Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dya2icoseg Structured version   Visualization version   GIF version

Theorem dya2icoseg 30132
Description: For any point and any closed-below, open-above interval of centered on that point, there is a closed-below open-above dyadic rational interval which contains that point and is included in the original interval. (Contributed by Thierry Arnoux, 19-Sep-2017.)
Hypotheses
Ref Expression
sxbrsiga.0 𝐽 = (topGen‘ran (,))
dya2ioc.1 𝐼 = (𝑥 ∈ ℤ, 𝑛 ∈ ℤ ↦ ((𝑥 / (2↑𝑛))[,)((𝑥 + 1) / (2↑𝑛))))
dya2icoseg.1 𝑁 = (⌊‘(1 − (2 logb 𝐷)))
Assertion
Ref Expression
dya2icoseg ((𝑋 ∈ ℝ ∧ 𝐷 ∈ ℝ+) → ∃𝑏 ∈ ran 𝐼(𝑋𝑏𝑏 ⊆ ((𝑋𝐷)(,)(𝑋 + 𝐷))))
Distinct variable groups:   𝑥,𝑛   𝑥,𝐼   𝐷,𝑏   𝐼,𝑏,𝑥   𝑁,𝑏,𝑥   𝑋,𝑏,𝑥
Allowed substitution hints:   𝐷(𝑥,𝑛)   𝐼(𝑛)   𝐽(𝑥,𝑛,𝑏)   𝑁(𝑛)   𝑋(𝑛)

Proof of Theorem dya2icoseg
StepHypRef Expression
1 dya2ioc.1 . . . . 5 𝐼 = (𝑥 ∈ ℤ, 𝑛 ∈ ℤ ↦ ((𝑥 / (2↑𝑛))[,)((𝑥 + 1) / (2↑𝑛))))
2 ovex 6635 . . . . 5 ((𝑥 / (2↑𝑛))[,)((𝑥 + 1) / (2↑𝑛))) ∈ V
31, 2fnmpt2i 7187 . . . 4 𝐼 Fn (ℤ × ℤ)
43a1i 11 . . 3 ((𝑋 ∈ ℝ ∧ 𝐷 ∈ ℝ+) → 𝐼 Fn (ℤ × ℤ))
5 simpl 473 . . . . 5 ((𝑋 ∈ ℝ ∧ 𝐷 ∈ ℝ+) → 𝑋 ∈ ℝ)
6 2rp 11784 . . . . . . 7 2 ∈ ℝ+
7 dya2icoseg.1 . . . . . . . 8 𝑁 = (⌊‘(1 − (2 logb 𝐷)))
8 1red 10002 . . . . . . . . . 10 (𝐷 ∈ ℝ+ → 1 ∈ ℝ)
9 2z 11356 . . . . . . . . . . . 12 2 ∈ ℤ
10 uzid 11649 . . . . . . . . . . . 12 (2 ∈ ℤ → 2 ∈ (ℤ‘2))
119, 10ax-mp 5 . . . . . . . . . . 11 2 ∈ (ℤ‘2)
12 relogbzcl 24419 . . . . . . . . . . 11 ((2 ∈ (ℤ‘2) ∧ 𝐷 ∈ ℝ+) → (2 logb 𝐷) ∈ ℝ)
1311, 12mpan 705 . . . . . . . . . 10 (𝐷 ∈ ℝ+ → (2 logb 𝐷) ∈ ℝ)
148, 13resubcld 10405 . . . . . . . . 9 (𝐷 ∈ ℝ+ → (1 − (2 logb 𝐷)) ∈ ℝ)
1514flcld 12542 . . . . . . . 8 (𝐷 ∈ ℝ+ → (⌊‘(1 − (2 logb 𝐷))) ∈ ℤ)
