ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mhmex Unicode version

Theorem mhmex 13490
Description: The set of monoid homomorphisms exists. (Contributed by Jim Kingdon, 15-May-2025.)
Assertion
Ref Expression
mhmex  |-  ( ( S  e.  Mnd  /\  T  e.  Mnd )  ->  ( S MndHom  T )  e.  _V )

Proof of Theorem mhmex
Dummy variables  f  s  t  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fnmap 6800 . . . . 5  |-  ^m  Fn  ( _V  X.  _V )
2 basfn 13086 . . . . . 6  |-  Base  Fn  _V
3 simpr 110 . . . . . . 7  |-  ( ( S  e.  Mnd  /\  T  e.  Mnd )  ->  T  e.  Mnd )
43elexd 2813 . . . . . 6  |-  ( ( S  e.  Mnd  /\  T  e.  Mnd )  ->  T  e.  _V )
5 funfvex 5643 . . . . . . 7  |-  ( ( Fun  Base  /\  T  e. 
dom  Base )  ->  ( Base `  T )  e. 
_V )
65funfni 5422 . . . . . 6  |-  ( (
Base  Fn  _V  /\  T  e.  _V )  ->  ( Base `  T )  e. 
_V )
72, 4, 6sylancr 414 . . . . 5  |-  ( ( S  e.  Mnd  /\  T  e.  Mnd )  ->  ( Base `  T
)  e.  _V )
8 simpl 109 . . . . . . 7  |-  ( ( S  e.  Mnd  /\  T  e.  Mnd )  ->  S  e.  Mnd )
98elexd 2813 . . . . . 6  |-  ( ( S  e.  Mnd  /\  T  e.  Mnd )  ->  S  e.  _V )
10 funfvex 5643 . . . . . . 7  |-  ( ( Fun  Base  /\  S  e. 
dom  Base )  ->  ( Base `  S )  e. 
_V )
1110funfni 5422 . . . . . 6  |-  ( (
Base  Fn  _V  /\  S  e.  _V )  ->  ( Base `  S )  e. 
_V )
122, 9, 11sylancr 414 . . . . 5  |-  ( ( S  e.  Mnd  /\  T  e.  Mnd )  ->  ( Base `  S
)  e.  _V )
13 fnovex 6033 . . . . 5  |-  ( (  ^m  Fn  ( _V 
X.  _V )  /\  ( Base `  T )  e. 
_V  /\  ( Base `  S )  e.  _V )  ->  ( ( Base `  T )  ^m  ( Base `  S ) )  e.  _V )
141, 7, 12, 13mp3an2i 1376 . . . 4  |-  ( ( S  e.  Mnd  /\  T  e.  Mnd )  ->  ( ( Base `  T
)  ^m  ( Base `  S ) )  e. 
_V )
15 rabexg 4226 . . . 4  |-  ( ( ( Base `  T
)  ^m  ( Base `  S ) )  e. 
_V  ->  { f  e.  ( ( Base `  T
)  ^m  ( Base `  S ) )  |  ( A. x  e.  ( Base `  S
) A. y  e.  ( Base `  S
) ( f `  ( x ( +g  `  S ) y ) )  =  ( ( f `  x ) ( +g  `  T
) ( f `  y ) )  /\  ( f `  ( 0g `  S ) )  =  ( 0g `  T ) ) }  e.  _V )
1614, 15syl 14 . . 3  |-  ( ( S  e.  Mnd  /\  T  e.  Mnd )  ->  { f  e.  ( ( Base `  T
)  ^m  ( Base `  S ) )  |  ( A. x  e.  ( Base `  S
) A. y  e.  ( Base `  S
) ( f `  ( x ( +g  `  S ) y ) )  =  ( ( f `  x ) ( +g  `  T
) ( f `  y ) )  /\  ( f `  ( 0g `  S ) )  =  ( 0g `  T ) ) }  e.  _V )
17 fveq2 5626 . . . . . 6  |-  ( s  =  S  ->  ( Base `  s )  =  ( Base `  S
) )
1817oveq2d 6016 . . . . 5  |-  ( s  =  S  ->  (
( Base `  t )  ^m  ( Base `  s
) )  =  ( ( Base `  t
)  ^m  ( Base `  S ) ) )
19 fveq2 5626 . . . . . . . . . 10  |-  ( s  =  S  ->  ( +g  `  s )  =  ( +g  `  S
) )
2019oveqd 6017 . . . . . . . . 9  |-  ( s  =  S  ->  (
x ( +g  `  s
) y )  =  ( x ( +g  `  S ) y ) )
2120fveqeq2d 5634 . . . . . . . 8  |-  ( s  =  S  ->  (
( f `  (
x ( +g  `  s
) y ) )  =  ( ( f `
 x ) ( +g  `  t ) ( f `  y
) )  <->  ( f `  ( x ( +g  `  S ) y ) )  =  ( ( f `  x ) ( +g  `  t
) ( f `  y ) ) ) )
2217, 21raleqbidv 2744 . . . . . . 7  |-  ( s  =  S  ->  ( A. y  e.  ( Base `  s ) ( f `  ( x ( +g  `  s
