  df-dvn 24466  df-ply 24778  df-idp 24779  df-coe 24780  df-dgr 24781  df-tayl 24943
This theorem is referenced by:  taylth  24963
  Copyright terms: Public domain W3C validator