167, 15syl5eqel 2702 . . . . . . 7 (𝐷 ∈ ℝ+𝑁 ∈ ℤ)
17 rpexpcl 12822 . . . . . . . 8 ((2 ∈ ℝ+𝑁 ∈ ℤ) → (2↑𝑁) ∈ ℝ+)
1817rpred 11819 . . . . . . 7 ((2 ∈ ℝ+𝑁 ∈ ℤ) → (2↑𝑁) ∈ ℝ)
196, 16, 18sylancr 694 . . . . . 6 (𝐷 ∈ ℝ+ → (2↑𝑁) ∈ ℝ)
2019adantl 482 . . . . 5 ((𝑋 ∈ ℝ ∧ 𝐷 ∈ ℝ+) → (2↑𝑁) ∈ ℝ)
215, 20remulcld 10017 . . . 4 ((𝑋 ∈ ℝ ∧ 𝐷 ∈ ℝ+) → (𝑋 · (2↑𝑁)) ∈ ℝ)
2221flcld 12542 . . 3 ((𝑋 ∈ ℝ ∧ 𝐷 ∈ ℝ+) → (⌊‘(𝑋 · (2↑𝑁))) ∈ ℤ)
2316adantl 482 . . 3 ((𝑋 ∈ ℝ ∧ 𝐷 ∈ ℝ+) → 𝑁 ∈ ℤ)
24 fnovrn 6765 . . 3 ((𝐼 Fn (ℤ × ℤ) ∧ (⌊‘(𝑋 · (2↑𝑁))) ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((⌊‘(𝑋 · (2↑𝑁)))𝐼𝑁) ∈ ran 𝐼)
254, 22, 23, 24syl3anc 1323 . 2 ((𝑋 ∈ ℝ ∧ 𝐷 ∈ ℝ+) → ((⌊‘(𝑋 · (2↑𝑁)))𝐼𝑁) ∈ ran 𝐼)
2622zred 11429 . . . . . 6 ((𝑋 ∈ ℝ ∧ 𝐷 ∈ ℝ+) → (⌊‘(𝑋 · (2↑𝑁))) ∈ ℝ)
276, 23, 17sylancr 694 . . . . . 6 ((𝑋 ∈ ℝ ∧ 𝐷 ∈ ℝ+) → (2↑𝑁) ∈ ℝ+)
28 fllelt 12541 . . . . . . . 8 ((𝑋 · (2↑𝑁)) ∈ ℝ → ((⌊‘(𝑋 · (2↑𝑁))) ≤ (𝑋 · (2↑𝑁)) ∧ (𝑋 · (2↑𝑁)) < ((⌊‘(𝑋 · (2↑𝑁))) + 1)))
2921, 28syl 17 . . . . . . 7 ((𝑋 ∈ ℝ ∧ 𝐷 ∈ ℝ+) → ((⌊‘(𝑋 · (2↑𝑁))) ≤ (𝑋 · (2↑𝑁)) ∧ (𝑋 · (2↑𝑁)) < ((⌊‘(𝑋 · (2↑𝑁))) + 1)))
3029simpld 475 . . . . . 6 ((𝑋 ∈ ℝ ∧ 𝐷 ∈ ℝ+) → (⌊‘(𝑋 · (2↑𝑁))) ≤ (𝑋 · (2↑𝑁)))
3126, 21, 27, 30lediv1dd 11877 . . . . 5 ((𝑋 ∈ ℝ ∧ 𝐷 ∈ ℝ+) → ((⌊‘(𝑋 · (2↑𝑁))) / (2↑𝑁)) ≤ ((𝑋 · (2↑𝑁)) / (2↑𝑁)))
325recnd 10015 . . . . . 6 ((𝑋 ∈ ℝ ∧ 𝐷 ∈ ℝ+) → 𝑋 ∈ ℂ)
3320recnd 10015 . . . . . 6 ((𝑋 ∈ ℝ ∧ 𝐷 ∈ ℝ+) → (2↑𝑁) ∈ ℂ)
34 2cnd 11040 . . . . . . 7 ((𝑋 ∈ ℝ ∧ 𝐷 ∈ ℝ+) → 2 ∈ ℂ)
35 2ne0 11060 . . . . . . . 8 2 ≠ 0
3635a1i 11 . . . . . . 7 ((𝑋 ∈ ℝ ∧ 𝐷 ∈ ℝ+) → 2 ≠ 0)
3734, 36, 23expne0d 12957 . . . . . 6 ((𝑋 ∈ ℝ ∧ 𝐷 ∈ ℝ+) → (2↑𝑁) ≠ 0)
3832, 33, 37divcan4d 10754 . . . . 5 ((𝑋 ∈ ℝ ∧ 𝐷 ∈ ℝ+) → ((𝑋 · (2↑𝑁)) / (2↑𝑁)) = 𝑋)
3931, 38breqtrd 4641 . . . 4 ((𝑋 ∈ ℝ ∧ 𝐷 ∈ ℝ+) → ((⌊‘(𝑋 · (2↑𝑁))) / (2↑𝑁)) ≤ 𝑋)
