ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  islidlm Unicode version

Theorem islidlm 13975
Description: Predicate of being a (left) ideal. (Contributed by Stefan O'Rear, 1-Apr-2015.)
Hypotheses
Ref Expression
islidl.s  |-  U  =  (LIdeal `  R )
islidl.b  |-  B  =  ( Base `  R
)
islidl.p  |-  .+  =  ( +g  `  R )
islidl.t  |-  .x.  =  ( .r `  R )
Assertion
Ref Expression
islidlm  |-  ( I  e.  U  <->  ( I  C_  B  /\  E. j 
j  e.  I  /\  A. x  e.  B  A. a  e.  I  A. b  e.  I  (
( x  .x.  a
)  .+  b )  e.  I ) )
Distinct variable groups:    x, B    I,
a, b, j, x    R, a, b, x
Allowed substitution hints:    B( j, a, b)    .+ ( x, j, a, b)    R( j)    .x. ( x, j, a, b)    U( x, j, a, b)

Proof of Theorem islidlm
Dummy variable  k is distinct from all other variables.
StepHypRef Expression
1 islidl.s . . 3  |-  U  =  (LIdeal `  R )
21lidlmex 13971 . 2  |-  ( I  e.  U  ->  R  e.  _V )
3 eleq1w 2254 . . . . . 6  |-  ( j  =  k  ->  (
j  e.  I  <->  k  e.  I ) )
43cbvexv 1930 . . . . 5  |-  ( E. j  j  e.  I  <->  E. k  k  e.  I
)
5 ssel 3173 . . . . . . 7  |-  ( I 
C_  B  ->  (
k  e.  I  -> 
k  e.  B ) )
6 islidl.b . . . . . . . 8  |-  B  =  ( Base `  R
)
76basmex 12677 . . . . . . 7  |-  ( k  e.  B  ->  R  e.  _V )
85, 7syl6 33 . . . . . 6  |-  ( I 
C_  B  ->  (
k  e.  I  ->  R  e.  _V )
)
98exlimdv 1830 . . . . 5  |-  ( I 
C_  B  ->  ( E. k  k  e.  I  ->  R  e.  _V ) )
104, 9biimtrid 152 . . . 4  |-  ( I 
C_  B  ->  ( E. j  j  e.  I  ->  R  e.  _V ) )
1110imp 124 . . 3  |-  ( ( I  C_  B  /\  E. j  j  e.  I
)  ->  R  e.  _V )
12113adant3 1019 . 2  |-  ( ( I  C_  B  /\  E. j  j  e.  I  /\  A. x  e.  B  A. a  e.  I  A. b  e.  I 
( ( x  .x.  a )  .+  b
)  e.  I )  ->  R  e.  _V )
13 eqid 2193 . . . 4  |-  (Scalar `  (ringLMod `  R ) )  =  (Scalar `  (ringLMod `  R ) )
14 eqid 2193 . . . 4  |-  ( Base `  (Scalar `  (ringLMod `  R
) ) )  =  ( Base `  (Scalar `  (ringLMod `  R )
) )
15 eqid 2193 . . . 4  |-  ( Base `  (ringLMod `  R )
)  =  ( Base `  (ringLMod `  R )
)
16 eqid 2193 . . . 4  |-  ( +g  `  (ringLMod `  R )
)  =  ( +g  `  (ringLMod `  R )
)
17 eqid 2193 . . . 4  |-  ( .s
`  (ringLMod `  R )
)  =  ( .s
`  (ringLMod `  R )
)
18 eqid 2193 . . . 4  |-  ( LSubSp `  (ringLMod `  R )
)  =  ( LSubSp `  (ringLMod `  R )
)
1913, 14, 15, 16, 17, 18islssm 13853 . . 3  |-  ( I  e.  ( LSubSp `  (ringLMod `  R ) )  <->  ( I  C_  ( Base `  (ringLMod `  R ) )  /\  E. j  j  e.  I  /\  A. x  e.  (
Base `  (Scalar `  (ringLMod `  R ) ) ) A. a  e.  I  A. b  e.  I 
( ( x ( .s `  (ringLMod `  R
) ) a ) ( +g  `  (ringLMod `  R ) ) b )  e.  I ) )
20 lidlvalg 13967 . . . . . 6  |-  ( R  e.  _V  ->  (LIdeal `  R )  =  (
