ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  islidlm Unicode version

Theorem islidlm 14183
Description: Predicate of being a (left) ideal. (Contributed by Stefan O'Rear, 1-Apr-2015.)
Hypotheses
Ref Expression
islidl.s  |-  U  =  (LIdeal `  R )
islidl.b  |-  B  =  ( Base `  R
)
islidl.p  |-  .+  =  ( +g  `  R )
islidl.t  |-  .x.  =  ( .r `  R )
Assertion
Ref Expression
islidlm  |-  ( I  e.  U  <->  ( I  C_  B  /\  E. j 
j  e.  I  /\  A. x  e.  B  A. a  e.  I  A. b  e.  I  (
( x  .x.  a
)  .+  b )  e.  I ) )
Distinct variable groups:    x, B    I,
a, b, j, x    R, a, b, x
Allowed substitution hints:    B( j, a, b)    .+ ( x, j, a, b)    R( j)    .x. ( x, j, a, b)    U( x, j, a, b)

Proof of Theorem islidlm
Dummy variable  k is distinct from all other variables.
StepHypRef Expression
1 islidl.s . . 3  |-  U  =  (LIdeal `  R )
21lidlmex 14179 . 2  |-  ( I  e.  U  ->  R  e.  _V )
3 eleq1w 2265 . . . . . 6  |-  ( j  =  k  ->  (
j  e.  I  <->  k  e.  I ) )
43cbvexv 1941 . . . . 5  |-  ( E. j  j  e.  I  <->  E. k  k  e.  I
)
5 ssel 3186 . . . . . . 7  |-  ( I 
C_  B  ->  (
k  e.  I  -> 
k  e.  B ) )
6 islidl.b . . . . . . . 8  |-  B  =  ( Base `  R
)
76basmex 12833 . . . . . . 7  |-  ( k  e.  B  ->  R  e.  _V )
85, 7syl6 33 . . . . . 6  |-  ( I 
C_  B  ->  (
k  e.  I  ->  R  e.  _V )
)
98exlimdv 1841 . . . . 5  |-  ( I 
C_  B  ->  ( E. k  k  e.  I  ->  R  e.  _V ) )
104, 9biimtrid 152 . . . 4  |-  ( I 
C_  B  ->  ( E. j  j  e.  I  ->  R  e.  _V ) )
1110imp 124 . . 3  |-  ( ( I  C_  B  /\  E. j  j  e.  I
)  ->  R  e.  _V )
12113adant3 1019 . 2  |-  ( ( I  C_  B  /\  E. j  j  e.  I  /\  A. x  e.  B  A. a  e.  I  A. b  e.  I 
( ( x  .x.  a )  .+  b
)  e.  I )  ->  R  e.  _V )
13 eqid 2204 . . . 4  |-  (Scalar `  (ringLMod `  R ) )  =  (Scalar `  (ringLMod `  R ) )
14 eqid 2204 . . . 4  |-  ( Base `  (Scalar `  (ringLMod `  R
) ) )  =  ( Base `  (Scalar `  (ringLMod `  R )
) )
15 eqid 2204 . . . 4  |-  ( Base `  (ringLMod `  R )
)  =  ( Base `  (ringLMod `  R )
)
16 eqid 2204 . . . 4  |-  ( +g  `  (ringLMod `  R )
)  =  ( +g  `  (ringLMod `  R )
)
17 eqid 2204 . . . 4  |-  ( .s
`  (ringLMod `  R )
)  =  ( .s
`  (ringLMod `  R )
)
18 eqid 2204 . . . 4  |-  ( LSubSp `  (ringLMod `  R )
)  =  ( LSubSp `  (ringLMod `  R )
)
1913, 14, 15, 16, 17, 18islssm 14061 . . 3  |-  ( I  e.  ( LSubSp `  (ringLMod `  R ) )  <->  ( I  C_  ( Base `  (ringLMod `  R ) )  /\  E. j  j  e.  I  /\  A. x  e.  (
Base `  (Scalar `  (ringLMod `  R ) ) ) A. a  e.  I  A. b  e.  I 
( ( x ( .s `  (ringLMod `  R
) ) a ) ( +g  `  (ringLMod `  R ) ) b )  e.  I ) )
20 lidlvalg 14175 . . . . . 6  |-  ( R  e.  _V  ->  (LIdeal `  R )  =  (
LSubSp `  (ringLMod `  R
) ) )
211, 20eqtrid 2249 . . . . 5  |-  ( R  e.  _V  ->  U  =  ( LSubSp `  (ringLMod `  R ) ) )