40 1red 10002 . . . . . . 7 ((𝑋 ∈ ℝ ∧ 𝐷 ∈ ℝ+) → 1 ∈ ℝ)
4126, 40readdcld 10016 . . . . . 6 ((𝑋 ∈ ℝ ∧ 𝐷 ∈ ℝ+) → ((⌊‘(𝑋 · (2↑𝑁))) + 1) ∈ ℝ)
4229simprd 479 . . . . . 6 ((𝑋 ∈ ℝ ∧ 𝐷 ∈ ℝ+) → (𝑋 · (2↑𝑁)) < ((⌊‘(𝑋 · (2↑𝑁))) + 1))
4321, 41, 27, 42ltdiv1dd 11876 . . . . 5 ((𝑋 ∈ ℝ ∧ 𝐷 ∈ ℝ+) → ((𝑋 · (2↑𝑁)) / (2↑𝑁)) < (((⌊‘(𝑋 · (2↑𝑁))) + 1) / (2↑𝑁)))
4438, 43eqbrtrrd 4639 . . . 4 ((𝑋 ∈ ℝ ∧ 𝐷 ∈ ℝ+) → 𝑋 < (((⌊‘(𝑋 · (2↑𝑁))) + 1) / (2↑𝑁)))
4526, 20, 37redivcld 10800 . . . . 5 ((𝑋 ∈ ℝ ∧ 𝐷 ∈ ℝ+) → ((⌊‘(𝑋 · (2↑𝑁))) / (2↑𝑁)) ∈ ℝ)
4641, 20, 37redivcld 10800 . . . . . 6 ((𝑋 ∈ ℝ ∧ 𝐷 ∈ ℝ+) → (((⌊‘(𝑋 · (2↑𝑁))) + 1) / (2↑𝑁)) ∈ ℝ)
4746rexrd 10036 . . . . 5 ((𝑋 ∈ ℝ ∧ 𝐷 ∈ ℝ+) → (((⌊‘(𝑋 · (2↑𝑁))) + 1) / (2↑𝑁)) ∈ ℝ*)
48 elico2 12182 . . . . 5 ((((⌊‘(𝑋 · (2↑𝑁))) / (2↑𝑁)) ∈ ℝ ∧ (((⌊‘(𝑋 · (2↑𝑁))) + 1) / (2↑𝑁)) ∈ ℝ*) → (𝑋 ∈ (((⌊‘(𝑋 · (2↑𝑁))) / (2↑𝑁))[,)(((⌊‘(𝑋 · (2↑𝑁))) + 1) / (2↑𝑁))) ↔ (𝑋 ∈ ℝ ∧ ((⌊‘(𝑋 · (2↑𝑁))) / (2↑𝑁)) ≤ 𝑋𝑋 < (((⌊‘(𝑋 · (2↑𝑁))) + 1) / (2↑𝑁)))))
4945, 47, 48syl2anc 692 . . . 4 ((𝑋 ∈ ℝ ∧ 𝐷 ∈ ℝ+) → (𝑋 ∈ (((⌊‘(𝑋 · (2↑𝑁))) / (2↑𝑁))[,)(((⌊‘(𝑋 · (2↑𝑁))) + 1) / (2↑𝑁))) ↔ (𝑋 ∈ ℝ ∧ ((⌊‘(𝑋 · (2↑𝑁))) / (2↑𝑁)) ≤ 𝑋𝑋 < (((⌊‘(𝑋 · (2↑𝑁))) + 1) / (2↑𝑁)))))
505, 39, 44, 49mpbir3and 1243 . . 3 ((𝑋 ∈ ℝ ∧ 𝐷 ∈ ℝ+) → 𝑋 ∈ (((⌊‘(𝑋 · (2↑𝑁))) / (2↑𝑁))[,)(((⌊‘(𝑋 · (2↑𝑁))) + 1) / (2↑𝑁))))
51 sxbrsiga.0 . . . . 5 𝐽 = (topGen‘ran (,))
5251, 1dya2iocival 30128 . . . 4 ((𝑁 ∈ ℤ ∧ (⌊‘(𝑋 · (2↑𝑁))) ∈ ℤ) → ((⌊‘(𝑋 · (2↑𝑁)))𝐼𝑁) = (((⌊‘(𝑋 · (2↑𝑁))) / (2↑𝑁))[,)(((⌊‘(𝑋 · (2↑𝑁))) + 1) / (2↑𝑁))))
5323, 22, 52syl2anc 692 . . 3 ((𝑋 ∈ ℝ ∧ 𝐷 ∈ ℝ+) → ((⌊‘(𝑋 · (2↑𝑁)))𝐼𝑁) = (((⌊‘(𝑋 · (2↑𝑁))) / (2↑𝑁))[,)(((⌊‘(𝑋 · (2↑𝑁))) + 1) / (2↑𝑁))))
5450, 53eleqtrrd 2701 . 2 ((𝑋 ∈ ℝ ∧ 𝐷 ∈ ℝ+) → 𝑋 ∈ ((⌊‘(𝑋 · (2↑𝑁)))𝐼𝑁))
55 simpr 477 . . . . . . 7 ((𝑋 ∈ ℝ ∧ 𝐷 ∈ ℝ+) → 𝐷 ∈ ℝ+)
