Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dya2icoseg Structured version   Visualization version   GIF version

Theorem dya2icoseg 31535
Description: For any point and any closed-below, open-above interval of centered on that point, there is a closed-below open-above dyadic rational interval which contains that point and is included in the original interval. (Contributed by Thierry Arnoux, 19-Sep-2017.)
Hypotheses
Ref Expression
sxbrsiga.0 𝐽 = (topGen‘ran (,))
dya2ioc.1 𝐼 = (𝑥 ∈ ℤ, 𝑛 ∈ ℤ ↦ ((𝑥 / (2↑𝑛))[,)((𝑥 + 1) / (2↑𝑛))))
dya2icoseg.1 𝑁 = (⌊‘(1 − (2 logb 𝐷)))
Assertion
Ref Expression
dya2icoseg ((𝑋 ∈ ℝ ∧ 𝐷 ∈ ℝ+) → ∃𝑏 ∈ ran 𝐼(𝑋𝑏𝑏 ⊆ ((𝑋𝐷)(,)(𝑋 + 𝐷))))
Distinct variable groups:   𝑥,𝑛   𝑥,𝐼   𝐷,𝑏   𝐼,𝑏,𝑥   𝑁,𝑏,𝑥   𝑋,𝑏,𝑥
Allowed substitution hints:   𝐷(𝑥,𝑛)   𝐼(𝑛)   𝐽(𝑥,𝑛,𝑏)   𝑁(𝑛)   𝑋(𝑛)

Proof of Theorem dya2icoseg
StepHypRef Expression
1 dya2ioc.1 . . . . 5 𝐼 = (𝑥 ∈ ℤ, 𝑛 ∈ ℤ ↦ ((𝑥 / (2↑𝑛))[,)((𝑥 + 1) / (2↑𝑛))))
2 ovex 7189 . . . . 5 ((𝑥 / (2↑𝑛))[,)((𝑥 + 1) / (2↑𝑛))) ∈ V
31, 2fnmpoi 7768 . . . 4 𝐼 Fn (ℤ × ℤ)
43a1i 11 . . 3 ((𝑋 ∈ ℝ ∧ 𝐷 ∈ ℝ+) → 𝐼 Fn (ℤ × ℤ))
5 simpl 485 . . . . 5 ((𝑋 ∈ ℝ ∧ 𝐷 ∈ ℝ+) → 𝑋 ∈ ℝ)
6 2rp 12395 . . . . . . 7 2 ∈ ℝ+
7 dya2icoseg.1 . . . . . . . 8 𝑁 = (⌊‘(1 − (2 logb 𝐷)))
8 1red 10642 . . . . . . . . . 10 (𝐷 ∈ ℝ+ → 1 ∈ ℝ)
9 2z 12015 . . . . . . . . . . . 12 2 ∈ ℤ
10 uzid 12259 . . . . . . . . . . . 12 (2 ∈ ℤ → 2 ∈ (ℤ‘2))
119, 10ax-mp 5 . . . . . . . . . . 11 2 ∈ (ℤ‘2)
12 relogbzcl 25352 . . . . . . . . . . 11 ((2 ∈ (ℤ‘2) ∧ 𝐷 ∈ ℝ+) → (2 logb 𝐷) ∈ ℝ)
1311, 12mpan 688 . . . . . . . . . 10 (𝐷 ∈ ℝ+ → (2 logb 𝐷) ∈ ℝ)
148, 13resubcld 11068 . . . . . . . . 9 (𝐷 ∈ ℝ+ → (1 − (2 logb 𝐷)) ∈ ℝ)
1514flcld 13169 . . . . . . . 8 (𝐷 ∈ ℝ+ → (⌊‘(1 − (2 logb 𝐷))) ∈ ℤ)
