ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fodjuf Unicode version

Theorem fodjuf 7249
Description: Lemma for fodjuomni 7253 and fodjumkv 7264. Domain and range of  P. (Contributed by Jim Kingdon, 27-Jul-2022.) (Revised by Jim Kingdon, 25-Mar-2023.)
Hypotheses
Ref Expression
fodjuf.fo  |-  ( ph  ->  F : O -onto-> ( A B ) )
fodjuf.p  |-  P  =  ( y  e.  O  |->  if ( E. z  e.  A  ( F `  y )  =  (inl
`  z ) ,  (/) ,  1o ) )
fodjuf.o  |-  ( ph  ->  O  e.  V )
Assertion
Ref Expression
fodjuf  |-  ( ph  ->  P  e.  ( 2o 
^m  O ) )
Distinct variable groups:    ph, y, z   
y, O, z    z, A    z, B    z, F
Allowed substitution hints:    A( y)    B( y)    P( y, z)    F( y)    V( y, z)

Proof of Theorem fodjuf
StepHypRef Expression
1 0lt2o 6529 . . . . 5  |-  (/)  e.  2o
21a1i 9 . . . 4  |-  ( (
ph  /\  y  e.  O )  ->  (/)  e.  2o )
3 1lt2o 6530 . . . . 5  |-  1o  e.  2o
43a1i 9 . . . 4  |-  ( (
ph  /\  y  e.  O )  ->  1o  e.  2o )
5 fodjuf.fo . . . . 5  |-  ( ph  ->  F : O -onto-> ( A B ) )
65fodjuomnilemdc 7248 . . . 4  |-  ( (
ph  /\  y  e.  O )  -> DECID  E. z  e.  A  ( F `  y )  =  (inl `  z
) )
72, 4, 6ifcldcd 3608 . . 3  |-  ( (
ph  /\  y  e.  O )  ->  if ( E. z  e.  A  ( F `  y )  =  (inl `  z
) ,  (/) ,  1o )  e.  2o )
8 fodjuf.p . . 3  |-  P  =  ( y  e.  O  |->  if ( E. z  e.  A  ( F `  y )  =  (inl
`  z ) ,  (/) ,  1o ) )
97, 8fmptd 5736 . 2  |-  ( ph  ->  P : O --> 2o )
10 2onn 6609 . . . 4  |-  2o  e.  om
1110a1i 9 . . 3  |-  ( ph  ->  2o  e.  om )
12 fodjuf.o . . 3  |-  ( ph  ->  O  e.  V )
1311, 12elmapd 6751 . 2  |-  ( ph  ->  ( P  e.  ( 2o  ^m  O )  <-> 
P : O --> 2o ) )
149, 13mpbird 167 1  |-  ( ph  ->  P  e.  ( 2o 
^m  O ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1373    e. wcel 2176   E.wrex 2485   (/)c0 3460   ifcif 3571    |-> cmpt 4106   omcom 4639   -->wf 5268   -onto->wfo 5270   ` cfv 5272  (class class class)co 5946   1oc1o 6497   2oc2o 6498    ^m cmap 6737   ⊔ cdju 7141  inlcinl 7149
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-13 2178  ax-14 2179  ax-ext 2187  ax-sep 4163  ax-nul 4171  ax-pow 4219  ax-pr 4254  ax-un 4481  ax-setind 4586
This theorem depends on definitions:  df-bi 117  df-dc 837  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1484  df-sb 1786  df-eu 2057  df-mo 2058  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ne 2377  df-ral 2489  df-rex 2490  df-rab 2493  df-v 2774  df-sbc 2999  df-csb 3094  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-nul 3461  df-if 3572  df-pw 3618  df-sn 3639  df-pr 3640  df-op 3642  df-uni 3851  df-int 3886  df-br 4046  df-opab 4107  df-mpt 4108  df-tr 4144  df-id 4341  df-iord 4414  df-on 4416  df-suc 4419  df-iom 4640  df-xp 4682  df-rel 4683  df-cnv 4684  df-co 4685  df-dm 4686  df-rn 4687  df-res 4688  df-ima 4689  df-iota 5233  df-fun 5274  df-fn 5275  df-f 5276  df-f1 5277  df-fo 5278  df-f1o 5279  df-fv 5280  df-ov 5949  df-oprab 5950  df-mpo 5951  df-1st 6228  df-2nd 6229  df-1o 6504  df-2o 6505  df-map 6739  df-dju 7142  df-inl 7151  df-inr 7152
This theorem is referenced by:  fodjuomnilemres  7252  fodjumkvlemres  7263
  Copyright terms: Public domain W3C validator