MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  atantan Structured version   Visualization version   GIF version

Theorem atantan 25501
Description: The arctangent function is an inverse to tan. (Contributed by Mario Carneiro, 5-Apr-2015.)
Assertion
Ref Expression
atantan ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → (arctan‘(tan‘𝐴)) = 𝐴)

Proof of Theorem atantan
StepHypRef Expression
1 cosne0 25114 . . . 4 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → (cos‘𝐴) ≠ 0)
2 atandmtan 25498 . . . 4 ((𝐴 ∈ ℂ ∧ (cos‘𝐴) ≠ 0) → (tan‘𝐴) ∈ dom arctan)
31, 2syldan 593 . . 3 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → (tan‘𝐴) ∈ dom arctan)
4 atanval 25462 . . 3 ((tan‘𝐴) ∈ dom arctan → (arctan‘(tan‘𝐴)) = ((i / 2) · ((log‘(1 − (i · (tan‘𝐴)))) − (log‘(1 + (i · (tan‘𝐴)))))))
53, 4syl 17 . 2 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → (arctan‘(tan‘𝐴)) = ((i / 2) · ((log‘(1 − (i · (tan‘𝐴)))) − (log‘(1 + (i · (tan‘𝐴)))))))
6 ax-1cn 10595 . . . . . . 7 1 ∈ ℂ
7 ax-icn 10596 . . . . . . . 8 i ∈ ℂ
8 tancl 15482 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ (cos‘𝐴) ≠ 0) → (tan‘𝐴) ∈ ℂ)
91, 8syldan 593 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → (tan‘𝐴) ∈ ℂ)
10 mulcl 10621 . . . . . . . 8 ((i ∈ ℂ ∧ (tan‘𝐴) ∈ ℂ) → (i · (tan‘𝐴)) ∈ ℂ)
117, 9, 10sylancr 589 . . . . . . 7 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → (i · (tan‘𝐴)) ∈ ℂ)
12 addcl 10619 . . . . . . 7 ((1 ∈ ℂ ∧ (i · (tan‘𝐴)) ∈ ℂ) → (1 + (i · (tan‘𝐴))) ∈ ℂ)
136, 11, 12sylancr 589 . . . . . 6 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → (1 + (i · (tan‘𝐴))) ∈ ℂ)
14 atandm2 25455 . . . . . . . 8 ((tan‘𝐴) ∈ dom arctan ↔ ((tan‘𝐴) ∈ ℂ ∧ (1 − (i · (tan‘𝐴))) ≠ 0 ∧ (1 + (i · (tan‘𝐴))) ≠ 0))
153, 14sylib 220 . . . . . . 7 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → ((tan‘𝐴) ∈ ℂ ∧ (1 − (i · (tan‘𝐴))) ≠ 0 ∧ (1 + (i · (tan‘𝐴))) ≠ 0))
1615simp3d 1140 . . . . . 6 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → (1 + (i · (tan‘𝐴))) ≠ 0)
1713, 16logcld 25154 . . . . 5 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → (log‘(1 + (i · (tan‘𝐴)))) ∈ ℂ)
18 subcl 10885 . . . . . . 7 ((1 ∈ ℂ ∧ (i · (tan‘𝐴)) ∈ ℂ) → (1 − (i · (tan‘𝐴))) ∈ ℂ)
196, 11, 18sylancr 589 . . . . . 6 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → (1 − (i · (tan‘𝐴))) ∈ ℂ)
2015simp2d 1139 . . . . . 6 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → (1 − (i · (tan‘𝐴))) ≠ 0)
2119, 20logcld 25154 . . . . 5 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → (log‘(1 − (i · (tan‘𝐴)))) ∈ ℂ)
2217, 21negsubdi2d 11013 . . . 4 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → -((log‘(1 + (i · (tan‘𝐴)))) − (log‘(1 − (i · (tan‘𝐴))))) = ((log‘(1 − (i · (tan‘𝐴)))) − (log‘(1 + (i · (tan‘𝐴))))))
23 efsub 15453 . . . . . . . . 9 (((log‘(1 + (i · (tan‘𝐴)))) ∈ ℂ ∧ (log‘(1 − (i · (tan‘𝐴)))) ∈ ℂ) → (exp‘((log‘(1 + (i · (tan‘𝐴)))) − (log‘(1 − (i · (tan‘𝐴)))))) = ((exp‘(log‘(1 + (i · (tan‘𝐴))))) / (exp‘(log‘(1 − (i · (tan‘𝐴)))))))
2417, 21, 23syl2anc 586 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → (exp‘((log‘(1 + (i · (tan‘𝐴)))) − (log‘(1 − (i · (tan‘𝐴)))))) = ((exp‘(log‘(1 + (i · (tan‘𝐴))))) / (exp‘(log‘(1 − (i · (tan‘𝐴)))))))
25 coscl 15480 . . . . . . . . . . . . 13 (𝐴 ∈ ℂ → (cos‘𝐴) ∈ ℂ)
2625adantr 483 . . . . . . . . . . . 12 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → (cos‘𝐴) ∈ ℂ)
27 sincl 15479 . . . . . . . . . . . . . 14 (𝐴 ∈ ℂ → (sin‘𝐴) ∈ ℂ)
2827adantr 483 . . . . . . . . . . . . 13 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → (sin‘𝐴) ∈ ℂ)
29 mulcl 10621 . . . . . . . . . . . . 13 ((i ∈ ℂ ∧ (sin‘𝐴) ∈ ℂ) → (i · (sin‘𝐴)) ∈ ℂ)
307, 28, 29sylancr 589 . . . . . . . . . . . 12 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → (i · (sin‘𝐴)) ∈ ℂ)
3126, 30, 26, 1divdird 11454 . . . . . . . . . . 11 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → (((cos‘𝐴) + (i · (sin‘𝐴))) / (cos‘𝐴)) = (((cos‘𝐴) / (cos‘𝐴)) + ((i · (sin‘𝐴)) / (cos‘𝐴))))
3226, 1dividd 11414 . . . . . . . . . . . 12 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → ((cos‘𝐴) / (cos‘𝐴)) = 1)
337a1i 11 . . . . . . . . . . . . . 14 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → i ∈ ℂ)
3433, 28, 26, 1divassd 11451 . . . . . . . . . . . . 13 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → ((i · (sin‘𝐴)) / (cos‘𝐴)) = (i · ((sin‘𝐴) / (cos‘𝐴))))
35 tanval 15481 . . . . . . . . . . . . . . 15 ((𝐴 ∈ ℂ ∧ (cos‘𝐴) ≠ 0) → (tan‘𝐴) = ((sin‘𝐴) / (cos‘𝐴)))
361, 35syldan 593 . . . . . . . . . . . . . 14 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → (tan‘𝐴) = ((sin‘𝐴) / (cos‘𝐴)))
3736oveq2d 7172 . . . . . . . . . . . . 13 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → (i · (tan‘𝐴)) = (i · ((sin‘𝐴) / (cos‘𝐴))))
