| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > crim | Unicode version | ||
| Description: The real part of a complex number representation. Definition 10-3.1 of [Gleason] p. 132. (Contributed by NM, 12-May-2005.) (Revised by Mario Carneiro, 7-Nov-2013.) |
| Ref | Expression |
|---|---|
| crim |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | recn 8093 |
. . . 4
| |
| 2 | ax-icn 8055 |
. . . . 5
| |
| 3 | recn 8093 |
. . . . 5
| |
| 4 | mulcl 8087 |
. . . . 5
| |
| 5 | 2, 3, 4 | sylancr 414 |
. . . 4
|
| 6 | addcl 8085 |
. . . 4
| |
| 7 | 1, 5, 6 | syl2an 289 |
. . 3
|
| 8 | imval 11276 |
. . 3
| |
| 9 | 7, 8 | syl 14 |
. 2
|
| 10 | 2, 4 | mpan 424 |
. . . . . 6
|
| 11 | iap0 9295 |
. . . . . . 7
| |
| 12 | divdirap 8805 |
. . . . . . . 8
| |
| 13 | 12 | 3expa 1206 |
. . . . . . 7
|
| 14 | 2, 11, 13 | mpanr12 439 |
. . . . . 6
|
| 15 | 10, 14 | sylan2 286 |
. . . . 5
|
| 16 | divrecap2 8797 |
. . . . . . . 8
| |
| 17 | 2, 11, 16 | mp3an23 1342 |
. . . . . . 7
|
| 18 | irec 10821 |
. . . . . . . . 9
| |
| 19 | 18 | oveq1i 5977 |
. . . . . . . 8
|
| 20 | 19 | a1i 9 |
. . . . . . 7
|
| 21 | mulneg12 8504 |
. . . . . . . 8
| |
| 22 | 2, 21 | mpan 424 |
. . . . . . 7
|
| 23 | 17, 20, 22 | 3eqtrd 2244 |
. . . . . 6
|
| 24 | divcanap3 8806 |
. . . . . . 7
| |
| 25 | 2, 11, 24 | mp3an23 1342 |
. . . . . 6
|
| 26 | 23, 25 | oveqan12d 5986 |
. . . . 5
|
| 27 | negcl 8307 |
. . . . . . 7
| |
| 28 | mulcl 8087 |
. . . . . . 7
| |
| 29 | 2, 27, 28 | sylancr 414 |
. . . . . 6
|
| 30 | addcom 8244 |
. . . . . 6
| |
| 31 | 29, 30 | sylan 283 |
. . . . 5
|
| 32 | 15, 26, 31 | 3eqtrrd 2245 |
. . . 4
|
| 33 | 1, 3, 32 | syl2an 289 |
. . 3
|
| 34 | 33 | fveq2d 5603 |
. 2
|
| 35 | id 19 |
. . 3
| |
| 36 | renegcl 8368 |
. . 3
| |
| 37 | crre 11283 |
. . 3
| |
| 38 | 35, 36, 37 | syl2anr 290 |
. 2
|
| 39 | 9, 34, 38 | 3eqtr2d 2246 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2180 ax-14 2181 ax-ext 2189 ax-sep 4178 ax-pow 4234 ax-pr 4269 ax-un 4498 ax-setind 4603 ax-cnex 8051 ax-resscn 8052 ax-1cn 8053 ax-1re 8054 ax-icn 8055 ax-addcl 8056 ax-addrcl 8057 ax-mulcl 8058 ax-mulrcl 8059 ax-addcom 8060 ax-mulcom 8061 ax-addass 8062 ax-mulass 8063 ax-distr 8064 ax-i2m1 8065 ax-0lt1 8066 ax-1rid 8067 ax-0id 8068 ax-rnegex 8069 ax-precex 8070 ax-cnre 8071 ax-pre-ltirr 8072 ax-pre-ltwlin 8073 ax-pre-lttrn 8074 ax-pre-apti 8075 ax-pre-ltadd 8076 ax-pre-mulgt0 8077 ax-pre-mulext 8078 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-ne 2379 df-nel 2474 df-ral 2491 df-rex 2492 df-reu 2493 df-rmo 2494 df-rab 2495 df-v 2778 df-sbc 3006 df-dif 3176 df-un 3178 df-in 3180 df-ss 3187 df-pw 3628 df-sn 3649 df-pr 3650 df-op 3652 df-uni 3865 df-br 4060 df-opab 4122 df-mpt 4123 df-id 4358 df-po 4361 df-iso 4362 df-xp 4699 df-rel 4700 df-cnv 4701 df-co 4702 df-dm 4703 df-rn 4704 df-res 4705 df-ima 4706 df-iota 5251 df-fun 5292 df-fn 5293 df-f 5294 df-fv 5298 df-riota 5922 df-ov 5970 df-oprab 5971 df-mpo 5972 df-pnf 8144 df-mnf 8145 df-xr 8146 df-ltxr 8147 df-le 8148 df-sub 8280 df-neg 8281 df-reap 8683 df-ap 8690 df-div 8781 df-2 9130 df-cj 11268 df-re 11269 df-im 11270 |
| This theorem is referenced by: replim 11285 reim0 11287 remullem 11297 imcj 11301 imneg 11302 imadd 11303 imi 11326 crimi 11363 crimd 11403 absreimsq 11493 4sqlem4 12830 2sqlem2 15707 |
| Copyright terms: Public domain | W3C validator |