Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  logsqvma Structured version   Visualization version   GIF version

Theorem logsqvma 25451
 Description: A formula for log↑2(𝑁) in terms of the primes. Equation 10.4.6 of [Shapiro], p. 418. (Contributed by Mario Carneiro, 13-May-2016.)
Assertion
Ref Expression
logsqvma (𝑁 ∈ ℕ → Σ𝑑 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁} (Σ𝑢 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑑} ((Λ‘𝑢) · (Λ‘(𝑑 / 𝑢))) + ((Λ‘𝑑) · (log‘𝑑))) = ((log‘𝑁)↑2))
Distinct variable group:   𝑢,𝑑,𝑥,𝑁

Proof of Theorem logsqvma
Dummy variable 𝑘 is distinct from all other variables.
StepHypRef Expression
1 fzfid 12986 . . . 4 (𝑁 ∈ ℕ → (1...𝑁) ∈ Fin)
2 dvdsssfz1 15262 . . . 4 (𝑁 ∈ ℕ → {𝑥 ∈ ℕ ∣ 𝑥𝑁} ⊆ (1...𝑁))
3 ssfi 8347 . . . 4 (((1...𝑁) ∈ Fin ∧ {𝑥 ∈ ℕ ∣ 𝑥𝑁} ⊆ (1...𝑁)) → {𝑥 ∈ ℕ ∣ 𝑥𝑁} ∈ Fin)
41, 2, 3syl2anc 696 . . 3 (𝑁 ∈ ℕ → {𝑥 ∈ ℕ ∣ 𝑥𝑁} ∈ Fin)
5 fzfid 12986 . . . . 5 ((𝑁 ∈ ℕ ∧ 𝑑 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁}) → (1...𝑑) ∈ Fin)
6 elrabi 3499 . . . . . . 7 (𝑑 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁} → 𝑑 ∈ ℕ)
76adantl 473 . . . . . 6 ((𝑁 ∈ ℕ ∧ 𝑑 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁}) → 𝑑 ∈ ℕ)
8 dvdsssfz1 15262 . . . . . 6 (𝑑 ∈ ℕ → {𝑥 ∈ ℕ ∣ 𝑥𝑑} ⊆ (1...𝑑))
97, 8syl 17 . . . . 5 ((𝑁 ∈ ℕ ∧ 𝑑 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁}) → {𝑥 ∈ ℕ ∣ 𝑥𝑑} ⊆ (1...𝑑))
10 ssfi 8347 . . . . 5 (((1...𝑑) ∈ Fin ∧ {𝑥 ∈ ℕ ∣ 𝑥𝑑} ⊆ (1...𝑑)) → {𝑥 ∈ ℕ ∣ 𝑥𝑑} ∈ Fin)
115, 9, 10syl2anc 696 . . . 4 ((𝑁 ∈ ℕ ∧ 𝑑 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁}) → {𝑥 ∈ ℕ ∣ 𝑥𝑑} ∈ Fin)
12 elrabi 3499 . . . . . . . . 9 (𝑢 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑑} → 𝑢 ∈ ℕ)
1312ad2antll 767 . . . . . . . 8 ((𝑁 ∈ ℕ ∧ (𝑑 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁} ∧ 𝑢 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑑})) → 𝑢 ∈ ℕ)
14 vmacl 25064 . . . . . . . 8 (𝑢 ∈ ℕ → (Λ‘𝑢) ∈ ℝ)
1513, 14syl 17 . . . . . . 7 ((𝑁 ∈ ℕ ∧ (𝑑 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁} ∧ 𝑢 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑑})) → (Λ‘𝑢) ∈ ℝ)
16 breq1 4807 . . . . . . . . . . . 12 (𝑥 = 𝑢 → (𝑥𝑑𝑢𝑑))
1716elrab 3504 . . . . . . . . . . 11 (𝑢 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑑} ↔ (𝑢 ∈ ℕ ∧ 𝑢𝑑))
1817simprbi 483 . . . . . . . . . 10 (𝑢 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑑} → 𝑢𝑑)
1918ad2antll 767 . . . . . . . . 9 ((𝑁 ∈ ℕ ∧ (𝑑 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁} ∧ 𝑢 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑑})) → 𝑢𝑑)