167, 15eqeltrid 2917 . . . . . . 7 (𝐷 ∈ ℝ+𝑁 ∈ ℤ)
17 rpexpcl 13449 . . . . . . . 8 ((2 ∈ ℝ+𝑁 ∈ ℤ) → (2↑𝑁) ∈ ℝ+)
1817rpred 12432 . . . . . . 7 ((2 ∈ ℝ+𝑁 ∈ ℤ) → (2↑𝑁) ∈ ℝ)
196, 16, 18sylancr 589 . . . . . 6 (𝐷 ∈ ℝ+ → (2↑𝑁) ∈ ℝ)
2019adantl 484 . . . . 5 ((𝑋 ∈ ℝ ∧ 𝐷 ∈ ℝ+) → (2↑𝑁) ∈ ℝ)
215, 20remulcld 10671 . . . 4 ((𝑋 ∈ ℝ ∧ 𝐷 ∈ ℝ+) → (𝑋 · (2↑𝑁)) ∈ ℝ)
2221flcld 13169 . . 3 ((𝑋 ∈ ℝ ∧ 𝐷 ∈ ℝ+) → (⌊‘(𝑋 · (2↑𝑁))) ∈ ℤ)
2316adantl 484 . . 3 ((𝑋 ∈ ℝ ∧ 𝐷 ∈ ℝ+) → 𝑁 ∈ ℤ)
24 fnovrn 7323 . . 3 ((𝐼 Fn (ℤ × ℤ) ∧ (⌊‘(𝑋 · (2↑𝑁))) ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((⌊‘(𝑋 · (2↑𝑁)))𝐼𝑁) ∈ ran 𝐼)
254, 22, 23, 24syl3anc 1367 . 2 ((𝑋 ∈ ℝ ∧ 𝐷 ∈ ℝ+) → ((⌊‘(𝑋 · (2↑𝑁)))𝐼𝑁) ∈ ran 𝐼)
2622zred 12088 . . . . . 6 ((𝑋 ∈ ℝ ∧ 𝐷 ∈ ℝ+) → (⌊‘(𝑋 · (2↑𝑁))) ∈ ℝ)
276, 23, 17sylancr 589 . . . . . 6 ((𝑋 ∈ ℝ ∧ 𝐷 ∈ ℝ+) → (2↑𝑁) ∈ ℝ+)
28 fllelt 13168 . . . . . . . 8 ((𝑋 · (2↑𝑁)) ∈ ℝ → ((⌊‘(𝑋 · (2↑𝑁))) ≤ (𝑋 · (2↑𝑁)) ∧ (𝑋 · (2↑𝑁)) < ((⌊‘(𝑋 · (2↑𝑁))) + 1)))
2921, 28syl 17 . . . . . . 7 ((𝑋 ∈ ℝ ∧ 𝐷 ∈ ℝ+) → ((⌊‘(𝑋 · (2↑𝑁))) ≤ (𝑋 · (2↑𝑁)) ∧ (𝑋 · (2↑𝑁)) < ((⌊‘(𝑋 · (2↑𝑁))) + 1)))
3029simpld 497 . . . . . 6 ((𝑋 ∈ ℝ ∧ 𝐷 ∈ ℝ+) → (⌊‘(𝑋 · (2↑𝑁))) ≤ (𝑋 · (2↑𝑁)))
3126, 21, 27, 30lediv1dd 12490 . . . . 5 ((𝑋 ∈ ℝ ∧ 𝐷 ∈ ℝ+) → ((⌊‘(𝑋 · (2↑𝑁))) / (2↑𝑁)) ≤ ((𝑋 · (2↑𝑁)) / (2↑𝑁)))
325recnd 10669 . . . . . 6 ((𝑋 ∈ ℝ ∧ 𝐷 ∈ ℝ+) → 𝑋 ∈ ℂ)
3320recnd 10669 . . . . . 6 ((𝑋 ∈ ℝ ∧ 𝐷 ∈ ℝ+) → (2↑𝑁) ∈ ℂ)
34 2cnd 11716 . . . . . . 7 ((𝑋 ∈ ℝ ∧ 𝐷 ∈ ℝ+) → 2 ∈ ℂ)
35 2ne0 11742 . . . . . . . 8 2 ≠ 0
3635a1i 11 . . . . . . 7 ((𝑋 ∈ ℝ ∧ 𝐷 ∈ ℝ+) → 2 ≠ 0)
3734, 36, 23expne0d 13517 . . . . . 6 ((𝑋 ∈ ℝ ∧ 𝐷 ∈ ℝ+) → (2↑𝑁) ≠ 0)
3832, 33, 37divcan4d 11422 . . . . 5 ((𝑋 ∈ ℝ ∧ 𝐷 ∈ ℝ+) → ((𝑋 · (2↑𝑁)) / (2↑𝑁)) = 𝑋)
3931, 38breqtrd 5092 . . . 4 ((𝑋 ∈ ℝ ∧ 𝐷 ∈ ℝ+) → ((⌊‘(𝑋 · (2↑𝑁))) / (2↑𝑁)) ≤ 𝑋)