3834, 37eqtr4d 2859 . . . . . . . . . . . 12 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → ((i · (sin‘𝐴)) / (cos‘𝐴)) = (i · (tan‘𝐴)))
3932, 38oveq12d 7174 . . . . . . . . . . 11 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → (((cos‘𝐴) / (cos‘𝐴)) + ((i · (sin‘𝐴)) / (cos‘𝐴))) = (1 + (i · (tan‘𝐴))))
4031, 39eqtrd 2856 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → (((cos‘𝐴) + (i · (sin‘𝐴))) / (cos‘𝐴)) = (1 + (i · (tan‘𝐴))))
41 efival 15505 . . . . . . . . . . . 12 (𝐴 ∈ ℂ → (exp‘(i · 𝐴)) = ((cos‘𝐴) + (i · (sin‘𝐴))))
4241adantr 483 . . . . . . . . . . 11 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → (exp‘(i · 𝐴)) = ((cos‘𝐴) + (i · (sin‘𝐴))))
4342oveq1d 7171 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → ((exp‘(i · 𝐴)) / (cos‘𝐴)) = (((cos‘𝐴) + (i · (sin‘𝐴))) / (cos‘𝐴)))
44 eflog 25160 . . . . . . . . . . 11 (((1 + (i · (tan‘𝐴))) ∈ ℂ ∧ (1 + (i · (tan‘𝐴))) ≠ 0) → (exp‘(log‘(1 + (i · (tan‘𝐴))))) = (1 + (i · (tan‘𝐴))))
4513, 16, 44syl2anc 586 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → (exp‘(log‘(1 + (i · (tan‘𝐴))))) = (1 + (i · (tan‘𝐴))))
4640, 43, 453eqtr4d 2866 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → ((exp‘(i · 𝐴)) / (cos‘𝐴)) = (exp‘(log‘(1 + (i · (tan‘𝐴))))))
4726, 30, 26, 1divsubdird 11455 . . . . . . . . . . 11 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → (((cos‘𝐴) − (i · (sin‘𝐴))) / (cos‘𝐴)) = (((cos‘𝐴) / (cos‘𝐴)) − ((i · (sin‘𝐴)) / (cos‘𝐴))))
4832, 38oveq12d 7174 . . . . . . . . . . 11 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → (((cos‘𝐴) / (cos‘𝐴)) − ((i · (sin‘𝐴)) / (cos‘𝐴))) = (1 − (i · (tan‘𝐴))))
4947, 48eqtrd 2856 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → (((cos‘𝐴) − (i · (sin‘𝐴))) / (cos‘𝐴)) = (1 − (i · (tan‘𝐴))))
50 negcl 10886 . . . . . . . . . . . . . . 15 (𝐴 ∈ ℂ → -𝐴 ∈ ℂ)
5150adantr 483 . . . . . . . . . . . . . 14 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → -𝐴 ∈ ℂ)
52 efival 15505 . . . . . . . . . . . . . 14 (-𝐴 ∈ ℂ → (exp‘(i · -𝐴)) = ((cos‘-𝐴) + (i · (sin‘-𝐴))))
5351, 52syl 17 . . . . . . . . . . . . 13 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → (exp‘(i · -𝐴)) = ((cos‘-𝐴) + (i · (sin‘-𝐴))))
54 cosneg 15500 . . . . . . . . . . . . . . 15 (𝐴 ∈ ℂ → (cos‘-𝐴) = (cos‘𝐴))
5554adantr 483 . . . . . . . . . . . . . 14 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → (cos‘-𝐴) = (cos‘𝐴))
56 sinneg 15499 . . . . . . . . . . . . . . . . 17 (𝐴 ∈ ℂ → (sin‘-𝐴) = -(sin‘𝐴))
5756adantr 483 . . . . . . . . . . . . . . . 16 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → (sin‘-𝐴) = -(sin‘𝐴))
5857oveq2d 7172 . . . . . . . . . . . . . . 15 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → (i · (sin‘-𝐴)) = (i · -(sin‘𝐴)))
59 mulneg2 11077 . . . . . . . . . . . . . . . 16 ((i ∈ ℂ ∧ (sin‘𝐴) ∈ ℂ) → (i · -(sin‘𝐴)) = -(i · (sin‘𝐴)))
607, 28, 59sylancr 589 . . . . . . . . . . . . . . 15 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → (i · -(sin‘𝐴)) = -(i · (sin‘𝐴)))
6158, 60eqtrd 2856 . . . . . . . . . . . . . 14 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → (i · (sin‘-𝐴)) = -(i · (sin‘𝐴)))
6255, 61oveq12d 7174 . . . . . . . . . . . . 13 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → ((cos‘-𝐴) + (i · (sin‘-𝐴))) = ((cos‘𝐴) + -(i · (sin‘𝐴))))
6353, 62eqtrd 2856 . . . . . . . . . . . 12 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → (exp‘(i · -𝐴)) = ((cos‘𝐴) + -(i · (sin‘𝐴))))
64 simpl 485 . . . . . . . . . . . . . 14 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → 𝐴 ∈ ℂ)
65 mulneg2 11077 . . . . . . . . . . . . . 14 ((i ∈ ℂ ∧ 𝐴 ∈ ℂ) → (i · -𝐴) = -(i · 𝐴))
667, 64, 65sylancr 589 . . . . . . . . . . . . 13 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → (i · -𝐴) = -(i · 𝐴))
6766fveq2d 6674 . . . . . . . . . . . 12 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → (exp‘(i · -𝐴)) = (exp‘-(i · 𝐴)))
6826, 30negsubd 11003 . . . . . . . . . . . 12 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → ((cos‘𝐴) + -(i · (sin‘𝐴))) = ((cos‘𝐴) − (i · (sin‘𝐴))))
6963, 67, 683eqtr3d 2864 . . . . . . . . . . 11 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → (exp‘-(i · 𝐴)) = ((cos‘𝐴) − (i · (sin‘𝐴))))
7069oveq1d 7171 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → ((exp‘-(i · 𝐴)) / (cos‘𝐴)) = (((cos‘𝐴) − (i · (sin‘𝐴))) / (cos‘𝐴)))
71 eflog 25160 . . . . . . . . . . 11 (((1 − (i · (tan‘𝐴))) ∈ ℂ ∧ (1 − (i · (tan‘𝐴))) ≠ 0) → (exp‘(log‘(1 − (i · (tan‘𝐴))))) = (1 − (i · (tan‘𝐴))))
7219, 20, 71syl2anc 586 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → (exp‘(log‘(1 − (i · (tan‘𝐴))))) = (1 − (i · (tan‘𝐴))))
