ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mhmex Unicode version

Theorem mhmex 12937
Description: The set of monoid homomorphisms exists. (Contributed by Jim Kingdon, 15-May-2025.)
Assertion
Ref Expression
mhmex  |-  ( ( S  e.  Mnd  /\  T  e.  Mnd )  ->  ( S MndHom  T )  e.  _V )

Proof of Theorem mhmex
Dummy variables  f  s  t  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fnmap 6685 . . . . 5  |-  ^m  Fn  ( _V  X.  _V )
2 basfn 12581 . . . . . 6  |-  Base  Fn  _V
3 simpr 110 . . . . . . 7  |-  ( ( S  e.  Mnd  /\  T  e.  Mnd )  ->  T  e.  Mnd )
43elexd 2765 . . . . . 6  |-  ( ( S  e.  Mnd  /\  T  e.  Mnd )  ->  T  e.  _V )
5 funfvex 5554 . . . . . . 7  |-  ( ( Fun  Base  /\  T  e. 
dom  Base )  ->  ( Base `  T )  e. 
_V )
65funfni 5338 . . . . . 6  |-  ( (
Base  Fn  _V  /\  T  e.  _V )  ->  ( Base `  T )  e. 
_V )
72, 4, 6sylancr 414 . . . . 5  |-  ( ( S  e.  Mnd  /\  T  e.  Mnd )  ->  ( Base `  T
)  e.  _V )
8 simpl 109 . . . . . . 7  |-  ( ( S  e.  Mnd  /\  T  e.  Mnd )  ->  S  e.  Mnd )
98elexd 2765 . . . . . 6  |-  ( ( S  e.  Mnd  /\  T  e.  Mnd )  ->  S  e.  _V )
10 funfvex 5554 . . . . . . 7  |-  ( ( Fun  Base  /\  S  e. 
dom  Base )  ->  ( Base `  S )  e. 
_V )
1110funfni 5338 . . . . . 6  |-  ( (
Base  Fn  _V  /\  S  e.  _V )  ->  ( Base `  S )  e. 
_V )
122, 9, 11sylancr 414 . . . . 5  |-  ( ( S  e.  Mnd  /\  T  e.  Mnd )  ->  ( Base `  S
)  e.  _V )
13 fnovex 5933 . . . . 5  |-  ( (  ^m  Fn  ( _V 
X.  _V )  /\  ( Base `  T )  e. 
_V  /\  ( Base `  S )  e.  _V )  ->  ( ( Base `  T )  ^m  ( Base `  S ) )  e.  _V )
141, 7, 12, 13mp3an2i 1353 . . . 4  |-  ( ( S  e.  Mnd  /\  T  e.  Mnd )  ->  ( ( Base `  T
)  ^m  ( Base `  S ) )  e. 
_V )
15 rabexg 4164 . . . 4  |-  ( ( ( Base `  T
)  ^m  ( Base `  S ) )  e. 
