ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  islidlm Unicode version

Theorem islidlm 14316
Description: Predicate of being a (left) ideal. (Contributed by Stefan O'Rear, 1-Apr-2015.)
Hypotheses
Ref Expression
islidl.s  |-  U  =  (LIdeal `  R )
islidl.b  |-  B  =  ( Base `  R
)
islidl.p  |-  .+  =  ( +g  `  R )
islidl.t  |-  .x.  =  ( .r `  R )
Assertion
Ref Expression
islidlm  |-  ( I  e.  U  <->  ( I  C_  B  /\  E. j 
j  e.  I  /\  A. x  e.  B  A. a  e.  I  A. b  e.  I  (
( x  .x.  a
)  .+  b )  e.  I ) )
Distinct variable groups:    x, B    I,
a, b, j, x    R, a, b, x
Allowed substitution hints:    B( j, a, b)    .+ ( x, j, a, b)    R( j)    .x. ( x, j, a, b)    U( x, j, a, b)

Proof of Theorem islidlm
Dummy variable  k is distinct from all other variables.
StepHypRef Expression
1 islidl.s . . 3  |-  U  =  (LIdeal `  R )
21lidlmex 14312 . 2  |-  ( I  e.  U  ->  R  e.  _V )
3 eleq1w 2267 . . . . . 6  |-  ( j  =  k  ->  (
j  e.  I  <->  k  e.  I ) )
43cbvexv 1943 . . . . 5  |-  ( E. j  j  e.  I  <->  E. k  k  e.  I
)
5 ssel 3191 . . . . . . 7  |-  ( I 
C_  B  ->  (
k  e.  I  -> 
k  e.  B ) )
6 islidl.b . . . . . . . 8  |-  B  =  ( Base `  R
)
76basmex 12966 . . . . . . 7  |-  ( k  e.  B  ->  R  e.  _V )
85, 7syl6 33 . . . . . 6  |-  ( I 
C_  B  ->  (
k  e.  I  ->  R  e.  _V )
)
98exlimdv 1843 . . . . 5  |-  ( I 
C_  B  ->  ( E. k  k  e.  I  ->  R  e.  _V ) )
104, 9biimtrid 152 . . . 4  |-  ( I 
C_  B  ->  ( E. j  j  e.  I  ->  R  e.  _V ) )
1110imp 124 . . 3  |-  ( ( I  C_  B  /\  E. j  j  e.  I
)  ->  R  e.  _V )
12113adant3 1020 . 2  |-  ( ( I  C_  B  /\  E. j  j  e.  I  /\  A. x  e.  B  A. a  e.  I  A. b  e.  I 
( ( x  .x.  a )  .+  b
)  e.  I )  ->  R  e.  _V )
13 eqid 2206 . . . 4  |-  (Scalar `  (ringLMod `  R ) )  =  (Scalar `  (ringLMod `  R ) )
14 eqid 2206 . . . 4  |-  ( Base `  (Scalar `  (ringLMod `  R
) ) )  =  ( Base `  (Scalar `  (ringLMod `  R )
) )
15 eqid 2206 . . . 4  |-  ( Base `  (ringLMod `  R )
)  =  ( Base `  (ringLMod `  R )
)
16 eqid 2206 . . . 4  |-  ( +g  `  (ringLMod `  R )
)  =  ( +g  `  (ringLMod `  R )
)
17 eqid 2206 . . . 4  |-  ( .s
`  (ringLMod `  R )
)  =  ( .s
`  (ringLMod `  R )
)
18 eqid 2206 . . . 4  |-  ( LSubSp `  (ringLMod `  R )
)  =  ( LSubSp `  (ringLMod `  R )
)
1913, 14, 15, 16, 17, 18islssm 14194 . . 3  |-  ( I  e.  ( LSubSp `  (ringLMod `  R ) )  <->  ( I  C_  ( Base `  (ringLMod `  R ) )  /\  E. j  j  e.  I  /\  A. x  e.  (
Base `  (Scalar `  (ringLMod `  R ) ) ) A. a  e.  I  A. b  e.  I 
( ( x ( .s `  (ringLMod `  R
) ) a ) ( +g  `  (ringLMod `  R ) ) b )  e.  I ) )
20 lidlvalg 14308 . . . . . 6  |-  ( R  e.  _V  ->  (LIdeal `  R )  =  (
