| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > islidlm | Unicode version | ||
| Description: Predicate of being a (left) ideal. (Contributed by Stefan O'Rear, 1-Apr-2015.) |
| Ref | Expression |
|---|---|
| islidl.s |
|
| islidl.b |
|
| islidl.p |
|
| islidl.t |
|
| Ref | Expression |
|---|---|
| islidlm |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | islidl.s |
. . 3
| |
| 2 | 1 | lidlmex 14312 |
. 2
|
| 3 | eleq1w 2267 |
. . . . . 6
| |
| 4 | 3 | cbvexv 1943 |
. . . . 5
|
| 5 | ssel 3191 |
. . . . . . 7
| |
| 6 | islidl.b |
. . . . . . . 8
| |
| 7 | 6 | basmex 12966 |
. . . . . . 7
|
| 8 | 5, 7 | syl6 33 |
. . . . . 6
|
| 9 | 8 | exlimdv 1843 |
. . . . 5
|
| 10 | 4, 9 | biimtrid 152 |
. . . 4
|
| 11 | 10 | imp 124 |
. . 3
|
| 12 | 11 | 3adant3 1020 |
. 2
|
| 13 | eqid 2206 |
. . . 4
| |
| 14 | eqid 2206 |
. . . 4
| |
| 15 | eqid 2206 |
. . . 4
| |
| 16 | eqid 2206 |
. . . 4
| |
| 17 | eqid 2206 |
. . . 4
| |
| 18 | eqid 2206 |
. . . 4
| |
| 19 | 13, 14, 15, 16, 17, 18 | islssm 14194 |
. . 3
|
| 20 | lidlvalg 14308 |
. . . . . 6
| |
| 21 | 1, 20 | eqtrid 2251 |
. . . . 5
|
| 22 | 21 | eleq2d 2276 |
. . . 4
|
| 23 | rlmbasg 14292 |
. . . . . . 7
| |
| 24 | 6, 23 | eqtrid 2251 |
. . . . . 6
|
| 25 | 24 | sseq2d 3227 |
. . . . 5
|
| 26 | rlmscabas 14297 |
. . . . . . 7
| |
| 27 | 6, 26 | eqtrid 2251 |
. . . . . 6
|
| 28 | islidl.p |
. . . . . . . . . 10
| |
| 29 | rlmplusgg 14293 |
. . . . . . . . . 10
| |
| 30 | 28, 29 | eqtrid 2251 |
. . . . . . . . 9
|
| 31 | islidl.t |
. . . . . . . . . . 11
| |
| 32 | rlmvscag 14298 |
. . . . . . . . . . 11
| |
| 33 | 31, 32 | eqtrid 2251 |
. . . . . . . . . 10
|
| 34 | 33 | oveqd 5974 |
. . . . . . . . 9
|
| 35 | eqidd 2207 |
. . . . . . . . 9
| |
| 36 | 30, 34, 35 | oveq123d 5978 |
. . . . . . . 8
|
| 37 | 36 | eleq1d 2275 |
. . . . . . 7
|
| 38 | 37 | 2ralbidv 2531 |
. . . . . 6
|
| 39 | 27, 38 | raleqbidv 2719 |
. . . . 5
|
| 40 | 25, 39 | 3anbi13d 1327 |
. . . 4
|
| 41 | 22, 40 | bibi12d 235 |
. . 3
|
| 42 | 19, 41 | mpbiri 168 |
. 2
|
| 43 | 2, 12, 42 | pm5.21nii 706 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2179 ax-14 2180 ax-ext 2188 ax-coll 4167 ax-sep 4170 ax-pow 4226 ax-pr 4261 ax-un 4488 ax-setind 4593 ax-cnex 8036 ax-resscn 8037 ax-1cn 8038 ax-1re 8039 ax-icn 8040 ax-addcl 8041 ax-addrcl 8042 ax-mulcl 8043 ax-addcom 8045 ax-addass 8047 ax-i2m1 8050 ax-0lt1 8051 ax-0id 8053 ax-rnegex 8054 ax-pre-ltirr 8057 ax-pre-lttrn 8059 ax-pre-ltadd 8061 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ne 2378 df-nel 2473 df-ral 2490 df-rex 2491 df-reu 2492 df-rab 2494 df-v 2775 df-sbc 3003 df-csb 3098 df-dif 3172 df-un 3174 df-in 3176 df-ss 3183 df-nul 3465 df-pw 3623 df-sn 3644 df-pr 3645 df-op 3647 df-uni 3857 df-int 3892 df-iun 3935 df-br 4052 df-opab 4114 df-mpt 4115 df-id 4348 df-xp 4689 df-rel 4690 df-cnv 4691 df-co 4692 df-dm 4693 df-rn 4694 df-res 4695 df-ima 4696 df-iota 5241 df-fun 5282 df-fn 5283 df-f 5284 df-f1 5285 df-fo 5286 df-f1o 5287 df-fv 5288 df-ov 5960 df-oprab 5961 df-mpo 5962 df-pnf 8129 df-mnf 8130 df-ltxr 8132 df-inn 9057 df-2 9115 df-3 9116 df-4 9117 df-5 9118 df-6 9119 df-7 9120 df-8 9121 df-ndx 12910 df-slot 12911 df-base 12913 df-sets 12914 df-iress 12915 df-plusg 12997 df-mulr 12998 df-sca 13000 df-vsca 13001 df-ip 13002 df-lssm 14190 df-sra 14272 df-rgmod 14273 df-lidl 14306 |
| This theorem is referenced by: rnglidlmcl 14317 dflidl2rng 14318 |
| Copyright terms: Public domain | W3C validator |