7349, 70, 723eqtr4d 2866 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → ((exp‘-(i · 𝐴)) / (cos‘𝐴)) = (exp‘(log‘(1 − (i · (tan‘𝐴))))))
7446, 73oveq12d 7174 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → (((exp‘(i · 𝐴)) / (cos‘𝐴)) / ((exp‘-(i · 𝐴)) / (cos‘𝐴))) = ((exp‘(log‘(1 + (i · (tan‘𝐴))))) / (exp‘(log‘(1 − (i · (tan‘𝐴)))))))
75 mulcl 10621 . . . . . . . . . . . 12 ((i ∈ ℂ ∧ 𝐴 ∈ ℂ) → (i · 𝐴) ∈ ℂ)
767, 64, 75sylancr 589 . . . . . . . . . . 11 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → (i · 𝐴) ∈ ℂ)
77 efcl 15436 . . . . . . . . . . 11 ((i · 𝐴) ∈ ℂ → (exp‘(i · 𝐴)) ∈ ℂ)
7876, 77syl 17 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → (exp‘(i · 𝐴)) ∈ ℂ)
7976negcld 10984 . . . . . . . . . . 11 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → -(i · 𝐴) ∈ ℂ)
80 efcl 15436 . . . . . . . . . . 11 (-(i · 𝐴) ∈ ℂ → (exp‘-(i · 𝐴)) ∈ ℂ)
8179, 80syl 17 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → (exp‘-(i · 𝐴)) ∈ ℂ)
82 efne0 15450 . . . . . . . . . . 11 (-(i · 𝐴) ∈ ℂ → (exp‘-(i · 𝐴)) ≠ 0)
8379, 82syl 17 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → (exp‘-(i · 𝐴)) ≠ 0)
8478, 81, 26, 83, 1divcan7d 11444 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → (((exp‘(i · 𝐴)) / (cos‘𝐴)) / ((exp‘-(i · 𝐴)) / (cos‘𝐴))) = ((exp‘(i · 𝐴)) / (exp‘-(i · 𝐴))))
85 efsub 15453 . . . . . . . . . 10 (((i · 𝐴) ∈ ℂ ∧ -(i · 𝐴) ∈ ℂ) → (exp‘((i · 𝐴) − -(i · 𝐴))) = ((exp‘(i · 𝐴)) / (exp‘-(i · 𝐴))))
8676, 79, 85syl2anc 586 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → (exp‘((i · 𝐴) − -(i · 𝐴))) = ((exp‘(i · 𝐴)) / (exp‘-(i · 𝐴))))
8776, 76subnegd 11004 . . . . . . . . . . 11 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → ((i · 𝐴) − -(i · 𝐴)) = ((i · 𝐴) + (i · 𝐴)))
88762timesd 11881 . . . . . . . . . . 11 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → (2 · (i · 𝐴)) = ((i · 𝐴) + (i · 𝐴)))
8987, 88eqtr4d 2859 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → ((i · 𝐴) − -(i · 𝐴)) = (2 · (i · 𝐴)))
9089fveq2d 6674 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → (exp‘((i · 𝐴) − -(i · 𝐴))) = (exp‘(2 · (i · 𝐴))))
9184, 86, 903eqtr2d 2862 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → (((exp‘(i · 𝐴)) / (cos‘𝐴)) / ((exp‘-(i · 𝐴)) / (cos‘𝐴))) = (exp‘(2 · (i · 𝐴))))
9224, 74, 913eqtr2d 2862 . . . . . . 7 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → (exp‘((log‘(1 + (i · (tan‘𝐴)))) − (log‘(1 − (i · (tan‘𝐴)))))) = (exp‘(2 · (i · 𝐴))))
9392fveq2d 6674 . . . . . 6 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → (log‘(exp‘((log‘(1 + (i · (tan‘𝐴)))) − (log‘(1 − (i · (tan‘𝐴))))))) = (log‘(exp‘(2 · (i · 𝐴)))))
9464adantr 483 . . . . . . . . . . . . . . 15 (((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) ∧ (ℜ‘𝐴) < 0) → 𝐴 ∈ ℂ)
9594renegd 14568 . . . . . . . . . . . . . 14 (((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) ∧ (ℜ‘𝐴) < 0) → (ℜ‘-𝐴) = -(ℜ‘𝐴))
9694recld 14553 . . . . . . . . . . . . . . . 16 (((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) ∧ (ℜ‘𝐴) < 0) → (ℜ‘𝐴) ∈ ℝ)
9796renegcld 11067 . . . . . . . . . . . . . . 15 (((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) ∧ (ℜ‘𝐴) < 0) → -(ℜ‘𝐴) ∈ ℝ)
98 simpr 487 . . . . . . . . . . . . . . . 16 (((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) ∧ (ℜ‘𝐴) < 0) → (ℜ‘𝐴) < 0)
9996lt0neg1d 11209 . . . . . . . . . . . . . . . 16 (((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) ∧ (ℜ‘𝐴) < 0) → ((ℜ‘𝐴) < 0 ↔ 0 < -(ℜ‘𝐴)))
10098, 99mpbid 234 . . . . . . . . . . . . . . 15 (((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) ∧ (ℜ‘𝐴) < 0) → 0 < -(ℜ‘𝐴))
101 eliooord 12797 . . . . . . . . . . . . . . . . . . 19 ((ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2)) → (-(π / 2) < (ℜ‘𝐴) ∧ (ℜ‘𝐴) < (π / 2)))
102101adantl 484 . . . . . . . . . . . . . . . . . 18 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → (-(π / 2) < (ℜ‘𝐴) ∧ (ℜ‘𝐴) < (π / 2)))
103102simpld 497 . . . . . . . . . . . . . . . . 17 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → -(π / 2) < (ℜ‘𝐴))
104103adantr 483 . . . . . . . . . . . . . . . 16 (((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) ∧ (ℜ‘𝐴) < 0) → -(π / 2) < (ℜ‘𝐴))
105 halfpire 25050 . . . . . . . . . . . . . . . . 17 (π / 2) ∈ ℝ
106 ltnegcon1 11141 . . . . . . . . . . . . . . . . 17 (((π / 2) ∈ ℝ ∧ (ℜ‘𝐴) ∈ ℝ) → (-(π / 2) < (ℜ‘𝐴) ↔ -(ℜ‘𝐴) < (π / 2)))
107105, 96, 106sylancr 589 . . . . . . . . . . . . . . . 16 (((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) ∧ (ℜ‘𝐴) < 0) → (-(π / 2) < (ℜ‘𝐴) ↔ -(ℜ‘𝐴) < (π / 2)))
108104, 107mpbid 234 . . . . . . . . . . . . . . 15 (((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) ∧ (ℜ‘𝐴) < 0) → -(ℜ‘𝐴) < (π / 2))
109 0xr 10688 . . . . . . . . . . . . . . . 16 0 ∈ ℝ*