5655rpred 11819 . . . . . 6 ((𝑋 ∈ ℝ ∧ 𝐷 ∈ ℝ+) → 𝐷 ∈ ℝ)
575, 56resubcld 10405 . . . . 5 ((𝑋 ∈ ℝ ∧ 𝐷 ∈ ℝ+) → (𝑋𝐷) ∈ ℝ)
5857rexrd 10036 . . . 4 ((𝑋 ∈ ℝ ∧ 𝐷 ∈ ℝ+) → (𝑋𝐷) ∈ ℝ*)
595, 56readdcld 10016 . . . . 5 ((𝑋 ∈ ℝ ∧ 𝐷 ∈ ℝ+) → (𝑋 + 𝐷) ∈ ℝ)
6059rexrd 10036 . . . 4 ((𝑋 ∈ ℝ ∧ 𝐷 ∈ ℝ+) → (𝑋 + 𝐷) ∈ ℝ*)
6120, 37rereccld 10799 . . . . . 6 ((𝑋 ∈ ℝ ∧ 𝐷 ∈ ℝ+) → (1 / (2↑𝑁)) ∈ ℝ)
625, 61resubcld 10405 . . . . 5 ((𝑋 ∈ ℝ ∧ 𝐷 ∈ ℝ+) → (𝑋 − (1 / (2↑𝑁))) ∈ ℝ)
637oveq2i 6618 . . . . . . . 8 (2↑𝑁) = (2↑(⌊‘(1 − (2 logb 𝐷))))
6463oveq2i 6618 . . . . . . 7 (1 / (2↑𝑁)) = (1 / (2↑(⌊‘(1 − (2 logb 𝐷)))))
65 dya2ub 30125 . . . . . . . 8 (𝐷 ∈ ℝ+ → (1 / (2↑(⌊‘(1 − (2 logb 𝐷))))) < 𝐷)
6665adantl 482 . . . . . . 7 ((𝑋 ∈ ℝ ∧ 𝐷 ∈ ℝ+) → (1 / (2↑(⌊‘(1 − (2 logb 𝐷))))) < 𝐷)
6764, 66syl5eqbr 4650 . . . . . 6 ((𝑋 ∈ ℝ ∧ 𝐷 ∈ ℝ+) → (1 / (2↑𝑁)) < 𝐷)
6861, 56, 5, 67ltsub2dd 10587 . . . . 5 ((𝑋 ∈ ℝ ∧ 𝐷 ∈ ℝ+) → (𝑋𝐷) < (𝑋 − (1 / (2↑𝑁))))
6932, 33mulcld 10007 . . . . . . . 8 ((𝑋 ∈ ℝ ∧ 𝐷 ∈ ℝ+) → (𝑋 · (2↑𝑁)) ∈ ℂ)
70 1cnd 10003 . . . . . . . 8 ((𝑋 ∈ ℝ ∧ 𝐷 ∈ ℝ+) → 1 ∈ ℂ)
7169, 70, 33, 37divsubdird 10787 . . . . . . 7 ((𝑋 ∈ ℝ ∧ 𝐷 ∈ ℝ+) → (((𝑋 · (2↑𝑁)) − 1) / (2↑𝑁)) = (((𝑋 · (2↑𝑁)) / (2↑𝑁)) − (1 / (2↑𝑁))))
7238oveq1d 6622 . . . . . . 7 ((𝑋 ∈ ℝ ∧ 𝐷 ∈ ℝ+) → (((𝑋 · (2↑𝑁)) / (2↑𝑁)) − (1 / (2↑𝑁))) = (𝑋 − (1 / (2↑𝑁))))
7371, 72eqtrd 2655 . . . . . 6 ((𝑋 ∈ ℝ ∧ 𝐷 ∈ ℝ+) → (((𝑋 · (2↑𝑁)) − 1) / (2↑𝑁)) = (𝑋 − (1 / (2↑𝑁))))
7421, 40resubcld 10405 . . . . . . 7 ((𝑋 ∈ ℝ ∧ 𝐷 ∈ ℝ+) → ((𝑋 · (2↑𝑁)) − 1) ∈ ℝ)
7521, 41, 40, 42ltsub1dd 10586 . . . . . . . . 9 ((𝑋 ∈ ℝ ∧ 𝐷 ∈ ℝ+) → ((𝑋 · (2↑𝑁)) − 1) < (((⌊‘(𝑋 · (2↑𝑁))) + 1) − 1))
7626recnd 10015 . . . . . . . . . 10 ((𝑋 ∈ ℝ ∧ 𝐷 ∈ ℝ+) → (⌊‘(𝑋 · (2↑𝑁))) ∈ ℂ)
7776, 70pncand 10340 . . . . . . . . 9 ((𝑋 ∈ ℝ ∧ 𝐷 ∈ ℝ+) → (((⌊‘(𝑋 · (2↑𝑁))) + 1) − 1) = (⌊‘(𝑋 · (2↑𝑁))))