2221eleq2d 2274 . . . 4  |-  ( R  e.  _V  ->  (
I  e.  U  <->  I  e.  ( LSubSp `  (ringLMod `  R
) ) ) )
23 rlmbasg 14159 . . . . . . 7  |-  ( R  e.  _V  ->  ( Base `  R )  =  ( Base `  (ringLMod `  R ) ) )
246, 23eqtrid 2249 . . . . . 6  |-  ( R  e.  _V  ->  B  =  ( Base `  (ringLMod `  R ) ) )
2524sseq2d 3222 . . . . 5  |-  ( R  e.  _V  ->  (
I  C_  B  <->  I  C_  ( Base `  (ringLMod `  R
) ) ) )
26 rlmscabas 14164 . . . . . . 7  |-  ( R  e.  _V  ->  ( Base `  R )  =  ( Base `  (Scalar `  (ringLMod `  R )
) ) )
276, 26eqtrid 2249 . . . . . 6  |-  ( R  e.  _V  ->  B  =  ( Base `  (Scalar `  (ringLMod `  R )
) ) )
28 islidl.p . . . . . . . . . 10  |-  .+  =  ( +g  `  R )
29 rlmplusgg 14160 . . . . . . . . . 10  |-  ( R  e.  _V  ->  ( +g  `  R )  =  ( +g  `  (ringLMod `  R ) ) )
3028, 29eqtrid 2249 . . . . . . . . 9  |-  ( R  e.  _V  ->  .+  =  ( +g  `  (ringLMod `  R
) ) )
31 islidl.t . . . . . . . . . . 11  |-  .x.  =  ( .r `  R )
32 rlmvscag 14165 . . . . . . . . . . 11  |-  ( R  e.  _V  ->  ( .r `  R )  =  ( .s `  (ringLMod `  R ) ) )
3331, 32eqtrid 2249 . . . . . . . . . 10  |-  ( R  e.  _V  ->  .x.  =  ( .s `  (ringLMod `  R
) ) )
3433oveqd 5960 . . . . . . . . 9  |-  ( R  e.  _V  ->  (
x  .x.  a )  =  ( x ( .s `  (ringLMod `  R
) ) a ) )
35 eqidd 2205 . . . . . . . . 9  |-  ( R  e.  _V  ->  b  =  b )
3630, 34, 35oveq123d 5964 . . . . . . . 8  |-  ( R  e.  _V  ->  (
( x  .x.  a
)  .+  b )  =  ( ( x ( .s `  (ringLMod `  R ) ) a ) ( +g  `  (ringLMod `  R ) ) b ) )
3736eleq1d 2273 . . . . . . 7  |-  ( R  e.  _V  ->  (
( ( x  .x.  a )  .+  b
)  e.  I  <->  ( (
x ( .s `  (ringLMod `  R ) ) a ) ( +g  `  (ringLMod `  R )
) b )  e.  I ) )
38372ralbidv 2529 . . . . . 6  |-  ( R  e.  _V  ->  ( A. a  e.  I  A. b  e.  I 
( ( x  .x.  a )  .+  b
)  e.  I  <->  A. a  e.  I  A. b  e.  I  ( (
x ( .s `  (ringLMod `  R ) ) a ) ( +g  `  (ringLMod `  R )
) b )  e.  I ) )
3927, 38raleqbidv 2717 . . . . 5  |-  ( R  e.  _V  ->  ( A. x  e.  B  A. a  e.  I  A. b  e.  I 
( ( x  .x.  a )  .+  b
)  e.  I  <->  A. x  e.  ( Base `  (Scalar `  (ringLMod `  R )
) ) A. a  e.  I  A. b  e.  I  ( (
x ( .s `  (ringLMod `  R ) ) a ) ( +g  `  (ringLMod `  R )
) b )  e.  I ) )
4025, 393anbi13d 1326 . . . 4  |-  ( R  e.  _V  ->  (
( I  C_  B  /\  E. j  j  e.  I  /\  A. x  e.  B  A. a  e.  I  A. b  e.  I  ( (
x  .x.  a )  .+  b )  e.  I
)  <->  ( I  C_  ( Base `  (ringLMod `  R
) )  /\  E. j  j  e.  I  /\  A. x  e.  (
Base `  (Scalar `  (ringLMod `  R ) ) ) A. a  e.  I  A. b  e.  I 
( ( x ( .s `  (ringLMod `  R
) ) a ) ( +g  `  (ringLMod `  R ) ) b )  e.  I ) ) )
4122, 40bibi12d 235 . . 3  |-  ( R  e.  _V  ->  (
( I  e.  U  <->  ( I  C_  B  /\  E. j  j  e.  I  /\  A. x  e.  B  A. a  e.  I  A. b  e.  I 
( ( x  .x.  a )  .+  b