206ad2antrl 766 . . . . . . . . . 10 ((𝑁 ∈ ℕ ∧ (𝑑 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁} ∧ 𝑢 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑑})) → 𝑑 ∈ ℕ)
21 nndivdvds 15211 . . . . . . . . . 10 ((𝑑 ∈ ℕ ∧ 𝑢 ∈ ℕ) → (𝑢𝑑 ↔ (𝑑 / 𝑢) ∈ ℕ))
2220, 13, 21syl2anc 696 . . . . . . . . 9 ((𝑁 ∈ ℕ ∧ (𝑑 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁} ∧ 𝑢 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑑})) → (𝑢𝑑 ↔ (𝑑 / 𝑢) ∈ ℕ))
2319, 22mpbid 222 . . . . . . . 8 ((𝑁 ∈ ℕ ∧ (𝑑 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁} ∧ 𝑢 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑑})) → (𝑑 / 𝑢) ∈ ℕ)
24 vmacl 25064 . . . . . . . 8 ((𝑑 / 𝑢) ∈ ℕ → (Λ‘(𝑑 / 𝑢)) ∈ ℝ)
2523, 24syl 17 . . . . . . 7 ((𝑁 ∈ ℕ ∧ (𝑑 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁} ∧ 𝑢 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑑})) → (Λ‘(𝑑 / 𝑢)) ∈ ℝ)
2615, 25remulcld 10282 . . . . . 6 ((𝑁 ∈ ℕ ∧ (𝑑 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁} ∧ 𝑢 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑑})) → ((Λ‘𝑢) · (Λ‘(𝑑 / 𝑢))) ∈ ℝ)
2726recnd 10280 . . . . 5 ((𝑁 ∈ ℕ ∧ (𝑑 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁} ∧ 𝑢 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑑})) → ((Λ‘𝑢) · (Λ‘(𝑑 / 𝑢))) ∈ ℂ)
2827anassrs 683 . . . 4 (((𝑁 ∈ ℕ ∧ 𝑑 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁}) ∧ 𝑢 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑑}) → ((Λ‘𝑢) · (Λ‘(𝑑 / 𝑢))) ∈ ℂ)
2911, 28fsumcl 14683 . . 3 ((𝑁 ∈ ℕ ∧ 𝑑 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁}) → Σ𝑢 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑑} ((Λ‘𝑢) · (Λ‘(𝑑 / 𝑢))) ∈ ℂ)
30 vmacl 25064 . . . . . 6 (𝑑 ∈ ℕ → (Λ‘𝑑) ∈ ℝ)
317, 30syl 17 . . . . 5 ((𝑁 ∈ ℕ ∧ 𝑑 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁}) → (Λ‘𝑑) ∈ ℝ)
327nnrpd 12083 . . . . . 6 ((𝑁 ∈ ℕ ∧ 𝑑 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁}) → 𝑑 ∈ ℝ+)
3332relogcld 24589 . . . . 5 ((𝑁 ∈ ℕ ∧ 𝑑 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁}) → (log‘𝑑) ∈ ℝ)
3431, 33remulcld 10282 . . . 4 ((𝑁 ∈ ℕ ∧ 𝑑 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁}) → ((Λ‘𝑑) · (log‘𝑑)) ∈ ℝ)
3534recnd 10280 . . 3 ((𝑁 ∈ ℕ ∧ 𝑑 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁}) → ((Λ‘𝑑) · (log‘𝑑)) ∈ ℂ)
364, 29, 35fsumadd 14689 . 2 (𝑁 ∈ ℕ → Σ𝑑 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁} (Σ𝑢 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑑} ((Λ‘𝑢) · (Λ‘(𝑑 / 𝑢))) + ((Λ‘𝑑) · (log‘𝑑))) = (Σ𝑑 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁𝑢 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑑} ((Λ‘𝑢) · (Λ‘(𝑑 / 𝑢))) + Σ𝑑 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁} ((Λ‘𝑑) · (log‘𝑑))))