40 1red 10642 . . . . . . 7 ((𝑋 ∈ ℝ ∧ 𝐷 ∈ ℝ+) → 1 ∈ ℝ)
4126, 40readdcld 10670 . . . . . 6 ((𝑋 ∈ ℝ ∧ 𝐷 ∈ ℝ+) → ((⌊‘(𝑋 · (2↑𝑁))) + 1) ∈ ℝ)
4229simprd 498 . . . . . 6 ((𝑋 ∈ ℝ ∧ 𝐷 ∈ ℝ+) → (𝑋 · (2↑𝑁)) < ((⌊‘(𝑋 · (2↑𝑁))) + 1))
4321, 41, 27, 42ltdiv1dd 12489 . . . . 5 ((𝑋 ∈ ℝ ∧ 𝐷 ∈ ℝ+) → ((𝑋 · (2↑𝑁)) / (2↑𝑁)) < (((⌊‘(𝑋 · (2↑𝑁))) + 1) / (2↑𝑁)))
4438, 43eqbrtrrd 5090 . . . 4 ((𝑋 ∈ ℝ ∧ 𝐷 ∈ ℝ+) → 𝑋 < (((⌊‘(𝑋 · (2↑𝑁))) + 1) / (2↑𝑁)))
4526, 20, 37redivcld 11468 . . . . 5 ((𝑋 ∈ ℝ ∧ 𝐷 ∈ ℝ+) → ((⌊‘(𝑋 · (2↑𝑁))) / (2↑𝑁)) ∈ ℝ)
4641, 20, 37redivcld 11468 . . . . . 6 ((𝑋 ∈ ℝ ∧ 𝐷 ∈ ℝ+) → (((⌊‘(𝑋 · (2↑𝑁))) + 1) / (2↑𝑁)) ∈ ℝ)
4746rexrd 10691 . . . . 5 ((𝑋 ∈ ℝ ∧ 𝐷 ∈ ℝ+) → (((⌊‘(𝑋 · (2↑𝑁))) + 1) / (2↑𝑁)) ∈ ℝ*)
48 elico2 12801 . . . . 5 ((((⌊‘(𝑋 · (2↑𝑁))) / (2↑𝑁)) ∈ ℝ ∧ (((⌊‘(𝑋 · (2↑𝑁))) + 1) / (2↑𝑁)) ∈ ℝ*) → (𝑋 ∈ (((⌊‘(𝑋 · (2↑𝑁))) / (2↑𝑁))[,)(((⌊‘(𝑋 · (2↑𝑁))) + 1) / (2↑𝑁))) ↔ (𝑋 ∈ ℝ ∧ ((⌊‘(𝑋 · (2↑𝑁))) / (2↑𝑁)) ≤ 𝑋𝑋 < (((⌊‘(𝑋 · (2↑𝑁))) + 1) / (2↑𝑁)))))
4945, 47, 48syl2anc 586 . . . 4 ((𝑋 ∈ ℝ ∧ 𝐷 ∈ ℝ+) → (𝑋 ∈ (((⌊‘(𝑋 · (2↑𝑁))) / (2↑𝑁))[,)(((⌊‘(𝑋 · (2↑𝑁))) + 1) / (2↑𝑁))) ↔ (𝑋 ∈ ℝ ∧ ((⌊‘(𝑋 · (2↑𝑁))) / (2↑𝑁)) ≤ 𝑋𝑋 < (((⌊‘(𝑋 · (2↑𝑁))) + 1) / (2↑𝑁)))))
505, 39, 44, 49mpbir3and 1338 . . 3 ((𝑋 ∈ ℝ ∧ 𝐷 ∈ ℝ+) → 𝑋 ∈ (((⌊‘(𝑋 · (2↑𝑁))) / (2↑𝑁))[,)(((⌊‘(𝑋 · (2↑𝑁))) + 1) / (2↑𝑁))))
51 sxbrsiga.0 . . . . 5 𝐽 = (topGen‘ran (,))
5251, 1dya2iocival 31531 . . . 4 ((𝑁 ∈ ℤ ∧ (⌊‘(𝑋 · (2↑𝑁))) ∈ ℤ) → ((⌊‘(𝑋 · (2↑𝑁)))𝐼𝑁) = (((⌊‘(𝑋 · (2↑𝑁))) / (2↑𝑁))[,)(((⌊‘(𝑋 · (2↑𝑁))) + 1) / (2↑𝑁))))
5323, 22, 52syl2anc 586 . . 3 ((𝑋 ∈ ℝ ∧ 𝐷 ∈ ℝ+) → ((⌊‘(𝑋 · (2↑𝑁)))𝐼𝑁) = (((⌊‘(𝑋 · (2↑𝑁))) / (2↑𝑁))[,)(((⌊‘(𝑋 · (2↑𝑁))) + 1) / (2↑𝑁))))
5450, 53eleqtrrd 2916 . 2 ((𝑋 ∈ ℝ ∧ 𝐷 ∈ ℝ+) → 𝑋 ∈ ((⌊‘(𝑋 · (2↑𝑁)))𝐼𝑁))
55 simpr 487 . . . . . . 7 ((𝑋 ∈ ℝ ∧ 𝐷 ∈ ℝ+) → 𝐷 ∈ ℝ+)