)  e.  I ) )  <->  ( I  e.  ( LSubSp `  (ringLMod `  R
) )  <->  ( I  C_  ( Base `  (ringLMod `  R ) )  /\  E. j  j  e.  I  /\  A. x  e.  (
Base `  (Scalar `  (ringLMod `  R ) ) ) A. a  e.  I  A. b  e.  I 
( ( x ( .s `  (ringLMod `  R
) ) a ) ( +g  `  (ringLMod `  R ) ) b )  e.  I ) ) ) )
4219, 41mpbiri 168 . 2  |-  ( R  e.  _V  ->  (
I  e.  U  <->  ( I  C_  B  /\  E. j 
j  e.  I  /\  A. x  e.  B  A. a  e.  I  A. b  e.  I  (
( x  .x.  a
)  .+  b )  e.  I ) ) )
432, 12, 42pm5.21nii 705 1  |-  ( I  e.  U  <->  ( I  C_  B  /\  E. j 
j  e.  I  /\  A. x  e.  B  A. a  e.  I  A. b  e.  I  (
( x  .x.  a
)  .+  b )  e.  I ) )
Colors of variables: wff set class
Syntax hints:    <-> wb 105    /\ w3a 980    = wceq 1372   E.wex 1514    e. wcel 2175   A.wral 2483   _Vcvv 2771    C_ wss 3165   ` cfv 5270  (class class class)co 5943   Basecbs 12774   +g cplusg 12851   .rcmulr 12852  Scalarcsca 12854   .scvsca 12855   LSubSpclss 14056  ringLModcrglmod 14138  LIdealclidl 14171
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1469  ax-7 1470  ax-gen 1471  ax-ie1 1515  ax-ie2 1516  ax-8 1526  ax-10 1527  ax-11 1528  ax-i12 1529  ax-bndl 1531  ax-4 1532  ax-17 1548  ax-i9 1552  ax-ial 1556  ax-i5r 1557  ax-13 2177  ax-14 2178  ax-ext 2186  ax-coll 4158  ax-sep 4161  ax-pow 4217  ax-pr 4252  ax-un 4479  ax-setind 4584  ax-cnex 8015  ax-resscn 8016  ax-1cn 8017  ax-1re 8018  ax-icn 8019  ax-addcl 8020  ax-addrcl 8021  ax-mulcl 8022  ax-addcom 8024  ax-addass 8026  ax-i2m1 8029  ax-0lt1 8030  ax-0id 8032  ax-rnegex 8033  ax-pre-ltirr 8036  ax-pre-lttrn 8038  ax-pre-ltadd 8040
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1375  df-fal 1378  df-nf 1483  df-sb 1785  df-eu 2056  df-mo 2057  df-clab 2191  df-cleq 2197  df-clel 2200  df-nfc 2336  df-ne 2376  df-nel 2471  df-ral 2488  df-rex 2489  df-reu 2490  df-rab 2492  df-v 2773  df-sbc 2998  df-csb 3093  df-dif 3167  df-un 3169  df-in 3171  df-ss 3178  df-nul 3460  df-pw 3617  df-sn 3638  df-pr 3639  df-op 3641  df-uni 3850  df-int 3885  df-iun 3928  df-br 4044  df-opab 4105  df-mpt 4106  df-id 4339  df-xp 4680  df-rel 4681  df-cnv 4682  df-co 4683  df-dm 4684  df-rn 4685  df-res 4686  df-ima 4687  df-iota 5231  df-fun 5272  df-fn 5273  df-f 5274  df-f1 5275  df-fo 5276  df-f1o 5277  df-fv 5278  df-ov 5946  df-oprab 5947  df-mpo 5948  df-pnf 8108  df-mnf 8109  df-ltxr 8111  df-inn 9036  df-2 9094  df-3 9095  df-4 9096  df-5 9097  df-6 9098  df-7 9099  df-8 9100  df-ndx 12777  df-slot 12778  df-base 12780  df-sets 12781  df-iress 12782  df-plusg 12864  df-mulr 12865  df-sca 12867  df-vsca 12868  df-ip 12869  df-lssm 14057  df-sra 14139  df-rgmod 14140  df-lidl 14173
This theorem is referenced by:  rnglidlmcl  14184  dflidl2rng  14185
  Copyright terms: Public domain W3C validator