7875, 77breqtrd 4641 . . . . . . . 8 ((𝑋 ∈ ℝ ∧ 𝐷 ∈ ℝ+) → ((𝑋 · (2↑𝑁)) − 1) < (⌊‘(𝑋 · (2↑𝑁))))
7974, 26, 78ltled 10132 . . . . . . 7 ((𝑋 ∈ ℝ ∧ 𝐷 ∈ ℝ+) → ((𝑋 · (2↑𝑁)) − 1) ≤ (⌊‘(𝑋 · (2↑𝑁))))
8074, 26, 27, 79lediv1dd 11877 . . . . . 6 ((𝑋 ∈ ℝ ∧ 𝐷 ∈ ℝ+) → (((𝑋 · (2↑𝑁)) − 1) / (2↑𝑁)) ≤ ((⌊‘(𝑋 · (2↑𝑁))) / (2↑𝑁)))
8173, 80eqbrtrrd 4639 . . . . 5 ((𝑋 ∈ ℝ ∧ 𝐷 ∈ ℝ+) → (𝑋 − (1 / (2↑𝑁))) ≤ ((⌊‘(𝑋 · (2↑𝑁))) / (2↑𝑁)))
8257, 62, 45, 68, 81ltletrd 10144 . . . 4 ((𝑋 ∈ ℝ ∧ 𝐷 ∈ ℝ+) → (𝑋𝐷) < ((⌊‘(𝑋 · (2↑𝑁))) / (2↑𝑁)))
835, 61readdcld 10016 . . . . . 6 ((𝑋 ∈ ℝ ∧ 𝐷 ∈ ℝ+) → (𝑋 + (1 / (2↑𝑁))) ∈ ℝ)
8421, 40readdcld 10016 . . . . . . . 8 ((𝑋 ∈ ℝ ∧ 𝐷 ∈ ℝ+) → ((𝑋 · (2↑𝑁)) + 1) ∈ ℝ)
8526, 21, 40, 30leadd1dd 10588 . . . . . . . 8 ((𝑋 ∈ ℝ ∧ 𝐷 ∈ ℝ+) → ((⌊‘(𝑋 · (2↑𝑁))) + 1) ≤ ((𝑋 · (2↑𝑁)) + 1))
8641, 84, 27, 85lediv1dd 11877 . . . . . . 7 ((𝑋 ∈ ℝ ∧ 𝐷 ∈ ℝ+) → (((⌊‘(𝑋 · (2↑𝑁))) + 1) / (2↑𝑁)) ≤ (((𝑋 · (2↑𝑁)) + 1) / (2↑𝑁)))
8769, 70, 33, 37divdird 10786 . . . . . . . 8 ((𝑋 ∈ ℝ ∧ 𝐷 ∈ ℝ+) → (((𝑋 · (2↑𝑁)) + 1) / (2↑𝑁)) = (((𝑋 · (2↑𝑁)) / (2↑𝑁)) + (1 / (2↑𝑁))))
8838oveq1d 6622 . . . . . . . 8 ((𝑋 ∈ ℝ ∧ 𝐷 ∈ ℝ+) → (((𝑋 · (2↑𝑁)) / (2↑𝑁)) + (1 / (2↑𝑁))) = (𝑋 + (1 / (2↑𝑁))))
8987, 88eqtrd 2655 . . . . . . 7 ((𝑋 ∈ ℝ ∧ 𝐷 ∈ ℝ+) → (((𝑋 · (2↑𝑁)) + 1) / (2↑𝑁)) = (𝑋 + (1 / (2↑𝑁))))
9086, 89breqtrd 4641 . . . . . 6 ((𝑋 ∈ ℝ ∧ 𝐷 ∈ ℝ+) → (((⌊‘(𝑋 · (2↑𝑁))) + 1) / (2↑𝑁)) ≤ (𝑋 + (1 / (2↑𝑁))))
9161, 56, 5, 67ltadd2dd 10143 . . . . . 6 ((𝑋 ∈ ℝ ∧ 𝐷 ∈ ℝ+) → (𝑋 + (1 / (2↑𝑁))) < (𝑋 + 𝐷))
9246, 83, 59, 90, 91lelttrd 10142 . . . . 5 ((𝑋 ∈ ℝ ∧ 𝐷 ∈ ℝ+) → (((⌊‘(𝑋 · (2↑𝑁))) + 1) / (2↑𝑁)) < (𝑋 + 𝐷))
9346, 59, 92ltled 10132 . . . 4 ((𝑋 ∈ ℝ ∧ 𝐷 ∈ ℝ+) → (((⌊‘(𝑋 · (2↑𝑁))) + 1) / (2↑𝑁)) ≤ (𝑋 + 𝐷))