37 id 22 . . . . 5 (𝑁 ∈ ℕ → 𝑁 ∈ ℕ)
38 oveq1 6821 . . . . . . 7 (𝑑 = (𝑢 · 𝑘) → (𝑑 / 𝑢) = ((𝑢 · 𝑘) / 𝑢))
3938fveq2d 6357 . . . . . 6 (𝑑 = (𝑢 · 𝑘) → (Λ‘(𝑑 / 𝑢)) = (Λ‘((𝑢 · 𝑘) / 𝑢)))
4039oveq2d 6830 . . . . 5 (𝑑 = (𝑢 · 𝑘) → ((Λ‘𝑢) · (Λ‘(𝑑 / 𝑢))) = ((Λ‘𝑢) · (Λ‘((𝑢 · 𝑘) / 𝑢))))
4137, 40, 27fsumdvdscom 25131 . . . 4 (𝑁 ∈ ℕ → Σ𝑑 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁𝑢 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑑} ((Λ‘𝑢) · (Λ‘(𝑑 / 𝑢))) = Σ𝑢 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ (𝑁 / 𝑢)} ((Λ‘𝑢) · (Λ‘((𝑢 · 𝑘) / 𝑢))))
42 ssrab2 3828 . . . . . . . . . . . . 13 {𝑥 ∈ ℕ ∣ 𝑥 ∥ (𝑁 / 𝑢)} ⊆ ℕ
43 simpr 479 . . . . . . . . . . . . 13 (((𝑁 ∈ ℕ ∧ 𝑢 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁}) ∧ 𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ (𝑁 / 𝑢)}) → 𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ (𝑁 / 𝑢)})
4442, 43sseldi 3742 . . . . . . . . . . . 12 (((𝑁 ∈ ℕ ∧ 𝑢 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁}) ∧ 𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ (𝑁 / 𝑢)}) → 𝑘 ∈ ℕ)
4544nncnd 11248 . . . . . . . . . . 11 (((𝑁 ∈ ℕ ∧ 𝑢 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁}) ∧ 𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ (𝑁 / 𝑢)}) → 𝑘 ∈ ℂ)
46 ssrab2 3828 . . . . . . . . . . . . . 14 {𝑥 ∈ ℕ ∣ 𝑥𝑁} ⊆ ℕ
47 simpr 479 . . . . . . . . . . . . . 14 ((𝑁 ∈ ℕ ∧ 𝑢 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁}) → 𝑢 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁})
4846, 47sseldi 3742 . . . . . . . . . . . . 13 ((𝑁 ∈ ℕ ∧ 𝑢 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁}) → 𝑢 ∈ ℕ)
4948nncnd 11248 . . . . . . . . . . . 12 ((𝑁 ∈ ℕ ∧ 𝑢 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁}) → 𝑢 ∈ ℂ)
5049adantr 472 . . . . . . . . . . 11 (((𝑁 ∈ ℕ ∧ 𝑢 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁}) ∧ 𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ (𝑁 / 𝑢)}) → 𝑢 ∈ ℂ)
5148nnne0d 11277 . . . . . . . . . . . 12 ((𝑁 ∈ ℕ ∧ 𝑢 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁}) → 𝑢 ≠ 0)
5251adantr 472 . . . . . . . . . . 11 (((𝑁 ∈ ℕ ∧ 𝑢 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁}) ∧ 𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ (𝑁 / 𝑢)}) → 𝑢 ≠ 0)
5345, 50, 52divcan3d 11018 . . . . . . . . . 10 (((𝑁 ∈ ℕ ∧ 𝑢 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁}) ∧ 𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ (𝑁 / 𝑢)}) → ((𝑢 · 𝑘) / 𝑢) = 𝑘)