LSubSp `  (ringLMod `  R
) ) )
211, 20eqtrid 2238 . . . . 5  |-  ( R  e.  _V  ->  U  =  ( LSubSp `  (ringLMod `  R ) ) )
2221eleq2d 2263 . . . 4  |-  ( R  e.  _V  ->  (
I  e.  U  <->  I  e.  ( LSubSp `  (ringLMod `  R
) ) ) )
23 rlmbasg 13951 . . . . . . 7  |-  ( R  e.  _V  ->  ( Base `  R )  =  ( Base `  (ringLMod `  R ) ) )
246, 23eqtrid 2238 . . . . . 6  |-  ( R  e.  _V  ->  B  =  ( Base `  (ringLMod `  R ) ) )
2524sseq2d 3209 . . . . 5  |-  ( R  e.  _V  ->  (
I  C_  B  <->  I  C_  ( Base `  (ringLMod `  R
) ) ) )
26 rlmscabas 13956 . . . . . . 7  |-  ( R  e.  _V  ->  ( Base `  R )  =  ( Base `  (Scalar `  (ringLMod `  R )
) ) )
276, 26eqtrid 2238 . . . . . 6  |-  ( R  e.  _V  ->  B  =  ( Base `  (Scalar `  (ringLMod `  R )
) ) )
28 islidl.p . . . . . . . . . 10  |-  .+  =  ( +g  `  R )
29 rlmplusgg 13952 . . . . . . . . . 10  |-  ( R  e.  _V  ->  ( +g  `  R )  =  ( +g  `  (ringLMod `  R ) ) )
3028, 29eqtrid 2238 . . . . . . . . 9  |-  ( R  e.  _V  ->  .+  =  ( +g  `  (ringLMod `  R
) ) )
31 islidl.t . . . . . . . . . . 11  |-  .x.  =  ( .r `  R )
32 rlmvscag 13957 . . . . . . . . . . 11  |-  ( R  e.  _V  ->  ( .r `  R )  =  ( .s `  (ringLMod `  R ) ) )
3331, 32eqtrid 2238 . . . . . . . . . 10  |-  ( R  e.  _V  ->  .x.  =  ( .s `  (ringLMod `  R
) ) )
3433oveqd 5935 . . . . . . . . 9  |-  ( R  e.  _V  ->  (
x  .x.  a )  =  ( x ( .s `  (ringLMod `  R
) ) a ) )
35 eqidd 2194 . . . . . . . . 9  |-  ( R  e.  _V  ->  b  =  b )
3630, 34, 35oveq123d 5939 . . . . . . . 8  |-  ( R  e.  _V  ->  (
( x  .x.  a
)  .+  b )  =  ( ( x ( .s `  (ringLMod `  R ) ) a ) ( +g  `  (ringLMod `  R ) ) b ) )
3736eleq1d 2262 . . . . . . 7  |-  ( R  e.  _V  ->  (
( ( x  .x.  a )  .+  b
)  e.  I  <->  ( (
x ( .s `  (ringLMod `  R ) ) a ) ( +g  `  (ringLMod `  R )
) b )  e.  I ) )
38372ralbidv 2518 . . . . . 6  |-  ( R  e.  _V  ->  ( A. a  e.  I  A. b  e.  I 
( ( x  .x.  a )  .+  b
)  e.  I  <->  A. a  e.  I  A. b  e.  I  ( (
x ( .s `  (ringLMod `  R ) ) a ) ( +g  `  (ringLMod `  R )
) b )  e.  I ) )
3927, 38raleqbidv 2706 . . . . 5  |-  ( R  e.  _V  ->  ( A. x  e.  B  A. a  e.  I  A. b  e.  I 
( ( x  .x.  a )  .+  b
)  e.  I  <->  A. x  e.  ( Base `  (Scalar `  (ringLMod `  R )
) ) A. a  e.  I  A. b  e.  I  ( (
x ( .s `  (ringLMod `  R ) ) a ) ( +g  `  (ringLMod `  R )
) b )  e.  I ) )
4025, 393anbi13d 1325 . . . 4  |-  ( R  e.  _V  ->  (
( I  C_  B  /\  E. j  j  e.  I  /\  A. x  e.  B  A. a  e.  I  A. b  e.  I  ( (
x  .x.  a )  .+  b )  e.  I
)  <->  ( I  C_  ( Base `  (ringLMod `  R
) )  /\  E. j  j  e.  I  /\  A. x  e.  (
Base `  (Scalar `  (ringLMod `  R ) ) ) A. a  e.  I  A. b  e.  I 