) y ) )  =  ( ( f `
 x ) ( +g  `  t ) ( f `  y
) )  <->  A. y  e.  ( Base `  S
) ( f `  ( x ( +g  `  S ) y ) )  =  ( ( f `  x ) ( +g  `  t
) ( f `  y ) ) ) )
2317, 22raleqbidv 2744 . . . . . 6  |-  ( s  =  S  ->  ( A. x  e.  ( Base `  s ) A. y  e.  ( Base `  s ) ( f `
 ( x ( +g  `  s ) y ) )  =  ( ( f `  x ) ( +g  `  t ) ( f `
 y ) )  <->  A. x  e.  ( Base `  S ) A. y  e.  ( Base `  S ) ( f `
 ( x ( +g  `  S ) y ) )  =  ( ( f `  x ) ( +g  `  t ) ( f `
 y ) ) ) )
24 fveq2 5626 . . . . . . 7  |-  ( s  =  S  ->  ( 0g `  s )  =  ( 0g `  S
) )
2524fveqeq2d 5634 . . . . . 6  |-  ( s  =  S  ->  (
( f `  ( 0g `  s ) )  =  ( 0g `  t )  <->  ( f `  ( 0g `  S
) )  =  ( 0g `  t ) ) )
2623, 25anbi12d 473 . . . . 5  |-  ( s  =  S  ->  (
( A. x  e.  ( Base `  s
) A. y  e.  ( Base `  s
) ( f `  ( x ( +g  `  s ) y ) )  =  ( ( f `  x ) ( +g  `  t
) ( f `  y ) )  /\  ( f `  ( 0g `  s ) )  =  ( 0g `  t ) )  <->  ( A. x  e.  ( Base `  S ) A. y  e.  ( Base `  S
) ( f `  ( x ( +g  `  S ) y ) )  =  ( ( f `  x ) ( +g  `  t
) ( f `  y ) )  /\  ( f `  ( 0g `  S ) )  =  ( 0g `  t ) ) ) )
2718, 26rabeqbidv 2794 . . . 4  |-  ( s  =  S  ->  { f  e.  ( ( Base `  t )  ^m  ( Base `  s ) )  |  ( A. x  e.  ( Base `  s
) A. y  e.  ( Base `  s
) ( f `  ( x ( +g  `  s ) y ) )  =  ( ( f `  x ) ( +g  `  t
) ( f `  y ) )  /\  ( f `  ( 0g `  s ) )  =  ( 0g `  t ) ) }  =  { f  e.  ( ( Base `  t
)  ^m  ( Base `  S ) )  |  ( A. x  e.  ( Base `  S
) A. y  e.  ( Base `  S
) ( f `  ( x ( +g  `  S ) y ) )  =  ( ( f `  x ) ( +g  `  t
) ( f `  y ) )  /\  ( f `  ( 0g `  S ) )  =  ( 0g `  t ) ) } )
28 fveq2 5626 . . . . . 6  |-  ( t  =  T  ->  ( Base `  t )  =  ( Base `  T
) )
2928oveq1d 6015 . . . . 5  |-  ( t  =  T  ->  (
( Base `  t )  ^m  ( Base `  S
) )  =  ( ( Base `  T
)  ^m  ( Base `  S ) ) )
30 fveq2 5626 . . . . . . . . 9  |-  ( t  =  T  ->  ( +g  `  t )  =  ( +g  `  T
) )
3130oveqd 6017 . . . . . . . 8  |-  ( t  =  T  ->  (
( f `  x
) ( +g  `  t
) ( f `  y ) )  =  ( ( f `  x ) ( +g  `  T ) ( f `
 y ) ) )
3231eqeq2d 2241 . . . . . . 7  |-  ( t  =  T  ->  (
( f `  (
x ( +g  `  S
) y ) )  =  ( ( f `
 x ) ( +g  `  t ) ( f `  y
) )  <->  ( f `  ( x ( +g  `  S ) y ) )  =  ( ( f `  x ) ( +g  `  T
) ( f `  y ) ) ) )
33322ralbidv 2554 . . . . . 6  |-  ( t  =  T  ->  ( A. x  e.  ( Base `  S ) A. y  e.  ( Base `  S ) ( f `
 ( x ( +g  `  S ) y ) )  =  ( ( f `  x ) ( +g  `  t ) ( f `
 y ) )  <->  A. x  e.  ( Base `  S ) A. y  e.  ( Base `  S ) ( f `
 ( x ( +g  `  S ) y ) )  =  ( ( f `  x ) ( +g  `  T ) ( f `
 y ) ) ) )
34 fveq2 5626 . . . . . . 7  |-  ( t  =  T  ->  ( 0g `  t )  =  ( 0g `  T
) )
3534eqeq2d 2241 . . . . . 6  |-  ( t  =  T  ->  (
( f `  ( 0g `  S ) )  =  ( 0g `  t )  <->  ( f `  ( 0g `  S
) )  =  ( 0g `  T ) ) )
3633, 35anbi12d 473 . . . . 5  |-  ( t  =  T  ->  (
( A. x  e.  ( Base `  S
) A. y  e.  ( Base `  S
) ( f `  ( x ( +g  `  S ) y ) )  =  ( ( f `  x ) ( +g  `  t
) ( f `  y ) )  /\  ( f `  ( 0g `  S ) )  =  ( 0g `  t ) )  <->  ( A. x  e.  ( Base `  S ) A. y  e.  ( Base `  S