5453fveq2d 6357 . . . . . . . . 9 (((𝑁 ∈ ℕ ∧ 𝑢 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁}) ∧ 𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ (𝑁 / 𝑢)}) → (Λ‘((𝑢 · 𝑘) / 𝑢)) = (Λ‘𝑘))
5554sumeq2dv 14652 . . . . . . . 8 ((𝑁 ∈ ℕ ∧ 𝑢 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁}) → Σ𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ (𝑁 / 𝑢)} (Λ‘((𝑢 · 𝑘) / 𝑢)) = Σ𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ (𝑁 / 𝑢)} (Λ‘𝑘))
56 dvdsdivcl 15260 . . . . . . . . . 10 ((𝑁 ∈ ℕ ∧ 𝑢 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁}) → (𝑁 / 𝑢) ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁})
5746, 56sseldi 3742 . . . . . . . . 9 ((𝑁 ∈ ℕ ∧ 𝑢 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁}) → (𝑁 / 𝑢) ∈ ℕ)
58 vmasum 25161 . . . . . . . . 9 ((𝑁 / 𝑢) ∈ ℕ → Σ𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ (𝑁 / 𝑢)} (Λ‘𝑘) = (log‘(𝑁 / 𝑢)))
5957, 58syl 17 . . . . . . . 8 ((𝑁 ∈ ℕ ∧ 𝑢 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁}) → Σ𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ (𝑁 / 𝑢)} (Λ‘𝑘) = (log‘(𝑁 / 𝑢)))
60 nnrp 12055 . . . . . . . . . 10 (𝑁 ∈ ℕ → 𝑁 ∈ ℝ+)
6160adantr 472 . . . . . . . . 9 ((𝑁 ∈ ℕ ∧ 𝑢 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁}) → 𝑁 ∈ ℝ+)
6248nnrpd 12083 . . . . . . . . 9 ((𝑁 ∈ ℕ ∧ 𝑢 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁}) → 𝑢 ∈ ℝ+)
6361, 62relogdivd 24592 . . . . . . . 8 ((𝑁 ∈ ℕ ∧ 𝑢 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁}) → (log‘(𝑁 / 𝑢)) = ((log‘𝑁) − (log‘𝑢)))
6455, 59, 633eqtrd 2798 . . . . . . 7 ((𝑁 ∈ ℕ ∧ 𝑢 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁}) → Σ𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ (𝑁 / 𝑢)} (Λ‘((𝑢 · 𝑘) / 𝑢)) = ((log‘𝑁) − (log‘𝑢)))
6564oveq2d 6830 . . . . . 6 ((𝑁 ∈ ℕ ∧ 𝑢 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁}) → ((Λ‘𝑢) · Σ𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ (𝑁 / 𝑢)} (Λ‘((𝑢 · 𝑘) / 𝑢))) = ((Λ‘𝑢) · ((log‘𝑁) − (log‘𝑢))))
66 fzfid 12986 . . . . . . . 8 ((𝑁 ∈ ℕ ∧ 𝑢 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁}) → (1...(𝑁 / 𝑢)) ∈ Fin)
67 dvdsssfz1 15262 . . . . . . . . 9 ((𝑁 / 𝑢) ∈ ℕ → {𝑥 ∈ ℕ ∣ 𝑥 ∥ (𝑁 / 𝑢)} ⊆ (1...(𝑁 / 𝑢)))
6857, 67syl 17 . . . . . . . 8 ((𝑁 ∈ ℕ ∧ 𝑢 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁}) → {𝑥 ∈ ℕ ∣ 𝑥 ∥ (𝑁 / 𝑢)} ⊆ (1...(𝑁 / 𝑢)))
69 ssfi 8347 . . . . . . . 8 (((1...(𝑁 / 𝑢)) ∈ Fin ∧ {𝑥 ∈ ℕ ∣ 𝑥 ∥ (𝑁 / 𝑢)} ⊆ (1...(𝑁 / 𝑢))) → {𝑥 ∈ ℕ ∣ 𝑥 ∥ (𝑁 / 𝑢)} ∈ Fin)
7066, 68, 69syl2anc 696 . . . . . . 7 ((𝑁 ∈ ℕ ∧ 𝑢 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁}) → {𝑥 ∈ ℕ ∣ 𝑥 ∥ (𝑁 / 𝑢)} ∈ Fin)
7148, 14syl 17 . . . . . . . 8 ((𝑁 ∈ ℕ ∧ 𝑢 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁}) → (Λ‘𝑢) ∈ ℝ)
