ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fodjuf Unicode version

Theorem fodjuf 7142
Description: Lemma for fodjuomni 7146 and fodjumkv 7157. Domain and range of  P. (Contributed by Jim Kingdon, 27-Jul-2022.) (Revised by Jim Kingdon, 25-Mar-2023.)
Hypotheses
Ref Expression
fodjuf.fo  |-  ( ph  ->  F : O -onto-> ( A B ) )
fodjuf.p  |-  P  =  ( y  e.  O  |->  if ( E. z  e.  A  ( F `  y )  =  (inl
`  z ) ,  (/) ,  1o ) )
fodjuf.o  |-  ( ph  ->  O  e.  V )
Assertion
Ref Expression
fodjuf  |-  ( ph  ->  P  e.  ( 2o 
^m  O ) )
Distinct variable groups:    ph, y, z   
y, O, z    z, A    z, B    z, F
Allowed substitution hints:    A( y)    B( y)    P( y, z)    F( y)    V( y, z)

Proof of Theorem fodjuf
StepHypRef Expression
1 0lt2o 6441 . . . . 5  |-  (/)  e.  2o
21a1i 9 . . . 4  |-  ( (
ph  /\  y  e.  O )  ->  (/)  e.  2o )
3 1lt2o 6442 . . . . 5  |-  1o  e.  2o
43a1i 9 . . . 4  |-  ( (
ph  /\  y  e.  O )  ->  1o  e.  2o )
5 fodjuf.fo . . . . 5  |-  ( ph  ->  F : O -onto-> ( A B ) )
65fodjuomnilemdc 7141 . . . 4  |-  ( (
ph  /\  y  e.  O )  -> DECID  E. z  e.  A  ( F `  y )  =  (inl `  z
) )
72, 4, 6ifcldcd 3570 . . 3  |-  ( (
ph  /\  y  e.  O )  ->  if ( E. z  e.  A  ( F `  y )  =  (inl `  z
) ,  (/) ,  1o )  e.  2o )
8 fodjuf.p . . 3  |-  P  =  ( y  e.  O  |->  if ( E. z  e.  A  ( F `  y )  =  (inl
`  z ) ,  (/) ,  1o ) )
97, 8fmptd 5670 . 2  |-  ( ph  ->  P : O --> 2o )
10 2onn 6521 . . . 4  |-  2o  e.  om
1110a1i 9 . . 3  |-  ( ph  ->  2o  e.  om )
12 fodjuf.o . . 3  |-  ( ph  ->  O  e.  V )
1311, 12elmapd 6661 . 2  |-  ( ph  ->  ( P  e.  ( 2o  ^m  O )  <-> 
P : O --> 2o ) )
149, 13mpbird 167 1  |-  ( ph  ->  P  e.  ( 2o 
^m  O ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1353    e. wcel 2148   E.wrex 2456   (/)c0 3422   ifcif 3534    |-> cmpt 4064   omcom 4589   -->wf 5212   -onto->wfo 5214   ` cfv 5216  (class class class)co 5874   1oc1o 6409   2oc2o 6410    ^m cmap 6647   ⊔ cdju 7035  inlcinl 7043
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-sep 4121  ax-nul 4129  ax-pow 4174  ax-pr 4209  ax-un 4433  ax-setind 4536
This theorem depends on definitions:  df-bi 117  df-dc 835  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-ral 2460  df-rex 2461  df-rab 2464  df-v 2739  df-sbc 2963  df-csb 3058  df-dif 3131  df-un 3133  df-in 3135  df-ss 3142  df-nul 3423  df-if 3535  df-pw 3577  df-sn 3598  df-pr 3599  df-op 3601  df-uni 3810  df-int 3845  df-br 4004  df-opab 4065  df-mpt 4066  df-tr 4102  df-id 4293  df-iord 4366  df-on 4368  df-suc 4371  df-iom 4590  df-xp 4632  df-rel 4633  df-cnv 4634  df-co 4635  df-dm 4636  df-rn 4637  df-res 4638  df-ima 4639  df-iota 5178  df-fun 5218  df-fn 5219  df-f 5220  df-f1 5221  df-fo 5222  df-f1o 5223  df-fv 5224  df-ov 5877  df-oprab 5878  df-mpo 5879  df-1st 6140  df-2nd 6141  df-1o 6416  df-2o 6417  df-map 6649  df-dju 7036  df-inl 7045  df-inr 7046
This theorem is referenced by:  fodjuomnilemres  7145  fodjumkvlemres  7156
  Copyright terms: Public domain W3C validator