_V  ->  { f  e.  ( ( Base `  T
)  ^m  ( Base `  S ) )  |  ( A. x  e.  ( Base `  S
) A. y  e.  ( Base `  S
) ( f `  ( x ( +g  `  S ) y ) )  =  ( ( f `  x ) ( +g  `  T
) ( f `  y ) )  /\  ( f `  ( 0g `  S ) )  =  ( 0g `  T ) ) }  e.  _V )
1614, 15syl 14 . . 3  |-  ( ( S  e.  Mnd  /\  T  e.  Mnd )  ->  { f  e.  ( ( Base `  T
)  ^m  ( Base `  S ) )  |  ( A. x  e.  ( Base `  S
) A. y  e.  ( Base `  S
) ( f `  ( x ( +g  `  S ) y ) )  =  ( ( f `  x ) ( +g  `  T
) ( f `  y ) )  /\  ( f `  ( 0g `  S ) )  =  ( 0g `  T ) ) }  e.  _V )
17 fveq2 5537 . . . . . 6  |-  ( s  =  S  ->  ( Base `  s )  =  ( Base `  S
) )
1817oveq2d 5916 . . . . 5  |-  ( s  =  S  ->  (
( Base `  t )  ^m  ( Base `  s
) )  =  ( ( Base `  t
)  ^m  ( Base `  S ) ) )
19 fveq2 5537 . . . . . . . . . 10  |-  ( s  =  S  ->  ( +g  `  s )  =  ( +g  `  S
) )
2019oveqd 5917 . . . . . . . . 9  |-  ( s  =  S  ->  (
x ( +g  `  s
) y )  =  ( x ( +g  `  S ) y ) )
2120fveqeq2d 5545 . . . . . . . 8  |-  ( s  =  S  ->  (
( f `  (
x ( +g  `  s
) y ) )  =  ( ( f `
 x ) ( +g  `  t ) ( f `  y
) )  <->  ( f `  ( x ( +g  `  S ) y ) )  =  ( ( f `  x ) ( +g  `  t
) ( f `  y ) ) ) )
2217, 21raleqbidv 2698 . . . . . . 7  |-  ( s  =  S  ->  ( A. y  e.  ( Base `  s ) ( f `  ( x ( +g  `  s
) y ) )  =  ( ( f `
 x ) ( +g  `  t ) ( f `  y
) )  <->  A. y  e.  ( Base `  S
) ( f `  ( x ( +g  `  S ) y ) )  =  ( ( f `  x ) ( +g  `  t
) ( f `  y ) ) ) )
2317, 22raleqbidv 2698 . . . . . 6  |-  ( s  =  S  ->  ( A. x  e.  ( Base `  s ) A. y  e.  ( Base `  s ) ( f `
 ( x ( +g  `  s ) y ) )  =  ( ( f `  x ) ( +g  `  t ) ( f `
 y ) )  <->  A. x  e.  ( Base `  S ) A. y  e.  ( Base `  S ) ( f `
 ( x ( +g  `  S ) y ) )  =  ( ( f `  x ) ( +g  `  t ) ( f `
 y ) ) ) )
24 fveq2 5537 . . . . . . 7  |-  ( s  =  S  ->  ( 0g `  s )  =  ( 0g `  S
) )
2524fveqeq2d 5545 . . . . . 6  |-  ( s  =  S  ->  (
( f `  ( 0g `  s ) )  =  ( 0g `  t )  <->  ( f `  ( 0g `  S
) )  =  ( 0g `  t ) ) )
2623, 25anbi12d 473 . . . . 5  |-  ( s  =  S  ->  (
( A. x  e.  ( Base `  s
) A. y  e.  ( Base `  s
) ( f `  ( x ( +g  `  s ) y ) )  =  ( ( f `  x ) ( +g  `  t
) ( f `  y ) )  /\  ( f `  ( 0g `  s ) )  =  ( 0g `  t ) )  <->  ( A. x  e.  ( Base `  S ) A. y  e.  ( Base `  S
) ( f `  ( x ( +g  `  S ) y ) )  =  ( ( f `  x ) ( +g  `  t
) ( f `  y ) )  /\  ( f `  ( 0g `  S ) )  =  ( 0g `  t ) ) ) )
2718, 26rabeqbidv 2747 . . . 4  |-  ( s  =  S  ->  { f  e.  ( ( Base `  t )  ^m  ( Base `  s ) )  |  ( A. x  e.  ( Base `  s
) A. y  e.  ( Base `  s