7271recnd 10280 . . . . . . 7 ((𝑁 ∈ ℕ ∧ 𝑢 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁}) → (Λ‘𝑢) ∈ ℂ)
73 vmacl 25064 . . . . . . . . . 10 (𝑘 ∈ ℕ → (Λ‘𝑘) ∈ ℝ)
7444, 73syl 17 . . . . . . . . 9 (((𝑁 ∈ ℕ ∧ 𝑢 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁}) ∧ 𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ (𝑁 / 𝑢)}) → (Λ‘𝑘) ∈ ℝ)
7574recnd 10280 . . . . . . . 8 (((𝑁 ∈ ℕ ∧ 𝑢 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁}) ∧ 𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ (𝑁 / 𝑢)}) → (Λ‘𝑘) ∈ ℂ)
7654, 75eqeltrd 2839 . . . . . . 7 (((𝑁 ∈ ℕ ∧ 𝑢 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁}) ∧ 𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ (𝑁 / 𝑢)}) → (Λ‘((𝑢 · 𝑘) / 𝑢)) ∈ ℂ)
7770, 72, 76fsummulc2 14735 . . . . . 6 ((𝑁 ∈ ℕ ∧ 𝑢 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁}) → ((Λ‘𝑢) · Σ𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ (𝑁 / 𝑢)} (Λ‘((𝑢 · 𝑘) / 𝑢))) = Σ𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ (𝑁 / 𝑢)} ((Λ‘𝑢) · (Λ‘((𝑢 · 𝑘) / 𝑢))))
78 relogcl 24542 . . . . . . . . 9 (𝑁 ∈ ℝ+ → (log‘𝑁) ∈ ℝ)
7978recnd 10280 . . . . . . . 8 (𝑁 ∈ ℝ+ → (log‘𝑁) ∈ ℂ)
8061, 79syl 17 . . . . . . 7 ((𝑁 ∈ ℕ ∧ 𝑢 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁}) → (log‘𝑁) ∈ ℂ)
8162relogcld 24589 . . . . . . . 8 ((𝑁 ∈ ℕ ∧ 𝑢 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁}) → (log‘𝑢) ∈ ℝ)
8281recnd 10280 . . . . . . 7 ((𝑁 ∈ ℕ ∧ 𝑢 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁}) → (log‘𝑢) ∈ ℂ)
8372, 80, 82subdid 10698 . . . . . 6 ((𝑁 ∈ ℕ ∧ 𝑢 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁}) → ((Λ‘𝑢) · ((log‘𝑁) − (log‘𝑢))) = (((Λ‘𝑢) · (log‘𝑁)) − ((Λ‘𝑢) · (log‘𝑢))))
8465, 77, 833eqtr3d 2802 . . . . 5 ((𝑁 ∈ ℕ ∧ 𝑢 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁}) → Σ𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ (𝑁 / 𝑢)} ((Λ‘𝑢) · (Λ‘((𝑢 · 𝑘) / 𝑢))) = (((Λ‘𝑢) · (log‘𝑁)) − ((Λ‘𝑢) · (log‘𝑢))))
8584sumeq2dv 14652 . . . 4 (𝑁 ∈ ℕ → Σ𝑢 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ (𝑁 / 𝑢)} ((Λ‘𝑢) · (Λ‘((𝑢 · 𝑘) / 𝑢))) = Σ𝑢 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁} (((Λ‘𝑢) · (log‘𝑁)) − ((Λ‘𝑢) · (log‘𝑢))))
8672, 80mulcld 10272 . . . . . 6 ((𝑁 ∈ ℕ ∧ 𝑢 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁}) → ((Λ‘𝑢) · (log‘𝑁)) ∈ ℂ)
8772, 82mulcld 10272 . . . . . 6 ((𝑁 ∈ ℕ ∧ 𝑢 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁}) → ((Λ‘𝑢) · (log‘𝑢)) ∈ ℂ)
884, 86, 87fsumsub 14739 . . . . 5 (𝑁 ∈ ℕ → Σ𝑢 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁} (((Λ‘𝑢) · (log‘𝑁)) − ((Λ‘𝑢) · (log‘𝑢))) = (Σ𝑢 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁} ((Λ‘𝑢) · (log‘𝑁)) − Σ𝑢 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁} ((Λ‘𝑢) · (log‘𝑢))))