LSubSp `  (ringLMod `  R
) ) )
211, 20eqtrid 2251 . . . . 5  |-  ( R  e.  _V  ->  U  =  ( LSubSp `  (ringLMod `  R ) ) )
2221eleq2d 2276 . . . 4  |-  ( R  e.  _V  ->  (
I  e.  U  <->  I  e.  ( LSubSp `  (ringLMod `  R
) ) ) )
23 rlmbasg 14292 . . . . . . 7  |-  ( R  e.  _V  ->  ( Base `  R )  =  ( Base `  (ringLMod `  R ) ) )
246, 23eqtrid 2251 . . . . . 6  |-  ( R  e.  _V  ->  B  =  ( Base `  (ringLMod `  R ) ) )
2524sseq2d 3227 . . . . 5  |-  ( R  e.  _V  ->  (
I  C_  B  <->  I  C_  ( Base `  (ringLMod `  R
) ) ) )
26 rlmscabas 14297 . . . . . . 7  |-  ( R  e.  _V  ->  ( Base `  R )  =  ( Base `  (Scalar `  (ringLMod `  R )
) ) )
276, 26eqtrid 2251 . . . . . 6  |-  ( R  e.  _V  ->  B  =  ( Base `  (Scalar `  (ringLMod `  R )
) ) )
28 islidl.p . . . . . . . . . 10  |-  .+  =  ( +g  `  R )
29 rlmplusgg 14293 . . . . . . . . . 10  |-  ( R  e.  _V  ->  ( +g  `  R )  =  ( +g  `  (ringLMod `  R ) ) )
3028, 29eqtrid 2251 . . . . . . . . 9  |-  ( R  e.  _V  ->  .+  =  ( +g  `  (ringLMod `  R
) ) )
31 islidl.t . . . . . . . . . . 11  |-  .x.  =  ( .r `  R )
32 rlmvscag 14298 . . . . . . . . . . 11  |-  ( R  e.  _V  ->  ( .r `  R )  =  ( .s `  (ringLMod `  R ) ) )
3331, 32eqtrid 2251 . . . . . . . . . 10  |-  ( R  e.  _V  ->  .x.  =  ( .s `  (ringLMod `  R
) ) )
3433oveqd 5974 . . . . . . . . 9  |-  ( R  e.  _V  ->  (
x  .x.  a )  =  ( x ( .s `  (ringLMod `  R
) ) a ) )
35 eqidd 2207 . . . . . . . . 9  |-  ( R  e.  _V  ->  b  =  b )
3630, 34, 35oveq123d 5978 . . . . . . . 8  |-  ( R  e.  _V  ->  (
( x  .x.  a
)  .+  b )  =  ( ( x ( .s `  (ringLMod `  R ) ) a ) ( +g  `  (ringLMod `  R ) ) b ) )
3736eleq1d 2275 . . . . . . 7  |-  ( R  e.  _V  ->  (
( ( x  .x.  a )  .+  b
)  e.  I  <->  ( (
x ( .s `  (ringLMod `  R ) ) a ) ( +g  `  (ringLMod `  R )
) b )  e.  I ) )
38372ralbidv 2531 . . . . . 6  |-  ( R  e.  _V  ->  ( A. a  e.  I  A. b  e.  I 
( ( x  .x.  a )  .+  b
)  e.  I  <->  A. a  e.  I  A. b  e.  I  ( (
x ( .s `  (ringLMod `  R ) ) a ) ( +g  `  (ringLMod `  R )
) b )  e.  I ) )
3927, 38raleqbidv 2719 . . . . 5  |-  ( R  e.  _V  ->  ( A. x  e.  B  A. a  e.  I  A. b  e.  I 
( ( x  .x.  a )  .+  b
)  e.  I  <->  A. x  e.  ( Base `  (Scalar `  (ringLMod `  R )
) ) A. a  e.  I  A. b  e.  I  ( (
x ( .s `  (ringLMod `  R ) ) a ) ( +g  `  (ringLMod `  R )
) b )  e.  I ) )
4025, 393anbi13d 1327 . . . 4  |-  ( R  e.  _V  ->  (
( I  C_  B  /\  E. j  j  e.  I  /\  A. x  e.  B  A. a  e.  I  A. b  e.  I  ( (
x  .x.  a )  .+  b )  e.  I
)  <->  ( I  C_  ( Base `  (ringLMod `  R
) )  /\  E. j  j  e.  I  /\  A. x  e.  (
Base `  (Scalar `  (ringLMod `  R ) ) ) A. a  e.  I  A. b  e.  I 
( ( x ( .s `  (ringLMod `  R