) ( f `  ( x ( +g  `  s ) y ) )  =  ( ( f `  x ) ( +g  `  t
) ( f `  y ) )  /\  ( f `  ( 0g `  s ) )  =  ( 0g `  t ) ) }  =  { f  e.  ( ( Base `  t
)  ^m  ( Base `  S ) )  |  ( A. x  e.  ( Base `  S
) A. y  e.  ( Base `  S
) ( f `  ( x ( +g  `  S ) y ) )  =  ( ( f `  x ) ( +g  `  t
) ( f `  y ) )  /\  ( f `  ( 0g `  S ) )  =  ( 0g `  t ) ) } )
28 fveq2 5537 . . . . . 6  |-  ( t  =  T  ->  ( Base `  t )  =  ( Base `  T
) )
2928oveq1d 5915 . . . . 5  |-  ( t  =  T  ->  (
( Base `  t )  ^m  ( Base `  S
) )  =  ( ( Base `  T
)  ^m  ( Base `  S ) ) )
30 fveq2 5537 . . . . . . . . 9  |-  ( t  =  T  ->  ( +g  `  t )  =  ( +g  `  T
) )
3130oveqd 5917 . . . . . . . 8  |-  ( t  =  T  ->  (
( f `  x
) ( +g  `  t
) ( f `  y ) )  =  ( ( f `  x ) ( +g  `  T ) ( f `
 y ) ) )
3231eqeq2d 2201 . . . . . . 7  |-  ( t  =  T  ->  (
( f `  (
x ( +g  `  S
) y ) )  =  ( ( f `
 x ) ( +g  `  t ) ( f `  y
) )  <->  ( f `  ( x ( +g  `  S ) y ) )  =  ( ( f `  x ) ( +g  `  T
) ( f `  y ) ) ) )
33322ralbidv 2514 . . . . . 6  |-  ( t  =  T  ->  ( A. x  e.  ( Base `  S ) A. y  e.  ( Base `  S ) ( f `
 ( x ( +g  `  S ) y ) )  =  ( ( f `  x ) ( +g  `  t ) ( f `
 y ) )  <->  A. x  e.  ( Base `  S ) A. y  e.  ( Base `  S ) ( f `
 ( x ( +g  `  S ) y ) )  =  ( ( f `  x ) ( +g  `  T ) ( f `
 y ) ) ) )
34 fveq2 5537 . . . . . . 7  |-  ( t  =  T  ->  ( 0g `  t )  =  ( 0g `  T
) )
3534eqeq2d 2201 . . . . . 6  |-  ( t  =  T  ->  (
( f `  ( 0g `  S ) )  =  ( 0g `  t )  <->  ( f `  ( 0g `  S
) )  =  ( 0g `  T ) ) )
3633, 35anbi12d 473 . . . . 5  |-  ( t  =  T  ->  (
( A. x  e.  ( Base `  S
) A. y  e.  ( Base `  S
) ( f `  ( x ( +g  `  S ) y ) )  =  ( ( f `  x ) ( +g  `  t
) ( f `  y ) )  /\  ( f `  ( 0g `  S ) )  =  ( 0g `  t ) )  <->  ( A. x  e.  ( Base `  S ) A. y  e.  ( Base `  S
) ( f `  ( x ( +g  `  S ) y ) )  =  ( ( f `  x ) ( +g  `  T
) ( f `  y ) )  /\  ( f `  ( 0g `  S ) )  =  ( 0g `  T ) ) ) )
3729, 36rabeqbidv 2747 . . . 4  |-  ( t  =  T  ->  { f  e.  ( ( Base `  t )  ^m  ( Base `  S ) )  |  ( A. x  e.  ( Base `  S
) A. y  e.  ( Base `  S
) ( f `  ( x ( +g  `  S ) y ) )  =  ( ( f `  x ) ( +g  `  t
) ( f `  y ) )  /\  ( f `  ( 0g `  S ) )  =  ( 0g `  t ) ) }  =  { f  e.  ( ( Base `  T
)  ^m  ( Base `  S ) )  |  ( A. x  e.  ( Base `  S
) A. y  e.  ( Base `  S
) ( f `  ( x ( +g  `  S ) y ) )  =  ( ( f `  x ) ( +g  `  T
) ( f `  y ) )  /\  ( f `  ( 0g `  S ) )  =  ( 0g `  T ) ) } )
38 df-mhm 12934 . . . 4  |- MndHom  =  ( s  e.  Mnd , 
t  e.  Mnd  |->  { f  e.  ( (