110105rexri 10699 . . . . . . . . . . . . . . . 16 (π / 2) ∈ ℝ*
111 elioo2 12780 . . . . . . . . . . . . . . . 16 ((0 ∈ ℝ* ∧ (π / 2) ∈ ℝ*) → (-(ℜ‘𝐴) ∈ (0(,)(π / 2)) ↔ (-(ℜ‘𝐴) ∈ ℝ ∧ 0 < -(ℜ‘𝐴) ∧ -(ℜ‘𝐴) < (π / 2))))
112109, 110, 111mp2an 690 . . . . . . . . . . . . . . 15 (-(ℜ‘𝐴) ∈ (0(,)(π / 2)) ↔ (-(ℜ‘𝐴) ∈ ℝ ∧ 0 < -(ℜ‘𝐴) ∧ -(ℜ‘𝐴) < (π / 2)))
11397, 100, 108, 112syl3anbrc 1339 . . . . . . . . . . . . . 14 (((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) ∧ (ℜ‘𝐴) < 0) → -(ℜ‘𝐴) ∈ (0(,)(π / 2)))
11495, 113eqeltrd 2913 . . . . . . . . . . . . 13 (((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) ∧ (ℜ‘𝐴) < 0) → (ℜ‘-𝐴) ∈ (0(,)(π / 2)))
115 tanregt0 25123 . . . . . . . . . . . . 13 ((-𝐴 ∈ ℂ ∧ (ℜ‘-𝐴) ∈ (0(,)(π / 2))) → 0 < (ℜ‘(tan‘-𝐴)))
11651, 114, 115syl2an2r 683 . . . . . . . . . . . 12 (((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) ∧ (ℜ‘𝐴) < 0) → 0 < (ℜ‘(tan‘-𝐴)))
117 tanneg 15501 . . . . . . . . . . . . . . . 16 ((𝐴 ∈ ℂ ∧ (cos‘𝐴) ≠ 0) → (tan‘-𝐴) = -(tan‘𝐴))
1181, 117syldan 593 . . . . . . . . . . . . . . 15 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → (tan‘-𝐴) = -(tan‘𝐴))
119118adantr 483 . . . . . . . . . . . . . 14 (((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) ∧ (ℜ‘𝐴) < 0) → (tan‘-𝐴) = -(tan‘𝐴))
120119fveq2d 6674 . . . . . . . . . . . . 13 (((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) ∧ (ℜ‘𝐴) < 0) → (ℜ‘(tan‘-𝐴)) = (ℜ‘-(tan‘𝐴)))
1219adantr 483 . . . . . . . . . . . . . 14 (((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) ∧ (ℜ‘𝐴) < 0) → (tan‘𝐴) ∈ ℂ)
122121renegd 14568 . . . . . . . . . . . . 13 (((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) ∧ (ℜ‘𝐴) < 0) → (ℜ‘-(tan‘𝐴)) = -(ℜ‘(tan‘𝐴)))
123120, 122eqtrd 2856 . . . . . . . . . . . 12 (((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) ∧ (ℜ‘𝐴) < 0) → (ℜ‘(tan‘-𝐴)) = -(ℜ‘(tan‘𝐴)))
124116, 123breqtrd 5092 . . . . . . . . . . 11 (((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) ∧ (ℜ‘𝐴) < 0) → 0 < -(ℜ‘(tan‘𝐴)))
1259recld 14553 . . . . . . . . . . . . 13 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → (ℜ‘(tan‘𝐴)) ∈ ℝ)
126125adantr 483 . . . . . . . . . . . 12 (((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) ∧ (ℜ‘𝐴) < 0) → (ℜ‘(tan‘𝐴)) ∈ ℝ)
127126lt0neg1d 11209 . . . . . . . . . . 11 (((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) ∧ (ℜ‘𝐴) < 0) → ((ℜ‘(tan‘𝐴)) < 0 ↔ 0 < -(ℜ‘(tan‘𝐴))))
128124, 127mpbird 259 . . . . . . . . . 10 (((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) ∧ (ℜ‘𝐴) < 0) → (ℜ‘(tan‘𝐴)) < 0)
129128lt0ne0d 11205 . . . . . . . . 9 (((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) ∧ (ℜ‘𝐴) < 0) → (ℜ‘(tan‘𝐴)) ≠ 0)
130 atanlogsub 25494 . . . . . . . . 9 (((tan‘𝐴) ∈ dom arctan ∧ (ℜ‘(tan‘𝐴)) ≠ 0) → ((log‘(1 + (i · (tan‘𝐴)))) − (log‘(1 − (i · (tan‘𝐴))))) ∈ ran log)
1313, 129, 130syl2an2r 683 . . . . . . . 8 (((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) ∧ (ℜ‘𝐴) < 0) → ((log‘(1 + (i · (tan‘𝐴)))) − (log‘(1 − (i · (tan‘𝐴))))) ∈ ran log)
132 1re 10641 . . . . . . . . . . . . 13 1 ∈ ℝ
133 ioossre 12799 . . . . . . . . . . . . . 14 (-1(,)1) ⊆ ℝ
1347a1i 11 . . . . . . . . . . . . . . . 16 (((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) ∧ (ℜ‘𝐴) = 0) → i ∈ ℂ)
13511adantr 483 . . . . . . . . . . . . . . . 16 (((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) ∧ (ℜ‘𝐴) = 0) → (i · (tan‘𝐴)) ∈ ℂ)
136 ine0 11075 . . . . . . . . . . . . . . . . 17 i ≠ 0
137136a1i 11 . . . . . . . . . . . . . . . 16 (((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) ∧ (ℜ‘𝐴) = 0) → i ≠ 0)
138 ixi 11269 . . . . . . . . . . . . . . . . . . 19 (i · i) = -1
139138oveq1i 7166 . . . . . . . . . . . . . . . . . 18 ((i · i) · (tan‘𝐴)) = (-1 · (tan‘𝐴))
1409adantr 483 . . . . . . . . . . . . . . . . . . . 20 (((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) ∧ (ℜ‘𝐴) = 0) → (tan‘𝐴) ∈ ℂ)
141140mulm1d 11092 . . . . . . . . . . . . . . . . . . 19 (((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) ∧ (ℜ‘𝐴) = 0) → (-1 · (tan‘𝐴)) = -(tan‘𝐴))
142118adantr 483 . . . . . . . . . . . . . . . . . . 19 (((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) ∧ (ℜ‘𝐴) = 0) → (tan‘-𝐴) = -(tan‘𝐴))
143141, 142eqtr4d 2859 . . . . . . . . . . . . . . . . . 18 (((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) ∧ (ℜ‘𝐴) = 0) → (-1 · (tan‘𝐴)) = (tan‘-𝐴))
144139, 143syl5eq 2868 . . . . . . . . . . . . . . . . 17 (((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) ∧ (ℜ‘𝐴) = 0) → ((i · i) · (tan‘𝐴)) = (tan‘-𝐴))
145134, 134, 140mulassd 10664 . . . . . . . . . . . . . . . . 17 (((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) ∧ (ℜ‘𝐴) = 0) → ((i · i) · (tan‘𝐴)) = (i · (i · (tan‘𝐴))))