) ( f `  ( x ( +g  `  S ) y ) )  =  ( ( f `  x ) ( +g  `  T
) ( f `  y ) )  /\  ( f `  ( 0g `  S ) )  =  ( 0g `  T ) ) ) )
3729, 36rabeqbidv 2794 . . . 4  |-  ( t  =  T  ->  { f  e.  ( ( Base `  t )  ^m  ( Base `  S ) )  |  ( A. x  e.  ( Base `  S
) A. y  e.  ( Base `  S
) ( f `  ( x ( +g  `  S ) y ) )  =  ( ( f `  x ) ( +g  `  t
) ( f `  y ) )  /\  ( f `  ( 0g `  S ) )  =  ( 0g `  t ) ) }  =  { f  e.  ( ( Base `  T
)  ^m  ( Base `  S ) )  |  ( A. x  e.  ( Base `  S
) A. y  e.  ( Base `  S
) ( f `  ( x ( +g  `  S ) y ) )  =  ( ( f `  x ) ( +g  `  T
) ( f `  y ) )  /\  ( f `  ( 0g `  S ) )  =  ( 0g `  T ) ) } )
38 df-mhm 13487 . . . 4  |- MndHom  =  ( s  e.  Mnd , 
t  e.  Mnd  |->  { f  e.  ( (
Base `  t )  ^m  ( Base `  s
) )  |  ( A. x  e.  (
Base `  s ) A. y  e.  ( Base `  s ) ( f `  ( x ( +g  `  s
) y ) )  =  ( ( f `
 x ) ( +g  `  t ) ( f `  y
) )  /\  (
f `  ( 0g `  s ) )  =  ( 0g `  t
) ) } )
3927, 37, 38ovmpog 6138 . . 3  |-  ( ( S  e.  Mnd  /\  T  e.  Mnd  /\  {
f  e.  ( (
Base `  T )  ^m  ( Base `  S
) )  |  ( A. x  e.  (
Base `  S ) A. y  e.  ( Base `  S ) ( f `  ( x ( +g  `  S
) y ) )  =  ( ( f `
 x ) ( +g  `  T ) ( f `  y
) )  /\  (
f `  ( 0g `  S ) )  =  ( 0g `  T
) ) }  e.  _V )  ->  ( S MndHom  T )  =  {
f  e.  ( (
Base `  T )  ^m  ( Base `  S
) )  |  ( A. x  e.  (
Base `  S ) A. y  e.  ( Base `  S ) ( f `  ( x ( +g  `  S
) y ) )  =  ( ( f `
 x ) ( +g  `  T ) ( f `  y
) )  /\  (
f `  ( 0g `  S ) )  =  ( 0g `  T
) ) } )
4016, 39mpd3an3 1372 . 2  |-  ( ( S  e.  Mnd  /\  T  e.  Mnd )  ->  ( S MndHom  T )  =  { f  e.  ( ( Base `  T
)  ^m  ( Base `  S ) )  |  ( A. x  e.  ( Base `  S
) A. y  e.  ( Base `  S
) ( f `  ( x ( +g  `  S ) y ) )  =  ( ( f `  x ) ( +g  `  T
) ( f `  y ) )  /\  ( f `  ( 0g `  S ) )  =  ( 0g `  T ) ) } )
4140, 16eqeltrd 2306 1  |-  ( ( S  e.  Mnd  /\  T  e.  Mnd )  ->  ( S MndHom  T )  e.  _V )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1395    e. wcel 2200   A.wral 2508   {crab 2512   _Vcvv 2799    X. cxp 4716    Fn wfn 5312   ` cfv 5317  (class class class)co 6000    ^m cmap 6793   Basecbs 13027   +g cplusg 13105   0gc0g 13284   Mndcmnd 13444   MndHom cmhm 13485
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-sep 4201  ax-pow 4257  ax-pr 4292  ax-un 4523  ax-setind 4628  ax-cnex 8086  ax-resscn 8087  ax-1re 8089  ax-addrcl 8092
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-ral 2513  df-rex 2514  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3888  df-int 3923  df-iun 3966  df-br 4083  df-opab 4145  df-mpt 4146  df-id 4383  df-xp 4724  df-rel 4725  df-cnv 4726  df-co 4727  df-dm 4728  df-rn 4729  df-res 4730  df-ima 4731  df-iota 5277  df-fun 5319  df-fn 5320  df-f 5321  df-fv 5325  df-ov 6003  df-oprab 6004  df-mpo 6005  df-1st 6284  df-2nd 6285  df-map 6795  df-inn 9107  df-ndx 13030  df-slot 13031  df-base 13033  df-mhm 13487
This theorem is referenced by:  ghmex  13787
  Copyright terms: Public domain W3C validator