| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > mhmex | Unicode version | ||
| Description: The set of monoid homomorphisms exists. (Contributed by Jim Kingdon, 15-May-2025.) |
| Ref | Expression |
|---|---|
| mhmex |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fnmap 6765 |
. . . . 5
| |
| 2 | basfn 13005 |
. . . . . 6
| |
| 3 | simpr 110 |
. . . . . . 7
| |
| 4 | 3 | elexd 2790 |
. . . . . 6
|
| 5 | funfvex 5616 |
. . . . . . 7
| |
| 6 | 5 | funfni 5395 |
. . . . . 6
|
| 7 | 2, 4, 6 | sylancr 414 |
. . . . 5
|
| 8 | simpl 109 |
. . . . . . 7
| |
| 9 | 8 | elexd 2790 |
. . . . . 6
|
| 10 | funfvex 5616 |
. . . . . . 7
| |
| 11 | 10 | funfni 5395 |
. . . . . 6
|
| 12 | 2, 9, 11 | sylancr 414 |
. . . . 5
|
| 13 | fnovex 6000 |
. . . . 5
| |
| 14 | 1, 7, 12, 13 | mp3an2i 1355 |
. . . 4
|
| 15 | rabexg 4203 |
. . . 4
| |
| 16 | 14, 15 | syl 14 |
. . 3
|
| 17 | fveq2 5599 |
. . . . . 6
| |
| 18 | 17 | oveq2d 5983 |
. . . . 5
|
| 19 | fveq2 5599 |
. . . . . . . . . 10
| |
| 20 | 19 | oveqd 5984 |
. . . . . . . . 9
|
| 21 | 20 | fveqeq2d 5607 |
. . . . . . . 8
|
| 22 | 17, 21 | raleqbidv 2721 |
. . . . . . 7
|
| 23 | 17, 22 | raleqbidv 2721 |
. . . . . 6
|
| 24 | fveq2 5599 |
. . . . . . 7
| |
| 25 | 24 | fveqeq2d 5607 |
. . . . . 6
|
| 26 | 23, 25 | anbi12d 473 |
. . . . 5
|
| 27 | 18, 26 | rabeqbidv 2771 |
. . . 4
|
| 28 | fveq2 5599 |
. . . . . 6
| |
| 29 | 28 | oveq1d 5982 |
. . . . 5
|
| 30 | fveq2 5599 |
. . . . . . . . 9
| |
| 31 | 30 | oveqd 5984 |
. . . . . . . 8
|
| 32 | 31 | eqeq2d 2219 |
. . . . . . 7
|
| 33 | 32 | 2ralbidv 2532 |
. . . . . 6
|
| 34 | fveq2 5599 |
. . . . . . 7
| |
| 35 | 34 | eqeq2d 2219 |
. . . . . 6
|
| 36 | 33, 35 | anbi12d 473 |
. . . . 5
|
| 37 | 29, 36 | rabeqbidv 2771 |
. . . 4
|
| 38 | df-mhm 13406 |
. . . 4
| |
| 39 | 27, 37, 38 | ovmpog 6103 |
. . 3
|
| 40 | 16, 39 | mpd3an3 1351 |
. 2
|
| 41 | 40, 16 | eqeltrd 2284 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2180 ax-14 2181 ax-ext 2189 ax-sep 4178 ax-pow 4234 ax-pr 4269 ax-un 4498 ax-setind 4603 ax-cnex 8051 ax-resscn 8052 ax-1re 8054 ax-addrcl 8057 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-ne 2379 df-ral 2491 df-rex 2492 df-rab 2495 df-v 2778 df-sbc 3006 df-csb 3102 df-dif 3176 df-un 3178 df-in 3180 df-ss 3187 df-pw 3628 df-sn 3649 df-pr 3650 df-op 3652 df-uni 3865 df-int 3900 df-iun 3943 df-br 4060 df-opab 4122 df-mpt 4123 df-id 4358 df-xp 4699 df-rel 4700 df-cnv 4701 df-co 4702 df-dm 4703 df-rn 4704 df-res 4705 df-ima 4706 df-iota 5251 df-fun 5292 df-fn 5293 df-f 5294 df-fv 5298 df-ov 5970 df-oprab 5971 df-mpo 5972 df-1st 6249 df-2nd 6250 df-map 6760 df-inn 9072 df-ndx 12950 df-slot 12951 df-base 12953 df-mhm 13406 |
| This theorem is referenced by: ghmex 13706 |
| Copyright terms: Public domain | W3C validator |