94 icossioo 12209 . . . 4 ((((𝑋𝐷) ∈ ℝ* ∧ (𝑋 + 𝐷) ∈ ℝ*) ∧ ((𝑋𝐷) < ((⌊‘(𝑋 · (2↑𝑁))) / (2↑𝑁)) ∧ (((⌊‘(𝑋 · (2↑𝑁))) + 1) / (2↑𝑁)) ≤ (𝑋 + 𝐷))) → (((⌊‘(𝑋 · (2↑𝑁))) / (2↑𝑁))[,)(((⌊‘(𝑋 · (2↑𝑁))) + 1) / (2↑𝑁))) ⊆ ((𝑋𝐷)(,)(𝑋 + 𝐷)))
9558, 60, 82, 93, 94syl22anc 1324 . . 3 ((𝑋 ∈ ℝ ∧ 𝐷 ∈ ℝ+) → (((⌊‘(𝑋 · (2↑𝑁))) / (2↑𝑁))[,)(((⌊‘(𝑋 · (2↑𝑁))) + 1) / (2↑𝑁))) ⊆ ((𝑋𝐷)(,)(𝑋 + 𝐷)))
9653, 95eqsstrd 3620 . 2 ((𝑋 ∈ ℝ ∧ 𝐷 ∈ ℝ+) → ((⌊‘(𝑋 · (2↑𝑁)))𝐼𝑁) ⊆ ((𝑋𝐷)(,)(𝑋 + 𝐷)))
97 eleq2 2687 . . . 4 (𝑏 = ((⌊‘(𝑋 · (2↑𝑁)))𝐼𝑁) → (𝑋𝑏𝑋 ∈ ((⌊‘(𝑋 · (2↑𝑁)))𝐼𝑁)))
98 sseq1 3607 . . . 4 (𝑏 = ((⌊‘(𝑋 · (2↑𝑁)))𝐼𝑁) → (𝑏 ⊆ ((𝑋𝐷)(,)(𝑋 + 𝐷)) ↔ ((⌊‘(𝑋 · (2↑𝑁)))𝐼𝑁) ⊆ ((𝑋𝐷)(,)(𝑋 + 𝐷))))
9997, 98anbi12d 746 . . 3 (𝑏 = ((⌊‘(𝑋 · (2↑𝑁)))𝐼𝑁) → ((𝑋𝑏𝑏 ⊆ ((𝑋𝐷)(,)(𝑋 + 𝐷))) ↔ (𝑋 ∈ ((⌊‘(𝑋 · (2↑𝑁)))𝐼𝑁) ∧ ((⌊‘(𝑋 · (2↑𝑁)))𝐼𝑁) ⊆ ((𝑋𝐷)(,)(𝑋 + 𝐷)))))
10099rspcev 3295 . 2 ((((⌊‘(𝑋 · (2↑𝑁)))𝐼𝑁) ∈ ran 𝐼 ∧ (𝑋 ∈ ((⌊‘(𝑋 · (2↑𝑁)))𝐼𝑁) ∧ ((⌊‘(𝑋 · (2↑𝑁)))𝐼𝑁) ⊆ ((𝑋𝐷)(,)(𝑋 + 𝐷)))) → ∃𝑏 ∈ ran 𝐼(𝑋𝑏𝑏 ⊆ ((𝑋𝐷)(,)(𝑋 + 𝐷))))
10125, 54, 96, 100syl12anc 1321 1 ((𝑋 ∈ ℝ ∧ 𝐷 ∈ ℝ+) → ∃𝑏 ∈ ran 𝐼(𝑋𝑏𝑏 ⊆ ((𝑋𝐷)(,)(𝑋 + 𝐷))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 384  w3a 1036   = wceq 1480  wcel 1987  wne 2790  wrex 2908  wss 3556   class class class wbr 4615   × cxp 5074  ran crn 5077   Fn wfn 5844  cfv 5849  (class class class)co 6607  cmpt2 6609  cr 9882  0cc0 9883  1c1 9884   + caddc 9886   · cmul 9888  *cxr 10020   < clt 10021  cle 10022  cmin 10213   / cdiv 10631  2c2 11017  cz 11324  cuz 11634  +crp 11779  (,)cioo 12120  [,)cico 12122  cfl 12534  cexp 12803  topGenctg 16022   logb clogb 24409