( ( x ( .s `  (ringLMod `  R
) ) a ) ( +g  `  (ringLMod `  R ) ) b )  e.  I ) ) )
4122, 40bibi12d 235 . . 3  |-  ( R  e.  _V  ->  (
( I  e.  U  <->  ( I  C_  B  /\  E. j  j  e.  I  /\  A. x  e.  B  A. a  e.  I  A. b  e.  I 
( ( x  .x.  a )  .+  b
)  e.  I ) )  <->  ( I  e.  ( LSubSp `  (ringLMod `  R
) )  <->  ( I  C_  ( Base `  (ringLMod `  R ) )  /\  E. j  j  e.  I  /\  A. x  e.  (
Base `  (Scalar `  (ringLMod `  R ) ) ) A. a  e.  I  A. b  e.  I 
( ( x ( .s `  (ringLMod `  R
) ) a ) ( +g  `  (ringLMod `  R ) ) b )  e.  I ) ) ) )
4219, 41mpbiri 168 . 2  |-  ( R  e.  _V  ->  (
I  e.  U  <->  ( I  C_  B  /\  E. j 
j  e.  I  /\  A. x  e.  B  A. a  e.  I  A. b  e.  I  (
( x  .x.  a
)  .+  b )  e.  I ) ) )
432, 12, 42pm5.21nii 705 1  |-  ( I  e.  U  <->  ( I  C_  B  /\  E. j 
j  e.  I  /\  A. x  e.  B  A. a  e.  I  A. b  e.  I  (
( x  .x.  a
)  .+  b )  e.  I ) )
Colors of variables: wff set class
Syntax hints:    <-> wb 105    /\ w3a 980    = wceq 1364   E.wex 1503    e. wcel 2164   A.wral 2472   _Vcvv 2760    C_ wss 3153   ` cfv 5254  (class class class)co 5918   Basecbs 12618   +g cplusg 12695   .rcmulr 12696  Scalarcsca 12698   .scvsca 12699   LSubSpclss 13848  ringLModcrglmod 13930  LIdealclidl 13963
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-coll 4144  ax-sep 4147  ax-pow 4203  ax-pr 4238  ax-un 4464  ax-setind 4569  ax-cnex 7963  ax-resscn 7964  ax-1cn 7965  ax-1re 7966  ax-icn 7967  ax-addcl 7968  ax-addrcl 7969  ax-mulcl 7970  ax-addcom 7972  ax-addass 7974  ax-i2m1 7977  ax-0lt1 7978  ax-0id 7980  ax-rnegex 7981  ax-pre-ltirr 7984  ax-pre-lttrn 7986  ax-pre-ltadd 7988
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-nel 2460  df-ral 2477  df-rex 2478  df-reu 2479  df-rab 2481  df-v 2762  df-sbc 2986  df-csb 3081  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3447  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-int 3871  df-iun 3914  df-br 4030  df-opab 4091  df-mpt 4092  df-id 4324  df-xp 4665  df-rel 4666  df-cnv 4667  df-co 4668  df-dm 4669  df-rn 4670  df-res 4671  df-ima 4672  df-iota 5215  df-fun 5256  df-fn 5257  df-f 5258  df-f1 5259  df-fo 5260  df-f1o 5261  df-fv 5262  df-ov 5921  df-oprab 5922  df-mpo 5923  df-pnf 8056  df-mnf 8057  df-ltxr 8059  df-inn 8983  df-2 9041  df-3 9042  df-4 9043  df-5 9044  df-6 9045  df-7 9046  df-8 9047  df-ndx 12621  df-slot 12622  df-base 12624  df-sets 12625  df-iress 12626  df-plusg 12708  df-mulr 12709  df-sca 12711  df-vsca 12712  df-ip 12713  df-lssm 13849  df-sra 13931  df-rgmod 13932  df-lidl 13965
This theorem is referenced by:  rnglidlmcl  13976  dflidl2rng  13977
  Copyright terms: Public domain W3C validator