8960, 79syl 17 . . . . . . . 8 (𝑁 ∈ ℕ → (log‘𝑁) ∈ ℂ)
9089sqvald 13219 . . . . . . 7 (𝑁 ∈ ℕ → ((log‘𝑁)↑2) = ((log‘𝑁) · (log‘𝑁)))
91 vmasum 25161 . . . . . . . 8 (𝑁 ∈ ℕ → Σ𝑢 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁} (Λ‘𝑢) = (log‘𝑁))
9291oveq1d 6829 . . . . . . 7 (𝑁 ∈ ℕ → (Σ𝑢 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁} (Λ‘𝑢) · (log‘𝑁)) = ((log‘𝑁) · (log‘𝑁)))
934, 89, 72fsummulc1 14736 . . . . . . 7 (𝑁 ∈ ℕ → (Σ𝑢 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁} (Λ‘𝑢) · (log‘𝑁)) = Σ𝑢 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁} ((Λ‘𝑢) · (log‘𝑁)))
9490, 92, 933eqtr2rd 2801 . . . . . 6 (𝑁 ∈ ℕ → Σ𝑢 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁} ((Λ‘𝑢) · (log‘𝑁)) = ((log‘𝑁)↑2))
95 fveq2 6353 . . . . . . . . 9 (𝑢 = 𝑑 → (Λ‘𝑢) = (Λ‘𝑑))
96 fveq2 6353 . . . . . . . . 9 (𝑢 = 𝑑 → (log‘𝑢) = (log‘𝑑))
9795, 96oveq12d 6832 . . . . . . . 8 (𝑢 = 𝑑 → ((Λ‘𝑢) · (log‘𝑢)) = ((Λ‘𝑑) · (log‘𝑑)))
9897cbvsumv 14645 . . . . . . 7 Σ𝑢 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁} ((Λ‘𝑢) · (log‘𝑢)) = Σ𝑑 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁} ((Λ‘𝑑) · (log‘𝑑))
9998a1i 11 . . . . . 6 (𝑁 ∈ ℕ → Σ𝑢 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁} ((Λ‘𝑢) · (log‘𝑢)) = Σ𝑑 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁} ((Λ‘𝑑) · (log‘𝑑)))
10094, 99oveq12d 6832 . . . . 5 (𝑁 ∈ ℕ → (Σ𝑢 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁} ((Λ‘𝑢) · (log‘𝑁)) − Σ𝑢 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁} ((Λ‘𝑢) · (log‘𝑢))) = (((log‘𝑁)↑2) − Σ𝑑 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁} ((Λ‘𝑑) · (log‘𝑑))))
10188, 100eqtrd 2794 . . . 4 (𝑁 ∈ ℕ → Σ𝑢 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁} (((Λ‘𝑢) · (log‘𝑁)) − ((Λ‘𝑢) · (log‘𝑢))) = (((log‘𝑁)↑2) − Σ𝑑 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁} ((Λ‘𝑑) · (log‘𝑑))))
10241, 85, 1013eqtrd 2798 . . 3 (𝑁 ∈ ℕ → Σ𝑑 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁𝑢 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑑} ((Λ‘𝑢) · (Λ‘(𝑑 / 𝑢))) = (((log‘𝑁)↑2) − Σ𝑑 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁} ((Λ‘𝑑) · (log‘𝑑))))
103102oveq1d 6829 . 2 (𝑁 ∈ ℕ → (Σ𝑑 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁𝑢 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑑} ((Λ‘𝑢) · (Λ‘(𝑑 / 𝑢))) + Σ𝑑 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁} ((Λ‘𝑑) · (log‘𝑑))) = ((((log‘𝑁)↑2) − Σ𝑑 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁} ((Λ‘𝑑) · (log‘𝑑))) + Σ𝑑 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁} ((Λ‘𝑑) · (log‘𝑑))))
