ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  crim Unicode version

Theorem crim 11040
Description: The real part of a complex number representation. Definition 10-3.1 of [Gleason] p. 132. (Contributed by NM, 12-May-2005.) (Revised by Mario Carneiro, 7-Nov-2013.)
Assertion
Ref Expression
crim  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( Im `  ( A  +  ( _i  x.  B ) ) )  =  B )

Proof of Theorem crim
StepHypRef Expression
1 recn 8029 . . . 4  |-  ( A  e.  RR  ->  A  e.  CC )
2 ax-icn 7991 . . . . 5  |-  _i  e.  CC
3 recn 8029 . . . . 5  |-  ( B  e.  RR  ->  B  e.  CC )
4 mulcl 8023 . . . . 5  |-  ( ( _i  e.  CC  /\  B  e.  CC )  ->  ( _i  x.  B
)  e.  CC )
52, 3, 4sylancr 414 . . . 4  |-  ( B  e.  RR  ->  (
_i  x.  B )  e.  CC )
6 addcl 8021 . . . 4  |-  ( ( A  e.  CC  /\  ( _i  x.  B
)  e.  CC )  ->  ( A  +  ( _i  x.  B
) )  e.  CC )
71, 5, 6syl2an 289 . . 3  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( A  +  ( _i  x.  B ) )  e.  CC )
8 imval 11032 . . 3  |-  ( ( A  +  ( _i  x.  B ) )  e.  CC  ->  (
Im `  ( A  +  ( _i  x.  B ) ) )  =  ( Re `  ( ( A  +  ( _i  x.  B
) )  /  _i ) ) )
97, 8syl 14 . 2  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( Im `  ( A  +  ( _i  x.  B ) ) )  =  ( Re `  ( ( A  +  ( _i  x.  B
) )  /  _i ) ) )
102, 4mpan 424 . . . . . 6  |-  ( B  e.  CC  ->  (
_i  x.  B )  e.  CC )
11 iap0 9231 . . . . . . 7  |-  _i #  0
12 divdirap 8741 . . . . . . . 8  |-  ( ( A  e.  CC  /\  ( _i  x.  B
)  e.  CC  /\  ( _i  e.  CC  /\  _i #  0 ) )  ->  ( ( A  +  ( _i  x.  B ) )  /  _i )  =  (
( A  /  _i )  +  ( (
_i  x.  B )  /  _i ) ) )
13123expa 1205 . . . . . . 7  |-  ( ( ( A  e.  CC  /\  ( _i  x.  B
)  e.  CC )  /\  ( _i  e.  CC  /\  _i #  0 ) )  ->  ( ( A  +  ( _i  x.  B ) )  /  _i )  =  (
( A  /  _i )  +  ( (
_i  x.  B )  /  _i ) ) )
142, 11, 13mpanr12 439 . . . . . 6  |-  ( ( A  e.  CC  /\  ( _i  x.  B
)  e.  CC )  ->  ( ( A  +  ( _i  x.  B ) )  /  _i )  =  (
( A  /  _i )  +  ( (
_i  x.  B )  /  _i ) ) )
1510, 14sylan2 286 . . . . 5  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( A  +  ( _i  x.  B
) )  /  _i )  =  ( ( A  /  _i )  +  ( ( _i  x.  B )  /  _i ) ) )
16 divrecap2 8733 . . . . . . . 8  |-  ( ( A  e.  CC  /\  _i  e.  CC  /\  _i #  0 )  ->  ( A  /  _i )  =  ( ( 1  /  _i )  x.  A
) )
172, 11, 16mp3an23 1340 . . . . . . 7  |-  ( A  e.  CC  ->  ( A  /  _i )  =  ( ( 1  /  _i )  x.  A
) )
18 irec 10748 . . . . . . . . 9  |-  ( 1  /  _i )  = 
-u _i
1918oveq1i 5935 . . . . . . . 8  |-  ( ( 1  /  _i )  x.  A )  =  ( -u _i  x.  A )
2019a1i 9 . . . . . . 7  |-  ( A  e.  CC  ->  (
( 1  /  _i )  x.  A )  =  ( -u _i  x.  A ) )
21 mulneg12 8440 . . . . . . . 8  |-  ( ( _i  e.  CC  /\  A  e.  CC )  ->  ( -u _i  x.  A )  =  ( _i  x.  -u A
) )
222, 21mpan 424 . . . . . . 7  |-  ( A  e.  CC  ->  ( -u _i  x.  A )  =  ( _i  x.  -u A ) )
2317, 20, 223eqtrd 2233 . . . . . 6  |-  ( A  e.  CC  ->  ( A  /  _i )  =  ( _i  x.  -u A
) )
24 divcanap3 8742 . . . . . . 7  |-  ( ( B  e.  CC  /\  _i  e.  CC  /\  _i #  0 )  ->  (
( _i  x.  B
)  /  _i )  =  B )
252, 11, 24mp3an23 1340 . . . . . 6  |-  ( B  e.  CC  ->  (
( _i  x.  B
)  /  _i )  =  B )
2623, 25oveqan12d 5944 . . . . 5  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( A  /  _i )  +  (
( _i  x.  B
)  /  _i ) )  =  ( ( _i  x.  -u A