146138oveq1i 7166 . . . . . . . . . . . . . . . . . . . 20 ((i · i) · 𝐴) = (-1 · 𝐴)
14764adantr 483 . . . . . . . . . . . . . . . . . . . . 21 (((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) ∧ (ℜ‘𝐴) = 0) → 𝐴 ∈ ℂ)
148147mulm1d 11092 . . . . . . . . . . . . . . . . . . . 20 (((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) ∧ (ℜ‘𝐴) = 0) → (-1 · 𝐴) = -𝐴)
149146, 148syl5eq 2868 . . . . . . . . . . . . . . . . . . 19 (((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) ∧ (ℜ‘𝐴) = 0) → ((i · i) · 𝐴) = -𝐴)
150134, 134, 147mulassd 10664 . . . . . . . . . . . . . . . . . . 19 (((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) ∧ (ℜ‘𝐴) = 0) → ((i · i) · 𝐴) = (i · (i · 𝐴)))
151149, 150eqtr3d 2858 . . . . . . . . . . . . . . . . . 18 (((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) ∧ (ℜ‘𝐴) = 0) → -𝐴 = (i · (i · 𝐴)))
152151fveq2d 6674 . . . . . . . . . . . . . . . . 17 (((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) ∧ (ℜ‘𝐴) = 0) → (tan‘-𝐴) = (tan‘(i · (i · 𝐴))))
153144, 145, 1523eqtr3d 2864 . . . . . . . . . . . . . . . 16 (((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) ∧ (ℜ‘𝐴) = 0) → (i · (i · (tan‘𝐴))) = (tan‘(i · (i · 𝐴))))
154134, 135, 137, 153mvllmuld 11472 . . . . . . . . . . . . . . 15 (((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) ∧ (ℜ‘𝐴) = 0) → (i · (tan‘𝐴)) = ((tan‘(i · (i · 𝐴))) / i))
15576adantr 483 . . . . . . . . . . . . . . . . 17 (((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) ∧ (ℜ‘𝐴) = 0) → (i · 𝐴) ∈ ℂ)
156 reim 14468 . . . . . . . . . . . . . . . . . . . 20 (𝐴 ∈ ℂ → (ℜ‘𝐴) = (ℑ‘(i · 𝐴)))
157156adantr 483 . . . . . . . . . . . . . . . . . . 19 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → (ℜ‘𝐴) = (ℑ‘(i · 𝐴)))
158157eqeq1d 2823 . . . . . . . . . . . . . . . . . 18 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → ((ℜ‘𝐴) = 0 ↔ (ℑ‘(i · 𝐴)) = 0))
159158biimpa 479 . . . . . . . . . . . . . . . . 17 (((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) ∧ (ℜ‘𝐴) = 0) → (ℑ‘(i · 𝐴)) = 0)
160155, 159reim0bd 14559 . . . . . . . . . . . . . . . 16 (((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) ∧ (ℜ‘𝐴) = 0) → (i · 𝐴) ∈ ℝ)
161 tanhbnd 15514 . . . . . . . . . . . . . . . 16 ((i · 𝐴) ∈ ℝ → ((tan‘(i · (i · 𝐴))) / i) ∈ (-1(,)1))
162160, 161syl 17 . . . . . . . . . . . . . . 15 (((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) ∧ (ℜ‘𝐴) = 0) → ((tan‘(i · (i · 𝐴))) / i) ∈ (-1(,)1))
163154, 162eqeltrd 2913 . . . . . . . . . . . . . 14 (((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) ∧ (ℜ‘𝐴) = 0) → (i · (tan‘𝐴)) ∈ (-1(,)1))
164133, 163sseldi 3965 . . . . . . . . . . . . 13 (((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) ∧ (ℜ‘𝐴) = 0) → (i · (tan‘𝐴)) ∈ ℝ)
165 readdcl 10620 . . . . . . . . . . . . 13 ((1 ∈ ℝ ∧ (i · (tan‘𝐴)) ∈ ℝ) → (1 + (i · (tan‘𝐴))) ∈ ℝ)
166132, 164, 165sylancr 589 . . . . . . . . . . . 12 (((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) ∧ (ℜ‘𝐴) = 0) → (1 + (i · (tan‘𝐴))) ∈ ℝ)
167 df-neg 10873 . . . . . . . . . . . . . 14 -1 = (0 − 1)
168 eliooord 12797 . . . . . . . . . . . . . . . 16 ((i · (tan‘𝐴)) ∈ (-1(,)1) → (-1 < (i · (tan‘𝐴)) ∧ (i · (tan‘𝐴)) < 1))
169163, 168syl 17 . . . . . . . . . . . . . . 15 (((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) ∧ (ℜ‘𝐴) = 0) → (-1 < (i · (tan‘𝐴)) ∧ (i · (tan‘𝐴)) < 1))
170169simpld 497 . . . . . . . . . . . . . 14 (((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) ∧ (ℜ‘𝐴) = 0) → -1 < (i · (tan‘𝐴)))
171167, 170eqbrtrrid 5102 . . . . . . . . . . . . 13 (((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) ∧ (ℜ‘𝐴) = 0) → (0 − 1) < (i · (tan‘𝐴)))
172 0red 10644 . . . . . . . . . . . . . 14 (((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) ∧ (ℜ‘𝐴) = 0) → 0 ∈ ℝ)
173132a1i 11 . . . . . . . . . . . . . 14 (((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) ∧ (ℜ‘𝐴) = 0) → 1 ∈ ℝ)
174172, 173, 164ltsubadd2d 11238 . . . . . . . . . . . . 13 (((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) ∧ (ℜ‘𝐴) = 0) → ((0 − 1) < (i · (tan‘𝐴)) ↔ 0 < (1 + (i · (tan‘𝐴)))))
175171, 174mpbid 234 . . . . . . . . . . . 12 (((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) ∧ (ℜ‘𝐴) = 0) → 0 < (1 + (i · (tan‘𝐴))))
176166, 175elrpd 12429 . . . . . . . . . . 11 (((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) ∧ (ℜ‘𝐴) = 0) → (1 + (i · (tan‘𝐴))) ∈ ℝ+)
177176relogcld 25206 . . . . . . . . . 10 (((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) ∧ (ℜ‘𝐴) = 0) → (log‘(1 + (i · (tan‘𝐴)))) ∈ ℝ)
178169simprd 498 . . . . . . . . . . . 12 (((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) ∧ (ℜ‘𝐴) = 0) → (i · (tan‘𝐴)) < 1)