5655rpred 12432 . . . . . 6 ((𝑋 ∈ ℝ ∧ 𝐷 ∈ ℝ+) → 𝐷 ∈ ℝ)
575, 56resubcld 11068 . . . . 5 ((𝑋 ∈ ℝ ∧ 𝐷 ∈ ℝ+) → (𝑋𝐷) ∈ ℝ)
5857rexrd 10691 . . . 4 ((𝑋 ∈ ℝ ∧ 𝐷 ∈ ℝ+) → (𝑋𝐷) ∈ ℝ*)
595, 56readdcld 10670 . . . . 5 ((𝑋 ∈ ℝ ∧ 𝐷 ∈ ℝ+) → (𝑋 + 𝐷) ∈ ℝ)
6059rexrd 10691 . . . 4 ((𝑋 ∈ ℝ ∧ 𝐷 ∈ ℝ+) → (𝑋 + 𝐷) ∈ ℝ*)
6120, 37rereccld 11467 . . . . . 6 ((𝑋 ∈ ℝ ∧ 𝐷 ∈ ℝ+) → (1 / (2↑𝑁)) ∈ ℝ)
625, 61resubcld 11068 . . . . 5 ((𝑋 ∈ ℝ ∧ 𝐷 ∈ ℝ+) → (𝑋 − (1 / (2↑𝑁))) ∈ ℝ)
637oveq2i 7167 . . . . . . . 8 (2↑𝑁) = (2↑(⌊‘(1 − (2 logb 𝐷))))
6463oveq2i 7167 . . . . . . 7 (1 / (2↑𝑁)) = (1 / (2↑(⌊‘(1 − (2 logb 𝐷)))))
65 dya2ub 31528 . . . . . . . 8 (𝐷 ∈ ℝ+ → (1 / (2↑(⌊‘(1 − (2 logb 𝐷))))) < 𝐷)
6665adantl 484 . . . . . . 7 ((𝑋 ∈ ℝ ∧ 𝐷 ∈ ℝ+) → (1 / (2↑(⌊‘(1 − (2 logb 𝐷))))) < 𝐷)
6764, 66eqbrtrid 5101 . . . . . 6 ((𝑋 ∈ ℝ ∧ 𝐷 ∈ ℝ+) → (1 / (2↑𝑁)) < 𝐷)
6861, 56, 5, 67ltsub2dd 11253 . . . . 5 ((𝑋 ∈ ℝ ∧ 𝐷 ∈ ℝ+) → (𝑋𝐷) < (𝑋 − (1 / (2↑𝑁))))
6932, 33mulcld 10661 . . . . . . . 8 ((𝑋 ∈ ℝ ∧ 𝐷 ∈ ℝ+) → (𝑋 · (2↑𝑁)) ∈ ℂ)
70 1cnd 10636 . . . . . . . 8 ((𝑋 ∈ ℝ ∧ 𝐷 ∈ ℝ+) → 1 ∈ ℂ)
7169, 70, 33, 37divsubdird 11455 . . . . . . 7 ((𝑋 ∈ ℝ ∧ 𝐷 ∈ ℝ+) → (((𝑋 · (2↑𝑁)) − 1) / (2↑𝑁)) = (((𝑋 · (2↑𝑁)) / (2↑𝑁)) − (1 / (2↑𝑁))))
7238oveq1d 7171 . . . . . . 7 ((𝑋 ∈ ℝ ∧ 𝐷 ∈ ℝ+) → (((𝑋 · (2↑𝑁)) / (2↑𝑁)) − (1 / (2↑𝑁))) = (𝑋 − (1 / (2↑𝑁))))
7371, 72eqtrd 2856 . . . . . 6 ((𝑋 ∈ ℝ ∧ 𝐷 ∈ ℝ+) → (((𝑋 · (2↑𝑁)) − 1) / (2↑𝑁)) = (𝑋 − (1 / (2↑𝑁))))
7421, 40resubcld 11068 . . . . . . 7 ((𝑋 ∈ ℝ ∧ 𝐷 ∈ ℝ+) → ((𝑋 · (2↑𝑁)) − 1) ∈ ℝ)
7521, 41, 40, 42ltsub1dd 11252 . . . . . . . . 9 ((𝑋 ∈ ℝ ∧ 𝐷 ∈ ℝ+) → ((𝑋 · (2↑𝑁)) − 1) < (((⌊‘(𝑋 · (2↑𝑁))) + 1) − 1))
7626recnd 10669 . . . . . . . . . 10 ((𝑋 ∈ ℝ ∧ 𝐷 ∈ ℝ+) → (⌊‘(𝑋 · (2↑𝑁))) ∈ ℂ)