10489sqcld 13220 . . 3 (𝑁 ∈ ℕ → ((log‘𝑁)↑2) ∈ ℂ)
1054, 35fsumcl 14683 . . 3 (𝑁 ∈ ℕ → Σ𝑑 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁} ((Λ‘𝑑) · (log‘𝑑)) ∈ ℂ)
106104, 105npcand 10608 . 2 (𝑁 ∈ ℕ → ((((log‘𝑁)↑2) − Σ𝑑 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁} ((Λ‘𝑑) · (log‘𝑑))) + Σ𝑑 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁} ((Λ‘𝑑) · (log‘𝑑))) = ((log‘𝑁)↑2))
10736, 103, 1063eqtrd 2798 1 (𝑁 ∈ ℕ → Σ𝑑 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁} (Σ𝑢 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑑} ((Λ‘𝑢) · (Λ‘(𝑑 / 𝑢))) + ((Λ‘𝑑) · (log‘𝑑))) = ((log‘𝑁)↑2))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 196   ∧ wa 383   = wceq 1632   ∈ wcel 2139   ≠ wne 2932  {crab 3054   ⊆ wss 3715   class class class wbr 4804  ‘cfv 6049  (class class class)co 6814  Fincfn 8123  ℂcc 10146  ℝcr 10147  0cc0 10148  1c1 10149   + caddc 10151   · cmul 10153   − cmin 10478   / cdiv 10896  ℕcn 11232  2c2 11282  ℝ+crp 12045  ...cfz 12539  ↑cexp 13074  Σcsu 14635   ∥ cdvds 15202  logclog 24521  Λcvma 25038 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1871  ax-4 1886  ax-5 1988  ax-6 2054  ax-7 2090  ax-8 2141  ax-9 2148  ax-10 2168  ax-11 2183  ax-12 2196  ax-13 2391  ax-ext 2740  ax-rep 4923  ax-sep 4933  ax-nul 4941  ax-pow 4992  ax-pr 5055  ax-un 7115  ax-inf2 8713  ax-cnex 10204  ax-resscn 10205  ax-1cn 10206  ax-icn 10207  ax-addcl 10208  ax-addrcl 10209  ax-mulcl 10210  ax-mulrcl 10211  ax-mulcom 10212  ax-addass 10213  ax-mulass 10214  ax-distr 10215  ax-i2m1 10216  ax-1ne0 10217  ax-1rid 10218  ax-rnegex 10219  ax-rrecex 10220  ax-cnre 10221  ax-pre-lttri 10222  ax-pre-lttrn 10223  ax-pre-ltadd 10224  ax-pre-mulgt0 10225  ax-pre-sup 10226  ax-addf 10227  ax-mulf 10228 This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1073  df-3an 1074  df-tru 1635  df-fal 1638  df-ex 1854  df-nf 1859  df-sb 2047  df-eu 2611  df-mo 2612  df-clab 2747  df-cleq 2753  df-clel 2756  df-nfc 2891  df-ne 2933  df-nel 3036  df-ral 3055  df-rex 3056  df-reu 3057  df-rmo 3058  df-rab 3059  df-v 3342  df-sbc 3577  df-csb 3675  df-dif 3718  df-un 3720  df-in 3722  df-ss 3729  df-pss 3731  df-nul 4059  df-if 4231  df-pw 4304  df-sn 4322  df-pr 4324  df-tp 4326  df-op 4328  df-uni 4589  df-int 4628  df-iun 4674  df-iin 4675  df-br 4805  df-opab 4865  df-mpt 4882  df-tr 4905  df-id 5174  df-eprel 5179  df-po 5187  df-so 5188  df-fr 5225  df-se 5226  df-we 5227  df-xp 5272  df-rel 5273  df-cnv 5274  df-co 