179 difrp 12428 . . . . . . . . . . . . 13 (((i · (tan‘𝐴)) ∈ ℝ ∧ 1 ∈ ℝ) → ((i · (tan‘𝐴)) < 1 ↔ (1 − (i · (tan‘𝐴))) ∈ ℝ+))
180164, 132, 179sylancl 588 . . . . . . . . . . . 12 (((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) ∧ (ℜ‘𝐴) = 0) → ((i · (tan‘𝐴)) < 1 ↔ (1 − (i · (tan‘𝐴))) ∈ ℝ+))
181178, 180mpbid 234 . . . . . . . . . . 11 (((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) ∧ (ℜ‘𝐴) = 0) → (1 − (i · (tan‘𝐴))) ∈ ℝ+)
182181relogcld 25206 . . . . . . . . . 10 (((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) ∧ (ℜ‘𝐴) = 0) → (log‘(1 − (i · (tan‘𝐴)))) ∈ ℝ)
183177, 182resubcld 11068 . . . . . . . . 9 (((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) ∧ (ℜ‘𝐴) = 0) → ((log‘(1 + (i · (tan‘𝐴)))) − (log‘(1 − (i · (tan‘𝐴))))) ∈ ℝ)
184 relogrn 25145 . . . . . . . . 9 (((log‘(1 + (i · (tan‘𝐴)))) − (log‘(1 − (i · (tan‘𝐴))))) ∈ ℝ → ((log‘(1 + (i · (tan‘𝐴)))) − (log‘(1 − (i · (tan‘𝐴))))) ∈ ran log)
185183, 184syl 17 . . . . . . . 8 (((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) ∧ (ℜ‘𝐴) = 0) → ((log‘(1 + (i · (tan‘𝐴)))) − (log‘(1 − (i · (tan‘𝐴))))) ∈ ran log)
18664adantr 483 . . . . . . . . . . . . 13 (((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) ∧ 0 < (ℜ‘𝐴)) → 𝐴 ∈ ℂ)
187186recld 14553 . . . . . . . . . . . 12 (((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) ∧ 0 < (ℜ‘𝐴)) → (ℜ‘𝐴) ∈ ℝ)
188 simpr 487 . . . . . . . . . . . 12 (((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) ∧ 0 < (ℜ‘𝐴)) → 0 < (ℜ‘𝐴))
189102simprd 498 . . . . . . . . . . . . 13 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → (ℜ‘𝐴) < (π / 2))
190189adantr 483 . . . . . . . . . . . 12 (((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) ∧ 0 < (ℜ‘𝐴)) → (ℜ‘𝐴) < (π / 2))
191 elioo2 12780 . . . . . . . . . . . . 13 ((0 ∈ ℝ* ∧ (π / 2) ∈ ℝ*) → ((ℜ‘𝐴) ∈ (0(,)(π / 2)) ↔ ((ℜ‘𝐴) ∈ ℝ ∧ 0 < (ℜ‘𝐴) ∧ (ℜ‘𝐴) < (π / 2))))
192109, 110, 191mp2an 690 . . . . . . . . . . . 12 ((ℜ‘𝐴) ∈ (0(,)(π / 2)) ↔ ((ℜ‘𝐴) ∈ ℝ ∧ 0 < (ℜ‘𝐴) ∧ (ℜ‘𝐴) < (π / 2)))
193187, 188, 190, 192syl3anbrc 1339 . . . . . . . . . . 11 (((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) ∧ 0 < (ℜ‘𝐴)) → (ℜ‘𝐴) ∈ (0(,)(π / 2)))
194 tanregt0 25123 . . . . . . . . . . 11 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (0(,)(π / 2))) → 0 < (ℜ‘(tan‘𝐴)))
19564, 193, 194syl2an2r 683 . . . . . . . . . 10 (((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) ∧ 0 < (ℜ‘𝐴)) → 0 < (ℜ‘(tan‘𝐴)))
196195gt0ne0d 11204 . . . . . . . . 9 (((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) ∧ 0 < (ℜ‘𝐴)) → (ℜ‘(tan‘𝐴)) ≠ 0)
1973, 196, 130syl2an2r 683 . . . . . . . 8 (((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) ∧ 0 < (ℜ‘𝐴)) → ((log‘(1 + (i · (tan‘𝐴)))) − (log‘(1 − (i · (tan‘𝐴))))) ∈ ran log)
198 recl 14469 . . . . . . . . . 10 (𝐴 ∈ ℂ → (ℜ‘𝐴) ∈ ℝ)
199198adantr 483 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → (ℜ‘𝐴) ∈ ℝ)
200 0re 10643 . . . . . . . . 9 0 ∈ ℝ
201 lttri4 10725 . . . . . . . . 9 (((ℜ‘𝐴) ∈ ℝ ∧ 0 ∈ ℝ) → ((ℜ‘𝐴) < 0 ∨ (ℜ‘𝐴) = 0 ∨ 0 < (ℜ‘𝐴)))
202199, 200, 201sylancl 588 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → ((ℜ‘𝐴) < 0 ∨ (ℜ‘𝐴) = 0 ∨ 0 < (ℜ‘𝐴)))
203131, 185, 197, 202mpjao3dan 1427 . . . . . . 7 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → ((log‘(1 + (i · (tan‘𝐴)))) − (log‘(1 − (i · (tan‘𝐴))))) ∈ ran log)
204 logef 25165 . . . . . . 7 (((log‘(1 + (i · (tan‘𝐴)))) − (log‘(1 − (i · (tan‘𝐴))))) ∈ ran log → (log‘(exp‘((log‘(1 + (i · (tan‘𝐴)))) − (log‘(1 − (i · (tan‘𝐴))))))) = ((log‘(1 + (i · (tan‘𝐴)))) − (log‘(1 − (i · (tan‘𝐴))))))
205203, 204syl 17 . . . . . 6 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → (log‘(exp‘((log‘(1 + (i · (tan‘𝐴)))) − (log‘(1 − (i · (tan‘𝐴))))))) = ((log‘(1 + (i · (tan‘𝐴)))) − (log‘(1 − (i · (tan‘𝐴))))))
206 2cn 11713 . . . . . . . . 9 2 ∈ ℂ
207 mulcl 10621 . . . . . . . . 9 ((2 ∈ ℂ ∧ (i · 𝐴) ∈ ℂ) → (2 · (i · 𝐴)) ∈ ℂ)
208206, 76, 207sylancr 589 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → (2 · (i · 𝐴)) ∈ ℂ)
209 picn 25045 . . . . . . . . . . . 12 π ∈ ℂ
210 2ne0 11742 . . . . . . . . . . . 12 2 ≠ 0
211 divneg 11332 . . . . . . . . . . . 12 ((π ∈ ℂ ∧ 2 ∈ ℂ ∧ 2 ≠ 0) → -(π / 2) = (-π / 2))
212209, 206, 210, 211mp3an 1457 . . . . . . . . . . 11 -(π / 2) = (-π / 2)
213212, 103eqbrtrrid 5102 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → (-π / 2) < (ℜ‘𝐴))
214 pire 25044 . . . . . . . . . . . . 13 π ∈ ℝ
215214renegcli 10947 . . . . . . . . . . . 12 -π ∈ ℝ
216215a1i 11 . . . . . . . . . . 11 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → -π ∈ ℝ)
217 2re 11712 . . . . . . . . . . . 12 2 ∈ ℝ
218217a1i 11 . . . . . . . . . . 11 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → 2 ∈ ℝ)
219 2pos 11741 . . . . . . . . . . . 12 0 < 2
