| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > mhmex | Unicode version | ||
| Description: The set of monoid homomorphisms exists. (Contributed by Jim Kingdon, 15-May-2025.) |
| Ref | Expression |
|---|---|
| mhmex |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fnmap 6742 |
. . . . 5
| |
| 2 | basfn 12890 |
. . . . . 6
| |
| 3 | simpr 110 |
. . . . . . 7
| |
| 4 | 3 | elexd 2785 |
. . . . . 6
|
| 5 | funfvex 5593 |
. . . . . . 7
| |
| 6 | 5 | funfni 5376 |
. . . . . 6
|
| 7 | 2, 4, 6 | sylancr 414 |
. . . . 5
|
| 8 | simpl 109 |
. . . . . . 7
| |
| 9 | 8 | elexd 2785 |
. . . . . 6
|
| 10 | funfvex 5593 |
. . . . . . 7
| |
| 11 | 10 | funfni 5376 |
. . . . . 6
|
| 12 | 2, 9, 11 | sylancr 414 |
. . . . 5
|
| 13 | fnovex 5977 |
. . . . 5
| |
| 14 | 1, 7, 12, 13 | mp3an2i 1355 |
. . . 4
|
| 15 | rabexg 4187 |
. . . 4
| |
| 16 | 14, 15 | syl 14 |
. . 3
|
| 17 | fveq2 5576 |
. . . . . 6
| |
| 18 | 17 | oveq2d 5960 |
. . . . 5
|
| 19 | fveq2 5576 |
. . . . . . . . . 10
| |
| 20 | 19 | oveqd 5961 |
. . . . . . . . 9
|
| 21 | 20 | fveqeq2d 5584 |
. . . . . . . 8
|
| 22 | 17, 21 | raleqbidv 2718 |
. . . . . . 7
|
| 23 | 17, 22 | raleqbidv 2718 |
. . . . . 6
|
| 24 | fveq2 5576 |
. . . . . . 7
| |
| 25 | 24 | fveqeq2d 5584 |
. . . . . 6
|
| 26 | 23, 25 | anbi12d 473 |
. . . . 5
|
| 27 | 18, 26 | rabeqbidv 2767 |
. . . 4
|
| 28 | fveq2 5576 |
. . . . . 6
| |
| 29 | 28 | oveq1d 5959 |
. . . . 5
|
| 30 | fveq2 5576 |
. . . . . . . . 9
| |
| 31 | 30 | oveqd 5961 |
. . . . . . . 8
|
| 32 | 31 | eqeq2d 2217 |
. . . . . . 7
|
| 33 | 32 | 2ralbidv 2530 |
. . . . . 6
|
| 34 | fveq2 5576 |
. . . . . . 7
| |
| 35 | 34 | eqeq2d 2217 |
. . . . . 6
|
| 36 | 33, 35 | anbi12d 473 |
. . . . 5
|
| 37 | 29, 36 | rabeqbidv 2767 |
. . . 4
|
| 38 | df-mhm 13291 |
. . . 4
| |
| 39 | 27, 37, 38 | ovmpog 6080 |
. . 3
|
| 40 | 16, 39 | mpd3an3 1351 |
. 2
|
| 41 | 40, 16 | eqeltrd 2282 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-13 2178 ax-14 2179 ax-ext 2187 ax-sep 4162 ax-pow 4218 ax-pr 4253 ax-un 4480 ax-setind 4585 ax-cnex 8016 ax-resscn 8017 ax-1re 8019 ax-addrcl 8022 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1484 df-sb 1786 df-eu 2057 df-mo 2058 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-ne 2377 df-ral 2489 df-rex 2490 df-rab 2493 df-v 2774 df-sbc 2999 df-csb 3094 df-dif 3168 df-un 3170 df-in 3172 df-ss 3179 df-pw 3618 df-sn 3639 df-pr 3640 df-op 3642 df-uni 3851 df-int 3886 df-iun 3929 df-br 4045 df-opab 4106 df-mpt 4107 df-id 4340 df-xp 4681 df-rel 4682 df-cnv 4683 df-co 4684 df-dm 4685 df-rn 4686 df-res 4687 df-ima 4688 df-iota 5232 df-fun 5273 df-fn 5274 df-f 5275 df-fv 5279 df-ov 5947 df-oprab 5948 df-mpo 5949 df-1st 6226 df-2nd 6227 df-map 6737 df-inn 9037 df-ndx 12835 df-slot 12836 df-base 12838 df-mhm 13291 |
| This theorem is referenced by: ghmex 13591 |
| Copyright terms: Public domain | W3C validator |