| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 10nn | GIF version | ||
| Description: 10 is a positive integer. (Contributed by NM, 8-Nov-2012.) (Revised by AV, 6-Sep-2021.) |
| Ref | Expression |
|---|---|
| 10nn | ⊢ ;10 ∈ ℕ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 9p1e10 9476 | . 2 ⊢ (9 + 1) = ;10 | |
| 2 | 9nn 9176 | . . 3 ⊢ 9 ∈ ℕ | |
| 3 | peano2nn 9019 | . . 3 ⊢ (9 ∈ ℕ → (9 + 1) ∈ ℕ) | |
| 4 | 2, 3 | ax-mp 5 | . 2 ⊢ (9 + 1) ∈ ℕ |
| 5 | 1, 4 | eqeltrri 2270 | 1 ⊢ ;10 ∈ ℕ |
| Colors of variables: wff set class |
| Syntax hints: ∈ wcel 2167 (class class class)co 5925 0cc0 7896 1c1 7897 + caddc 7899 ℕcn 9007 9c9 9065 ;cdc 9474 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 ax-sep 4152 ax-cnex 7987 ax-resscn 7988 ax-1cn 7989 ax-1re 7990 ax-icn 7991 ax-addcl 7992 ax-addrcl 7993 ax-mulcl 7994 ax-mulcom 7997 ax-addass 7998 ax-mulass 7999 ax-distr 8000 ax-1rid 8003 ax-0id 8004 ax-cnre 8007 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 df-rex 2481 df-rab 2484 df-v 2765 df-un 3161 df-in 3163 df-ss 3170 df-sn 3629 df-pr 3630 df-op 3632 df-uni 3841 df-int 3876 df-br 4035 df-iota 5220 df-fv 5267 df-ov 5928 df-inn 9008 df-2 9066 df-3 9067 df-4 9068 df-5 9069 df-6 9070 df-7 9071 df-8 9072 df-9 9073 df-dec 9475 |
| This theorem is referenced by: 10pos 9490 10re 9492 decnncl2 9497 declt 9501 decltc 9502 declti 9511 dec10p 9516 3dvds 12046 plendx 12902 pleid 12903 pleslid 12904 plendxnn 12905 imasvalstrd 12972 cnfldstr 14190 |
| Copyright terms: Public domain | W3C validator |