)  +  B ) )
27 negcl 8243 . . . . . . 7  |-  ( A  e.  CC  ->  -u A  e.  CC )
28 mulcl 8023 . . . . . . 7  |-  ( ( _i  e.  CC  /\  -u A  e.  CC )  ->  ( _i  x.  -u A )  e.  CC )
292, 27, 28sylancr 414 . . . . . 6  |-  ( A  e.  CC  ->  (
_i  x.  -u A )  e.  CC )
30 addcom 8180 . . . . . 6  |-  ( ( ( _i  x.  -u A
)  e.  CC  /\  B  e.  CC )  ->  ( ( _i  x.  -u A )  +  B
)  =  ( B  +  ( _i  x.  -u A ) ) )
3129, 30sylan 283 . . . . 5  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( _i  x.  -u A )  +  B
)  =  ( B  +  ( _i  x.  -u A ) ) )
3215, 26, 313eqtrrd 2234 . . . 4  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( B  +  ( _i  x.  -u A
) )  =  ( ( A  +  ( _i  x.  B ) )  /  _i ) )
331, 3, 32syl2an 289 . . 3  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( B  +  ( _i  x.  -u A
) )  =  ( ( A  +  ( _i  x.  B ) )  /  _i ) )
3433fveq2d 5565 . 2  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( Re `  ( B  +  ( _i  x.  -u A ) ) )  =  ( Re
`  ( ( A  +  ( _i  x.  B ) )  /  _i ) ) )
35 id 19 . . 3  |-  ( B  e.  RR  ->  B  e.  RR )
36 renegcl 8304 . . 3  |-  ( A  e.  RR  ->  -u A  e.  RR )
37 crre 11039 . . 3  |-  ( ( B  e.  RR  /\  -u A  e.  RR )  ->  ( Re `  ( B  +  (
_i  x.  -u A ) ) )  =  B )
3835, 36, 37syl2anr 290 . 2  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( Re `  ( B  +  ( _i  x.  -u A ) ) )  =  B )
399, 34, 383eqtr2d 2235 1  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( Im `  ( A  +  ( _i  x.  B ) ) )  =  B )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1364    e. wcel 2167   class class class wbr 4034   ` cfv 5259  (class class class)co 5925   CCcc 7894   RRcr 7895   0cc0 7896   1c1 7897   _ici 7898    + caddc 7899    x. cmul 7901   -ucneg 8215   # cap 8625    / cdiv 8716   Recre 11022   Imcim 11023
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-sep 4152  ax-pow 4208  ax-pr 4243  ax-un 4469  ax-setind 4574  ax-cnex 7987  ax-resscn 7988  ax-1cn 7989  ax-1re 7990  ax-icn 7991  ax-addcl 7992  ax-addrcl 7993  ax-mulcl 7994  ax-mulrcl 7995  ax-addcom 7996  ax-mulcom 7997  ax-addass 7998  ax-mulass 7999  ax-distr 8000  ax-i2m1 8001  ax-0lt1 8002  ax-1rid 8003  ax-0id 8004  ax-rnegex 8005  ax-precex 8006  ax-cnre 8007  ax-pre-ltirr 8008  ax-pre-ltwlin 8009  ax-pre-lttrn 8010  ax-pre-apti 8011  ax-pre-ltadd 8012  ax-pre-mulgt0 8013  ax-pre-mulext 8014
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rmo 2483  df-rab 2484  df-v 2765  df-sbc 2990  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-pw 3608  df-sn 3629  df-pr 3630  df-op 3632  df-uni 3841  df-br 4035  df-opab 4096  df-mpt 4097  df-id 4329  df-po 4332  df-iso 4333  df-xp 4670  df-rel 4671  df-cnv 4672  df-co 4673  df-dm 4674  df-rn 4675  df-res 4676  df-ima 4677  df-iota 5220  df-fun 5261  df-fn 5262  df-f 5263  df-fv 5267  df-riota 5880  df-ov 5928  df-oprab 5929  df-mpo 5930  df-pnf 8080  df-mnf 8081  df-xr 8082  df-ltxr 8083  df-le 8084  df-sub 8216  df-neg 8217  df-reap 8619  df-ap 8626  df-div 8717  df-2 9066  df-cj 11024  df-re 11025  df-im 11026
This theorem is referenced by:  replim  11041  reim0  11043  remullem  11053  imcj  11057  imneg  11058  imadd  11059  imi  11082  crimi  11119  crimd  11159  absreimsq  11249  4sqlem4  12586  2sqlem2  15440
  Copyright terms: Public domain W3C validator