7776, 70pncand 10998 . . . . . . . . 9 ((𝑋 ∈ ℝ ∧ 𝐷 ∈ ℝ+) → (((⌊‘(𝑋 · (2↑𝑁))) + 1) − 1) = (⌊‘(𝑋 · (2↑𝑁))))
7875, 77breqtrd 5092 . . . . . . . 8 ((𝑋 ∈ ℝ ∧ 𝐷 ∈ ℝ+) → ((𝑋 · (2↑𝑁)) − 1) < (⌊‘(𝑋 · (2↑𝑁))))
7974, 26, 78ltled 10788 . . . . . . 7 ((𝑋 ∈ ℝ ∧ 𝐷 ∈ ℝ+) → ((𝑋 · (2↑𝑁)) − 1) ≤ (⌊‘(𝑋 · (2↑𝑁))))
8074, 26, 27, 79lediv1dd 12490 . . . . . 6 ((𝑋 ∈ ℝ ∧ 𝐷 ∈ ℝ+) → (((𝑋 · (2↑𝑁)) − 1) / (2↑𝑁)) ≤ ((⌊‘(𝑋 · (2↑𝑁))) / (2↑𝑁)))
8173, 80eqbrtrrd 5090 . . . . 5 ((𝑋 ∈ ℝ ∧ 𝐷 ∈ ℝ+) → (𝑋 − (1 / (2↑𝑁))) ≤ ((⌊‘(𝑋 · (2↑𝑁))) / (2↑𝑁)))
8257, 62, 45, 68, 81ltletrd 10800 . . . 4 ((𝑋 ∈ ℝ ∧ 𝐷 ∈ ℝ+) → (𝑋𝐷) < ((⌊‘(𝑋 · (2↑𝑁))) / (2↑𝑁)))
835, 61readdcld 10670 . . . . . 6 ((𝑋 ∈ ℝ ∧ 𝐷 ∈ ℝ+) → (𝑋 + (1 / (2↑𝑁))) ∈ ℝ)
8421, 40readdcld 10670 . . . . . . . 8 ((𝑋 ∈ ℝ ∧ 𝐷 ∈ ℝ+) → ((𝑋 · (2↑𝑁)) + 1) ∈ ℝ)
8526, 21, 40, 30leadd1dd 11254 . . . . . . . 8 ((𝑋 ∈ ℝ ∧ 𝐷 ∈ ℝ+) → ((⌊‘(𝑋 · (2↑𝑁))) + 1) ≤ ((𝑋 · (2↑𝑁)) + 1))
8641, 84, 27, 85lediv1dd 12490 . . . . . . 7 ((𝑋 ∈ ℝ ∧ 𝐷 ∈ ℝ+) → (((⌊‘(𝑋 · (2↑𝑁))) + 1) / (2↑𝑁)) ≤ (((𝑋 · (2↑𝑁)) + 1) / (2↑𝑁)))
8769, 70, 33, 37divdird 11454 . . . . . . . 8 ((𝑋 ∈ ℝ ∧ 𝐷 ∈ ℝ+) → (((𝑋 · (2↑𝑁)) + 1) / (2↑𝑁)) = (((𝑋 · (2↑𝑁)) / (2↑𝑁)) + (1 / (2↑𝑁))))
8838oveq1d 7171 . . . . . . . 8 ((𝑋 ∈ ℝ ∧ 𝐷 ∈ ℝ+) → (((𝑋 · (2↑𝑁)) / (2↑𝑁)) + (1 / (2↑𝑁))) = (𝑋 + (1 / (2↑𝑁))))
8987, 88eqtrd 2856 . . . . . . 7 ((𝑋 ∈ ℝ ∧ 𝐷 ∈ ℝ+) → (((𝑋 · (2↑𝑁)) + 1) / (2↑𝑁)) = (𝑋 + (1 / (2↑𝑁))))
9086, 89breqtrd 5092 . . . . . 6 ((𝑋 ∈ ℝ ∧ 𝐷 ∈ ℝ+) → (((⌊‘(𝑋 · (2↑𝑁))) + 1) / (2↑𝑁)) ≤ (𝑋 + (1 / (2↑𝑁))))
9161, 56, 5, 67ltadd2dd 10799 . . . . . 6 ((𝑋 ∈ ℝ ∧ 𝐷 ∈ ℝ+) → (𝑋 + (1 / (2↑𝑁))) < (𝑋 + 𝐷))
9246, 83, 59, 90, 91lelttrd 10798 . . . . 5 ((𝑋 ∈ ℝ ∧ 𝐷 ∈ ℝ+) → (((⌊‘(𝑋 · (2↑𝑁))) + 1) / (2↑𝑁)) < (𝑋 + 𝐷))
9346, 59, 92ltled 10788 . . . 4 ((𝑋 ∈ ℝ ∧ 𝐷 ∈ ℝ+) → (((⌊‘(𝑋 · (2↑𝑁))) + 1) / (2↑𝑁)) ≤ (𝑋 + 𝐷))