Base `  t )  ^m  ( Base `  s
) )  |  ( A. x  e.  (
Base `  s ) A. y  e.  ( Base `  s ) ( f `  ( x ( +g  `  s
) y ) )  =  ( ( f `
 x ) ( +g  `  t ) ( f `  y
) )  /\  (
f `  ( 0g `  s ) )  =  ( 0g `  t
) ) } )
3927, 37, 38ovmpog 6035 . . 3  |-  ( ( S  e.  Mnd  /\  T  e.  Mnd  /\  {
f  e.  ( (
Base `  T )  ^m  ( Base `  S
) )  |  ( A. x  e.  (
Base `  S ) A. y  e.  ( Base `  S ) ( f `  ( x ( +g  `  S
) y ) )  =  ( ( f `
 x ) ( +g  `  T ) ( f `  y
) )  /\  (
f `  ( 0g `  S ) )  =  ( 0g `  T
) ) }  e.  _V )  ->  ( S MndHom  T )  =  {
f  e.  ( (
Base `  T )  ^m  ( Base `  S
) )  |  ( A. x  e.  (
Base `  S ) A. y  e.  ( Base `  S ) ( f `  ( x ( +g  `  S
) y ) )  =  ( ( f `
 x ) ( +g  `  T ) ( f `  y
) )  /\  (
f `  ( 0g `  S ) )  =  ( 0g `  T
) ) } )
4016, 39mpd3an3 1349 . 2  |-  ( ( S  e.  Mnd  /\  T  e.  Mnd )  ->  ( S MndHom  T )  =  { f  e.  ( ( Base `  T
)  ^m  ( Base `  S ) )  |  ( A. x  e.  ( Base `  S
) A. y  e.  ( Base `  S
) ( f `  ( x ( +g  `  S ) y ) )  =  ( ( f `  x ) ( +g  `  T
) ( f `  y ) )  /\  ( f `  ( 0g `  S ) )  =  ( 0g `  T ) ) } )
4140, 16eqeltrd 2266 1  |-  ( ( S  e.  Mnd  /\  T  e.  Mnd )  ->  ( S MndHom  T )  e.  _V )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1364    e. wcel 2160   A.wral 2468   {crab 2472   _Vcvv 2752    X. cxp 4645    Fn wfn 5233   ` cfv 5238  (class class class)co 5900    ^m cmap 6678   Basecbs 12523   +g cplusg 12600   0gc0g 12772   Mndcmnd 12900   MndHom cmhm 12932
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2162  ax-14 2163  ax-ext 2171  ax-sep 4139  ax-pow 4195  ax-pr 4230  ax-un 4454  ax-setind 4557  ax-cnex 7937  ax-resscn 7938  ax-1re 7940  ax-addrcl 7943
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2041  df-mo 2042  df-clab 2176  df-cleq 2182  df-clel 2185  df-nfc 2321  df-ne 2361  df-ral 2473  df-rex 2474  df-rab 2477  df-v 2754  df-sbc 2978  df-csb 3073  df-dif 3146  df-un 3148  df-in 3150  df-ss 3157  df-pw 3595  df-sn 3616  df-pr 3617  df-op 3619  df-uni 3828  df-int 3863  df-iun 3906  df-br 4022  df-opab 4083  df-mpt 4084  df-id 4314  df-xp 4653  df-rel 4654  df-cnv 4655  df-co 4656  df-dm 4657  df-rn 4658  df-res 4659  df-ima 4660  df-iota 5199  df-fun 5240  df-fn 5241  df-f 5242  df-fv 5246  df-ov 5903  df-oprab 5904  df-mpo 5905  df-1st 6169  df-2nd 6170  df-map 6680  df-inn 8955  df-ndx 12526  df-slot 12527  df-base 12529  df-mhm 12934
This theorem is referenced by:  ghmex  13219
  Copyright terms: Public domain W3C validator