220219a1i 11 . . . . . . . . . . 11 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → 0 < 2)
221 ltdivmul 11515 . . . . . . . . . . 11 ((-π ∈ ℝ ∧ (ℜ‘𝐴) ∈ ℝ ∧ (2 ∈ ℝ ∧ 0 < 2)) → ((-π / 2) < (ℜ‘𝐴) ↔ -π < (2 · (ℜ‘𝐴))))
222216, 199, 218, 220, 221syl112anc 1370 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → ((-π / 2) < (ℜ‘𝐴) ↔ -π < (2 · (ℜ‘𝐴))))
223213, 222mpbid 234 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → -π < (2 · (ℜ‘𝐴)))
224 immul2 14496 . . . . . . . . . . 11 ((2 ∈ ℝ ∧ (i · 𝐴) ∈ ℂ) → (ℑ‘(2 · (i · 𝐴))) = (2 · (ℑ‘(i · 𝐴))))
225217, 76, 224sylancr 589 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → (ℑ‘(2 · (i · 𝐴))) = (2 · (ℑ‘(i · 𝐴))))
226157oveq2d 7172 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → (2 · (ℜ‘𝐴)) = (2 · (ℑ‘(i · 𝐴))))
227225, 226eqtr4d 2859 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → (ℑ‘(2 · (i · 𝐴))) = (2 · (ℜ‘𝐴)))
228223, 227breqtrrd 5094 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → -π < (ℑ‘(2 · (i · 𝐴))))
229 remulcl 10622 . . . . . . . . . . 11 ((2 ∈ ℝ ∧ (ℜ‘𝐴) ∈ ℝ) → (2 · (ℜ‘𝐴)) ∈ ℝ)
230217, 199, 229sylancr 589 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → (2 · (ℜ‘𝐴)) ∈ ℝ)
231214a1i 11 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → π ∈ ℝ)
232 ltmuldiv2 11514 . . . . . . . . . . . 12 (((ℜ‘𝐴) ∈ ℝ ∧ π ∈ ℝ ∧ (2 ∈ ℝ ∧ 0 < 2)) → ((2 · (ℜ‘𝐴)) < π ↔ (ℜ‘𝐴) < (π / 2)))
233199, 231, 218, 220, 232syl112anc 1370 . . . . . . . . . . 11 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → ((2 · (ℜ‘𝐴)) < π ↔ (ℜ‘𝐴) < (π / 2)))
234189, 233mpbird 259 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → (2 · (ℜ‘𝐴)) < π)
235230, 231, 234ltled 10788 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → (2 · (ℜ‘𝐴)) ≤ π)
236227, 235eqbrtrd 5088 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → (ℑ‘(2 · (i · 𝐴))) ≤ π)
237 ellogrn 25143 . . . . . . . 8 ((2 · (i · 𝐴)) ∈ ran log ↔ ((2 · (i · 𝐴)) ∈ ℂ ∧ -π < (ℑ‘(2 · (i · 𝐴))) ∧ (ℑ‘(2 · (i · 𝐴))) ≤ π))
238208, 228, 236, 237syl3anbrc 1339 . . . . . . 7 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → (2 · (i · 𝐴)) ∈ ran log)
239 logef 25165 . . . . . . 7 ((2 · (i · 𝐴)) ∈ ran log → (log‘(exp‘(2 · (i · 𝐴)))) = (2 · (i · 𝐴)))
240238, 239syl 17 . . . . . 6 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → (log‘(exp‘(2 · (i · 𝐴)))) = (2 · (i · 𝐴)))
24193, 205, 2403eqtr3d 2864 . . . . 5 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → ((log‘(1 + (i · (tan‘𝐴)))) − (log‘(1 − (i · (tan‘𝐴))))) = (2 · (i · 𝐴)))
242241negeqd 10880 . . . 4 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → -((log‘(1 + (i · (tan‘𝐴)))) − (log‘(1 − (i · (tan‘𝐴))))) = -(2 · (i · 𝐴)))
24322, 242eqtr3d 2858 . . 3 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → ((log‘(1 − (i · (tan‘𝐴)))) − (log‘(1 + (i · (tan‘𝐴))))) = -(2 · (i · 𝐴)))
244243oveq2d 7172 . 2 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → ((i / 2) · ((log‘(1 − (i · (tan‘𝐴)))) − (log‘(1 + (i · (tan‘𝐴)))))) = ((i / 2) · -(2 · (i · 𝐴))))
245 halfcl 11863 . . . . 5 (i ∈ ℂ → (i / 2) ∈ ℂ)
2467, 245mp1i 13 . . . 4 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → (i / 2) ∈ ℂ)
247206a1i 11 . . . 4 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → 2 ∈ ℂ)
248246, 247, 79mulassd 10664 . . 3 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → (((i / 2) · 2) · -(i · 𝐴)) = ((i / 2) · (2 · -(i · 𝐴))))
2497, 206, 210divcan1i 11384 . . . . 5 ((i / 2) · 2) = i
250249oveq1i 7166 . . . 4 (((i / 2) · 2) · -(i · 𝐴)) = (i · -(i · 𝐴))
25133, 33, 51mulassd 10664 . . . . 5 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → ((i · i) · -𝐴) = (i · (i · -𝐴)))
252138oveq1i 7166 . . . . . 6 ((i · i) · -𝐴) = (-1 · -𝐴)
253 mul2neg 11079 . . . . . . . 8 ((1 ∈ ℂ ∧ 𝐴 ∈ ℂ) → (-1 · -𝐴) = (1 · 𝐴))
2546, 64, 253sylancr 589 . . . . . . 7 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → (-1 · -𝐴) = (1 · 𝐴))
255 mulid2 10640 . . . . . . . 8 (𝐴 ∈ ℂ → (1 · 𝐴) = 𝐴)
256255adantr 483 . . . . . . 7 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → (1 · 𝐴) = 𝐴)
257254, 256eqtrd 2856 . . . . . 6 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → (-1 · -𝐴) = 𝐴)
258252, 257syl5eq 2868 . . . . 5 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → ((i · i) · -𝐴) = 𝐴)
25966oveq2d 7172 . . . . 5 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → (i · (i · -𝐴)) = (i · -(i · 𝐴)))
260251, 258, 2593eqtr3rd 2865 . . . 4 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → (i · -(i · 𝐴)) = 𝐴)
261250, 260syl5eq 2868 . . 3 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → (((i / 2) · 2) · -(i · 𝐴)) = 𝐴)
262 mulneg2 11077 . . . . 5 ((2 ∈ ℂ ∧ (i · 𝐴) ∈ ℂ) → (2 · -(i · 𝐴)) = -(2 · (i · 𝐴)))