94 icossioo 12829 . . . 4 ((((𝑋𝐷) ∈ ℝ* ∧ (𝑋 + 𝐷) ∈ ℝ*) ∧ ((𝑋𝐷) < ((⌊‘(𝑋 · (2↑𝑁))) / (2↑𝑁)) ∧ (((⌊‘(𝑋 · (2↑𝑁))) + 1) / (2↑𝑁)) ≤ (𝑋 + 𝐷))) → (((⌊‘(𝑋 · (2↑𝑁))) / (2↑𝑁))[,)(((⌊‘(𝑋 · (2↑𝑁))) + 1) / (2↑𝑁))) ⊆ ((𝑋𝐷)(,)(𝑋 + 𝐷)))
9558, 60, 82, 93, 94syl22anc 836 . . 3 ((𝑋 ∈ ℝ ∧ 𝐷 ∈ ℝ+) → (((⌊‘(𝑋 · (2↑𝑁))) / (2↑𝑁))[,)(((⌊‘(𝑋 · (2↑𝑁))) + 1) / (2↑𝑁))) ⊆ ((𝑋𝐷)(,)(𝑋 + 𝐷)))
9653, 95eqsstrd 4005 . 2 ((𝑋 ∈ ℝ ∧ 𝐷 ∈ ℝ+) → ((⌊‘(𝑋 · (2↑𝑁)))𝐼𝑁) ⊆ ((𝑋𝐷)(,)(𝑋 + 𝐷)))
97 eleq2 2901 . . . 4 (𝑏 = ((⌊‘(𝑋 · (2↑𝑁)))𝐼𝑁) → (𝑋𝑏𝑋 ∈ ((⌊‘(𝑋 · (2↑𝑁)))𝐼𝑁)))
98 sseq1 3992 . . . 4 (𝑏 = ((⌊‘(𝑋 · (2↑𝑁)))𝐼𝑁) → (𝑏 ⊆ ((𝑋𝐷)(,)(𝑋 + 𝐷)) ↔ ((⌊‘(𝑋 · (2↑𝑁)))𝐼𝑁) ⊆ ((𝑋𝐷)(,)(𝑋 + 𝐷))))
9997, 98anbi12d 632 . . 3 (𝑏 = ((⌊‘(𝑋 · (2↑𝑁)))𝐼𝑁) → ((𝑋𝑏𝑏 ⊆ ((𝑋𝐷)(,)(𝑋 + 𝐷))) ↔ (𝑋 ∈ ((⌊‘(𝑋 · (2↑𝑁)))𝐼𝑁) ∧ ((⌊‘(𝑋 · (2↑𝑁)))𝐼𝑁) ⊆ ((𝑋𝐷)(,)(𝑋 + 𝐷)))))
10099rspcev 3623 . 2 ((((⌊‘(𝑋 · (2↑𝑁)))𝐼𝑁) ∈ ran 𝐼 ∧ (𝑋 ∈ ((⌊‘(𝑋 · (2↑𝑁)))𝐼𝑁) ∧ ((⌊‘(𝑋 · (2↑𝑁)))𝐼𝑁) ⊆ ((𝑋𝐷)(,)(𝑋 + 𝐷)))) → ∃𝑏 ∈ ran 𝐼(𝑋𝑏𝑏 ⊆ ((𝑋𝐷)(,)(𝑋 + 𝐷))))
10125, 54, 96, 100syl12anc 834 1 ((𝑋 ∈ ℝ ∧ 𝐷 ∈ ℝ+) → ∃𝑏 ∈ ran 𝐼(𝑋𝑏𝑏 ⊆ ((𝑋𝐷)(,)(𝑋 + 𝐷))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398  w3a 1083   = wceq 1537  wcel 2114  wne 3016  wrex 3139  wss 3936   class class class wbr 5066   × cxp 5553  ran crn 5556   Fn wfn 6350  cfv 6355  (class class class)co 7156  cmpo 7158  cr 10536  0cc0 10537  1c1 10538   + caddc 10540   · cmul 10542  *cxr 10674   < clt 10675  cle 10676  cmin 10870   / cdiv 11297  2c2 11693  cz 11982  cuz 12244  +crp 12390  (,)cioo 12739  [,)cico 12741  cfl 13161  cexp 13430  topGenctg 16711   logb clogb 25342