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-rep 4733  ax-sep 4743  ax-nul 4751  ax-pow 4805  ax-pr 4869  ax-un 6905  ax-inf2 8485  ax-cnex 9939  ax-resscn 9940  ax-1cn 9941  ax-icn 9942  ax-addcl 9943  ax-addrcl 9944  ax-mulcl 9945  ax-mulrcl 9946  ax-mulcom 9947  ax-addass 9948  ax-mulass 9949  ax-distr 9950  ax-i2m1 9951  ax-1ne0 9952  ax-1rid 9953  ax-rnegex 9954  ax-rrecex 9955  ax-cnre 9956  ax-pre-lttri 9957  ax-pre-lttrn 9958  ax-pre-ltadd 9959  ax-pre-mulgt0 9960  ax-pre-sup 9961  ax-addf 9962  ax-mulf 9963
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-fal 1486  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-nel 2894  df-ral 2912  df-rex 2913  df-reu 2914  df-rmo 2915  df-rab 2916  df-v 3188  df-sbc 3419  df-csb 3516  df-dif 3559  df-un 3561  df-in 3563  df-ss 3570  df-pss 3572  df-nul 3894  df-if 4061  df-pw 4134  df-sn 4151  df-pr 4153  df-tp 4155  df-op 4157  df-uni 4405  df-int 4443  df-iun 4489  df-iin 4490  df-br 4616  df-opab 4676  df-mpt 4677  df-tr 4715  df-eprel 4987  df-id 4991  df-po 4997  df-so 4998  df-fr 5035  df-se 5036  df-we 5037  df-xp 5082  df-rel 5083  df-cnv 5084  df-co 5085  df-dm 5086  df-rn 5087  df-res 5088  df-ima 5089  df-pred 5641  df-ord 5687  df-on 5688  df-lim 5689  df-suc 5690  df-iota 5812  df-fun 5851  df-fn 5852  df-f 5853  df-f1 5854  df-fo 5855  df-f1o 5856  df-fv 5857  df-isom 5858  df-riota 6568  df-ov 6610  df-oprab 6611  df-mpt2 6612  df-of 6853  df-om 7016  df-1st 7116  df-2nd 7117  df-supp 7244  df-wrecs 7355  df-recs 7416  df-rdg 7454  df-1o 7508  df-2o 7509  df-oadd 7512  df-er 7690  df-map 7807  df-pm 7808  df-ixp 7856  df-en 7903  df-dom 7904  df-sdom 7905  df-fin 7906  df-fsupp 8223  df-fi 8264  df-sup 8295  df-inf 8296  df-oi 8362  df-card 8712  df-cda 8937  df-pnf 10023  df-mnf 10024  df-xr 10025  df-ltxr 10026  df-le 10027  df-sub 10215  df-neg 10216  df-div 10632  df-nn 10968  df-2 11026  df-3 11027  df-4 11028  df-5 11029  df-6 11030  