263206, 76, 262sylancr 589 . . . 4 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → (2 · -(i · 𝐴)) = -(2 · (i · 𝐴)))
264263oveq2d 7172 . . 3 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → ((i / 2) · (2 · -(i · 𝐴))) = ((i / 2) · -(2 · (i · 𝐴))))
265248, 261, 2643eqtr3rd 2865 . 2 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → ((i / 2) · -(2 · (i · 𝐴))) = 𝐴)
2665, 244, 2653eqtrd 2860 1 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → (arctan‘(tan‘𝐴)) = 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398  w3o 1082  w3a 1083   = wceq 1537  wcel 2114  wne 3016   class class class wbr 5066  dom cdm 5555  ran crn 5556  cfv 6355  (class class class)co 7156  cc 10535  cr 10536  0cc0 10537  1c1 10538  ici 10539   + caddc 10540   · cmul 10542  *cxr 10674   < clt 10675  cle 10676  cmin 10870  -cneg 10871   / cdiv 11297  2c2 11693  +crp 12390  (,)cioo 12739  cre 14456  cim 14457  expce 15415  sincsin 15417  cosccos 15418  tanctan 15419  πcpi 15420  logclog 25138  arctancatan 25442
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2793  ax-rep 5190  ax-sep 5203  ax-nul 5210  ax-pow 5266  ax-pr 5330  ax-un 7461  ax-inf2 9104  ax-cnex 10593  ax-resscn 10594  ax-1cn 10595  ax-icn 10596  ax-addcl 10597  ax-addrcl 10598  ax-mulcl 10599  ax-mulrcl 10600  ax-mulcom 10601  ax-addass 10602  ax-mulass 10603  ax-distr 10604  ax-i2m1 10605  ax-1ne0 10606  ax-1rid 10607  ax-rnegex 10608  ax-rrecex 10609  ax-cnre 10610  ax-pre-lttri 10611  ax-pre-lttrn 10612  ax-pre-ltadd 10613  ax-pre-mulgt0 10614  ax-pre-sup 10615  ax-addf 10616  ax-mulf 10617
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-fal 1550  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3496  df-sbc 3773  df-csb 3884  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-pss 3954  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4568  df-pr 4570  df-tp 4572  df-op 4574  df-uni 4839  df-int 4877  df-iun 4921  df-iin 4922  df-br 5067  df-opab 5129  df-mpt 5147  df-tr 5173  df-id 5460  df-eprel 5465  df-po 5474  df-so 5475  df-fr 5514  df-se 5515  df-we 5516  df-xp 5561  df-rel 5562  df-cnv 5563  df-co 5564  df-dm 5565  df-rn 5566  df-res 5567  df-ima 5568  df-pred 6148  df-ord 6194  df-on 6195  df-lim 6196  df-suc 6197  df-iota 6314  df-fun 6357  df-fn 6358  df-f 6359  df-f1 6360  df-fo 6361  df-f1o 6362  df-fv 6363  df-isom 6364  df-riota 7114  df-ov 7159  df-oprab 7160  df-mpo 7161  df-of 7409  df-om 7581  df-1st 7689  df-2nd 7690  df-supp 7831  df-wrecs 7947  df-recs 8008  df-rdg 8046  df-1o 8102  df-2o 8103  df-oadd 8106  df-er 8289  df-map 8408  df-pm 8409  df-ixp 8462  df-en 8510  df-dom 8511  df-sdom 8512  df-fin 8513  df-fsupp 8834  df-fi 8875  df-sup 8906  df-inf 8907  df-oi 8974  df-card 9368  df-pnf 10677  df-mnf 10678  df-xr 10679  df-ltxr 10680  df-le 10681  df-sub 10872  df-neg 10873  df-div 11298  df-nn 11639  df-2 11701  df-3 11702  df-4 11703  df-5 11704  df-6 11705  df-7 11706  df-8 11707  df-9 11708  df-n0 11899  df-z 11983  df-dec 12100  df-uz 12245  df-q 12350  df-rp 12391  df-xneg 12508  df-xadd 12509  df-xmul 12510  df-ioo 12743  df-ioc 12744  df-ico 12745  df-icc 12746  df-fz 12894  df-fzo 13035  df-fl 13163  df-mod 13239  df-seq 13371  df-exp 13431  df-fac 13635  df-bc 13664  df-hash 13692  df-shft 14426  df-cj 14458  df-re 14459  df-im 14460  df-sqrt 14594  df-abs 14595  df-limsup 14828  df-clim 14845  df-rlim 14846  df-sum 15043  df-ef 15421  df-sin 15423  df-cos 15424  df-tan 15425  df-pi 15426  df-struct 16485  df-ndx 16486  df-slot 16487  df-base 16489  df-sets 16490  df-ress 16491  df-plusg 16578  df-mulr 16579  df-starv 16580  df-sca 16581  df-vsca 16582  df-ip 16583  df-tset 16584  df-ple 16585  df-ds 16587  df-unif 16588  df-hom 16589  df-cco 16590  df-rest 16696  df-topn 16697  df-0g 16715  df-gsum 16716  df-topgen 16717  df-pt 16718  df-prds 16721  df-xrs 16775  df-qtop 16780  df-imas 16781  df-xps 16783  df-mre 16857  df-mrc 16858  df-acs 16860  df-mgm 17852  df-sgrp 17901  df-mnd 17912  df-submnd 17957  df-mulg 18225  df-cntz 18447  df-cmn 18908  df-psmet 20537  df-xmet 20538  df-met 20539  df-bl 20540  df-mopn 20541  df-fbas 20542  df-fg 20543  df-cnfld 20546  df-top 21502  df-topon 21519  df-topsp 21541  df-bases 21554  df-cld 21627  df-ntr 21628  df-cls 21629  df-nei 21706  df-lp 21744  df-perf 21745  df-cn 21835  df-cnp 21836  df-haus 21923  df-tx 22170  df-hmeo 22363  df-fil 22454  df-fm 22546  df-flim 22547  df-flf 22548  df-xms 22930  df-ms 22931  df-tms 22932  df-cncf 23486  df-limc 24464  df-dv 24465  df-log 25140  df-atan 25445
This theorem is referenced by:  atantanb  25502  atan1  25506
  Copyright terms: Public domain W3C validator