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2793  ax-rep 5190  ax-sep 5203  ax-nul 5210  ax-pow 5266  ax-pr 5330  ax-un 7461  ax-inf2 9104  ax-cnex 10593  ax-resscn 10594  ax-1cn 10595  ax-icn 10596  ax-addcl 10597  ax-addrcl 10598  ax-mulcl 10599  ax-mulrcl 10600  ax-mulcom 10601  ax-addass 10602  ax-mulass 10603  ax-distr 10604  ax-i2m1 10605  ax-1ne0 10606  ax-1rid 10607  ax-rnegex 10608  ax-rrecex 10609  ax-cnre 10610  ax-pre-lttri 10611  ax-pre-lttrn 10612  ax-pre-ltadd 10613  ax-pre-mulgt0 10614  ax-pre-sup 10615  ax-addf 10616  ax-mulf 10617
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-fal 1550  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3496  df-sbc 3773  df-csb 3884  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-pss 3954  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4568  df-pr 4570  df-tp 4572  df-op 4574  df-uni 4839  df-int 4877  df-iun 4921  df-iin 4922  df-br 5067  df-opab 5129  df-mpt 5147  df-tr 5173  df-id 5460  df-eprel 5465  df-po 5474  df-so 5475  df-fr 5514  df-se 5515  df-we 5516  df-xp 5561  df-rel 5562  df-cnv 5563  df-co 5564  df-dm 5565  df-rn 5566  df-res 5567  df-ima 5568  df-pred 6148  df-ord 6194  df-on 6195  df-lim 6196  df-suc 6197  df-iota 6314  df-fun 6357  df-fn 6358  df-f 6359  df-f1 6360  df-fo 6361  df-f1o 6362  df-fv 6363  df-isom 6364  df-riota 7114  df-ov 7159  df-oprab 7160  df-mpo 7161  df-of 7409  df-om 7581  df-1st 7689  df-2nd 7690  df-supp 7831  df-wrecs 7947  df-recs 8008  df-rdg 8046  df-1o 8102  df-2o 8103  df-oadd 8106  df-er 8289  df-map 8408  df-pm 8409  df-ixp 8462  df-en 8510  df-dom 8511  df-sdom 8512  df-fin 8513  df-fsupp 8834  df-fi 8875  df-sup 8906  df-inf 8907  df-oi 8974  df-card 9368  df-pnf 10677  df-mnf 10678  df-xr 10679  df-ltxr 10680  df-le 10681  df-sub 10872  df-neg 10873  df-div 11298  df-nn 11639  df-2 11701  df-3 11702  df-4 11703  df-5 11704  df-6 11705  df-7 