5275  df-dm 5276  df-rn 5277  df-res 5278  df-ima 5279  df-pred 5841  df-ord 5887  df-on 5888  df-lim 5889  df-suc 5890  df-iota 6012  df-fun 6051  df-fn 6052  df-f 6053  df-f1 6054  df-fo 6055  df-f1o 6056  df-fv 6057  df-isom 6058  df-riota 6775  df-ov 6817  df-oprab 6818  df-mpt2 6819  df-of 7063  df-om 7232  df-1st 7334  df-2nd 7335  df-supp 7465  df-wrecs 7577  df-recs 7638  df-rdg 7676  df-1o 7730  df-2o 7731  df-oadd 7734  df-er 7913  df-map 8027  df-pm 8028  df-ixp 8077  df-en 8124  df-dom 8125  df-sdom 8126  df-fin 8127  df-fsupp 8443  df-fi 8484  df-sup 8515  df-inf 8516  df-oi 8582  df-card 8975  df-cda 9202  df-pnf 10288  df-mnf 10289  df-xr 10290  df-ltxr 10291  df-le 10292  df-sub 10480  df-neg 10481  df-div 10897  df-nn 11233  df-2 11291  df-3 11292  df-4 11293  df-5 11294  df-6 11295  df-7 11296  df-8 11297  df-9 11298  df-n0 11505  df-z 11590  df-dec 11706  df-uz 11900  df-q 12002  df-rp 12046  df-xneg 12159  df-xadd 12160  df-xmul 12161  df-ioo 12392  df-ioc 12393  df-ico 12394  df-icc 12395  df-fz 12540  df-fzo 12680  df-fl 12807  df-mod 12883  df-seq 13016  df-exp 13075  df-fac 13275  df-bc 13304  df-hash 13332  df-shft 14026  df-cj 14058  df-re 14059  df-im 14060  df-sqrt 14194  df-abs 14195  df-limsup 14421  df-clim 14438  df-rlim 14439  df-sum 14636  df-ef 15017  df-sin 15019  df-cos 15020  df-pi 15022  df-dvds 15203  df-gcd 15439  df-prm 15608  df-pc 15764  df-struct 16081  df-ndx 16082  df-slot 16083  df-base 16085  df-sets 16086  df-ress 16087  df-plusg 16176  df-mulr 16177  df-starv 16178  df-sca 16179  df-vsca 16180  df-ip 16181  df-tset 16182  df-ple 16183  df-ds 16186  df-unif 16187  df-hom 16188  df-cco 16189  df-rest 16305  df-topn 16306  df-0g 16324  df-gsum 16325  df-topgen 16326  df-pt 16327  df-prds 16330  df-xrs 16384  df-qtop 16389  df-imas 16390  df-xps 16392  df-mre 16468  df-mrc 16469  df-acs 16471  df-mgm 17463  df-sgrp 17505  df-mnd 17516  df-submnd 17557  df-mulg 17762  df-cntz 17970  df-cmn 18415  df-psmet 19960  df-xmet 19961  df-met 19962  df-bl 19963  df-mopn 19964  df-fbas 19965  df-fg 19966  df-cnfld 19969  df-top 20921  df-topon 20938  df-topsp 20959  df-bases 20972  df-cld 21045  df-ntr 21046  df-cls 21047  df-nei 21124  df-lp 21162  df-perf 21163  df-cn 21253  df-cnp 21254  df-haus 21341  df-tx 21587  df-hmeo 21780  df-fil 21871  df-fm 21963  df-flim 21964  df-flf 21965  df-xms 22346  df-ms 22347  df-tms 22348  df-cncf 22902  df-limc 23849  df-dv 23850  df-log 24523  df-vma 25044 This theorem is referenced by:  logsqvma2  25452
 Copyright terms: Public domain W3C validator