df-7 11031  df-8 11032  df-9 11033  df-n0 11240  df-z 11325  df-dec 11441  df-uz 11635  df-q 11736  df-rp 11780  df-xneg 11893  df-xadd 11894  df-xmul 11895  df-ioo 12124  df-ioc 12125  df-ico 12126  df-icc 12127  df-fz 12272  df-fzo 12410  df-fl 12536  df-mod 12612  df-seq 12745  df-exp 12804  df-fac 13004  df-bc 13033  df-hash 13061  df-shft 13744  df-cj 13776  df-re 13777  df-im 13778  df-sqrt 13912  df-abs 13913  df-limsup 14139  df-clim 14156  df-rlim 14157  df-sum 14354  df-ef 14726  df-sin 14728  df-cos 14729  df-pi 14731  df-struct 15786  df-ndx 15787  df-slot 15788  df-base 15789  df-sets 15790  df-ress 15791  df-plusg 15878  df-mulr 15879  df-starv 15880  df-sca 15881  df-vsca 15882  df-ip 15883  df-tset 15884  df-ple 15885  df-ds 15888  df-unif 15889  df-hom 15890  df-cco 15891  df-rest 16007  df-topn 16008  df-0g 16026  df-gsum 16027  df-topgen 16028  df-pt 16029  df-prds 16032  df-xrs 16086  df-qtop 16091  df-imas 16092  df-xps 16094  df-mre 16170  df-mrc 16171  df-acs 16173  df-mgm 17166  df-sgrp 17208  df-mnd 17219  df-submnd 17260  df-mulg 17465  df-cntz 17674  df-cmn 18119  df-psmet 19660  df-xmet 19661  df-met 19662  df-bl 19663  df-mopn 19664  df-fbas 19665  df-fg 19666  df-cnfld 19669  df-top 20621  df-topon 20638  df-topsp 20651  df-bases 20664  df-cld 20736  df-ntr 20737  df-cls 20738  df-nei 20815  df-lp 20853  df-perf 20854  df-cn 20944  df-cnp 20945  df-haus 21032  df-tx 21278  df-hmeo 21471  df-fil 21563  df-fm 21655  df-flim 21656  df-flf 21657  df-xms 22038  df-ms 22039  df-tms 22040  df-cncf 22594  df-limc 23543  df-dv 23544  df-log 24214  df-cxp 24215  df-logb 24410
This theorem is referenced by:  dya2icoseg2  30133
  Copyright terms: Public domain W3C validator