| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > mhmex | Unicode version | ||
| Description: The set of monoid homomorphisms exists. (Contributed by Jim Kingdon, 15-May-2025.) |
| Ref | Expression |
|---|---|
| mhmex |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fnmap 6800 |
. . . . 5
| |
| 2 | basfn 13086 |
. . . . . 6
| |
| 3 | simpr 110 |
. . . . . . 7
| |
| 4 | 3 | elexd 2813 |
. . . . . 6
|
| 5 | funfvex 5643 |
. . . . . . 7
| |
| 6 | 5 | funfni 5422 |
. . . . . 6
|
| 7 | 2, 4, 6 | sylancr 414 |
. . . . 5
|
| 8 | simpl 109 |
. . . . . . 7
| |
| 9 | 8 | elexd 2813 |
. . . . . 6
|
| 10 | funfvex 5643 |
. . . . . . 7
| |
| 11 | 10 | funfni 5422 |
. . . . . 6
|
| 12 | 2, 9, 11 | sylancr 414 |
. . . . 5
|
| 13 | fnovex 6033 |
. . . . 5
| |
| 14 | 1, 7, 12, 13 | mp3an2i 1376 |
. . . 4
|
| 15 | rabexg 4226 |
. . . 4
| |
| 16 | 14, 15 | syl 14 |
. . 3
|
| 17 | fveq2 5626 |
. . . . . 6
| |
| 18 | 17 | oveq2d 6016 |
. . . . 5
|
| 19 | fveq2 5626 |
. . . . . . . . . 10
| |
| 20 | 19 | oveqd 6017 |
. . . . . . . . 9
|
| 21 | 20 | fveqeq2d 5634 |
. . . . . . . 8
|
| 22 | 17, 21 | raleqbidv 2744 |
. . . . . . 7
|
| 23 | 17, 22 | raleqbidv 2744 |
. . . . . 6
|
| 24 | fveq2 5626 |
. . . . . . 7
| |
| 25 | 24 | fveqeq2d 5634 |
. . . . . 6
|
| 26 | 23, 25 | anbi12d 473 |
. . . . 5
|
| 27 | 18, 26 | rabeqbidv 2794 |
. . . 4
|
| 28 | fveq2 5626 |
. . . . . 6
| |
| 29 | 28 | oveq1d 6015 |
. . . . 5
|
| 30 | fveq2 5626 |
. . . . . . . . 9
| |
| 31 | 30 | oveqd 6017 |
. . . . . . . 8
|
| 32 | 31 | eqeq2d 2241 |
. . . . . . 7
|
| 33 | 32 | 2ralbidv 2554 |
. . . . . 6
|
| 34 | fveq2 5626 |
. . . . . . 7
| |
| 35 | 34 | eqeq2d 2241 |
. . . . . 6
|
| 36 | 33, 35 | anbi12d 473 |
. . . . 5
|
| 37 | 29, 36 | rabeqbidv 2794 |
. . . 4
|
| 38 | df-mhm 13487 |
. . . 4
| |
| 39 | 27, 37, 38 | ovmpog 6138 |
. . 3
|
| 40 | 16, 39 | mpd3an3 1372 |
. 2
|
| 41 | 40, 16 | eqeltrd 2306 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-sep 4201 ax-pow 4257 ax-pr 4292 ax-un 4523 ax-setind 4628 ax-cnex 8086 ax-resscn 8087 ax-1re 8089 ax-addrcl 8092 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-ral 2513 df-rex 2514 df-rab 2517 df-v 2801 df-sbc 3029 df-csb 3125 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3888 df-int 3923 df-iun 3966 df-br 4083 df-opab 4145 df-mpt 4146 df-id 4383 df-xp 4724 df-rel 4725 df-cnv 4726 df-co 4727 df-dm 4728 df-rn 4729 df-res 4730 df-ima 4731 df-iota 5277 df-fun 5319 df-fn 5320 df-f 5321 df-fv 5325 df-ov 6003 df-oprab 6004 df-mpo 6005 df-1st 6284 df-2nd 6285 df-map 6795 df-inn 9107 df-ndx 13030 df-slot 13031 df-base 13033 df-mhm 13487 |
| This theorem is referenced by: ghmex 13787 |
| Copyright terms: Public domain | W3C validator |