11706  df-8 11707  df-9 11708  df-n0 11899  df-z 11983  df-dec 12100  df-uz 12245  df-q 12350  df-rp 12391  df-xneg 12508  df-xadd 12509  df-xmul 12510  df-ioo 12743  df-ioc 12744  df-ico 12745  df-icc 12746  df-fz 12894  df-fzo 13035  df-fl 13163  df-mod 13239  df-seq 13371  df-exp 13431  df-fac 13635  df-bc 13664  df-hash 13692  df-shft 14426  df-cj 14458  df-re 14459  df-im 14460  df-sqrt 14594  df-abs 14595  df-limsup 14828  df-clim 14845  df-rlim 14846  df-sum 15043  df-ef 15421  df-sin 15423  df-cos 15424  df-pi 15426  df-struct 16485  df-ndx 16486  df-slot 16487  df-base 16489  df-sets 16490  df-ress 16491  df-plusg 16578  df-mulr 16579  df-starv 16580  df-sca 16581  df-vsca 16582  df-ip 16583  df-tset 16584  df-ple 16585  df-ds 16587  df-unif 16588  df-hom 16589  df-cco 16590  df-rest 16696  df-topn 16697  df-0g 16715  df-gsum 16716  df-topgen 16717  df-pt 16718  df-prds 16721  df-xrs 16775  df-qtop 16780  df-imas 16781  df-xps 16783  df-mre 16857  df-mrc 16858  df-acs 16860  df-mgm 17852  df-sgrp 17901  df-mnd 17912  df-submnd 17957  df-mulg 18225  df-cntz 18447  df-cmn 18908  df-psmet 20537  df-xmet 20538  df-met 20539  df-bl 20540  df-mopn 20541  df-fbas 20542  df-fg 20543  df-cnfld 20546  df-top 21502  df-topon 21519  df-topsp 21541  df-bases 21554  df-cld 21627  df-ntr 21628  df-cls 21629  df-nei 21706  df-lp 21744  df-perf 21745  df-cn 21835  df-cnp 21836  df-haus 21923  df-tx 22170  df-hmeo 22363  df-fil 22454  df-fm 22546  df-flim 22547  df-flf 22548  df-xms 22930  df-ms 22931  df-tms 22932  df-cncf 23486  df-limc 24464  df-dv 24465  df-log 25140  df-cxp 25141  df-logb 25343
This theorem is referenced by:  dya2icoseg2  31536
  Copyright terms: Public domain W3C validator