) ) a ) ( +g  `  (ringLMod `  R ) ) b )  e.  I ) ) )
4122, 40bibi12d 235 . . 3  |-  ( R  e.  _V  ->  (
( I  e.  U  <->  ( I  C_  B  /\  E. j  j  e.  I  /\  A. x  e.  B  A. a  e.  I  A. b  e.  I 
( ( x  .x.  a )  .+  b
)  e.  I ) )  <->  ( I  e.  ( LSubSp `  (ringLMod `  R
) )  <->  ( I  C_  ( Base `  (ringLMod `  R ) )  /\  E. j  j  e.  I  /\  A. x  e.  (
Base `  (Scalar `  (ringLMod `  R ) ) ) A. a  e.  I  A. b  e.  I 
( ( x ( .s `  (ringLMod `  R
) ) a ) ( +g  `  (ringLMod `  R ) ) b )  e.  I ) ) ) )
4219, 41mpbiri 168 . 2  |-  ( R  e.  _V  ->  (
I  e.  U  <->  ( I  C_  B  /\  E. j 
j  e.  I  /\  A. x  e.  B  A. a  e.  I  A. b  e.  I  (
( x  .x.  a
)  .+  b )  e.  I ) ) )
432, 12, 42pm5.21nii 706 1  |-  ( I  e.  U  <->  ( I  C_  B  /\  E. j 
j  e.  I  /\  A. x  e.  B  A. a  e.  I  A. b  e.  I  (
( x  .x.  a
)  .+  b )  e.  I ) )
Colors of variables: wff set class
Syntax hints:    <-> wb 105    /\ w3a 981    = wceq 1373   E.wex 1516    e. wcel 2177   A.wral 2485   _Vcvv 2773    C_ wss 3170   ` cfv 5280  (class class class)co 5957   Basecbs 12907   +g cplusg 12984   .rcmulr 12985  Scalarcsca 12987   .scvsca 12988   LSubSpclss 14189  ringLModcrglmod 14271  LIdealclidl 14304
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2179  ax-14 2180  ax-ext 2188  ax-coll 4167  ax-sep 4170  ax-pow 4226  ax-pr 4261  ax-un 4488  ax-setind 4593  ax-cnex 8036  ax-resscn 8037  ax-1cn 8038  ax-1re 8039  ax-icn 8040  ax-addcl 8041  ax-addrcl 8042  ax-mulcl 8043  ax-addcom 8045  ax-addass 8047  ax-i2m1 8050  ax-0lt1 8051  ax-0id 8053  ax-rnegex 8054  ax-pre-ltirr 8057  ax-pre-lttrn 8059  ax-pre-ltadd 8061
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ne 2378  df-nel 2473  df-ral 2490  df-rex 2491  df-reu 2492  df-rab 2494  df-v 2775  df-sbc 3003  df-csb 3098  df-dif 3172  df-un 3174  df-in 3176  df-ss 3183  df-nul 3465  df-pw 3623  df-sn 3644  df-pr 3645  df-op 3647  df-uni 3857  df-int 3892  df-iun 3935  df-br 4052  df-opab 4114  df-mpt 4115  df-id 4348  df-xp 4689  df-rel 4690  df-cnv 4691  df-co 4692  df-dm 4693  df-rn 4694  df-res 4695  df-ima 4696  df-iota 5241  df-fun 5282  df-fn 5283  df-f 5284  df-f1 5285  df-fo 5286  df-f1o 5287  df-fv 5288  df-ov 5960  df-oprab 5961  df-mpo 5962  df-pnf 8129  df-mnf 8130  df-ltxr 8132  df-inn 9057  df-2 9115  df-3 9116  df-4 9117  df-5 9118  df-6 9119  df-7 9120  df-8 9121  df-ndx 12910  df-slot 12911  df-base 12913  df-sets 12914  df-iress 12915  df-plusg 12997  df-mulr 12998  df-sca 13000  df-vsca 13001  df-ip 13002  df-lssm 14190  df-sra 14272  df-rgmod 14273  df-lidl 14306
This theorem is referenced by:  rnglidlmcl  14317  dflidl2rng  14318
  Copyright terms: Public domain W3C validator