ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  crim Unicode version

Theorem crim 10822
Description: The real part of a complex number representation. Definition 10-3.1 of [Gleason] p. 132. (Contributed by NM, 12-May-2005.) (Revised by Mario Carneiro, 7-Nov-2013.)
Assertion
Ref Expression
crim  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( Im `  ( A  +  ( _i  x.  B ) ) )  =  B )

Proof of Theorem crim
StepHypRef Expression
1 recn 7907 . . . 4  |-  ( A  e.  RR  ->  A  e.  CC )
2 ax-icn 7869 . . . . 5  |-  _i  e.  CC
3 recn 7907 . . . . 5  |-  ( B  e.  RR  ->  B  e.  CC )
4 mulcl 7901 . . . . 5  |-  ( ( _i  e.  CC  /\  B  e.  CC )  ->  ( _i  x.  B
)  e.  CC )
52, 3, 4sylancr 412 . . . 4  |-  ( B  e.  RR  ->  (
_i  x.  B )  e.  CC )
6 addcl 7899 . . . 4  |-  ( ( A  e.  CC  /\  ( _i  x.  B
)  e.  CC )  ->  ( A  +  ( _i  x.  B
) )  e.  CC )
71, 5, 6syl2an 287 . . 3  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( A  +  ( _i  x.  B ) )  e.  CC )
8 imval 10814 . . 3  |-  ( ( A  +  ( _i  x.  B ) )  e.  CC  ->  (
Im `  ( A  +  ( _i  x.  B ) ) )  =  ( Re `  ( ( A  +  ( _i  x.  B
) )  /  _i ) ) )
97, 8syl 14 . 2  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( Im `  ( A  +  ( _i  x.  B ) ) )  =  ( Re `  ( ( A  +  ( _i  x.  B
) )  /  _i ) ) )
102, 4mpan 422 . . . . . 6  |-  ( B  e.  CC  ->  (
_i  x.  B )  e.  CC )
11 iap0 9101 . . . . . . 7  |-  _i #  0
12 divdirap 8614 . . . . . . . 8  |-  ( ( A  e.  CC  /\  ( _i  x.  B
)  e.  CC  /\  ( _i  e.  CC  /\  _i #  0 ) )  ->  ( ( A  +  ( _i  x.  B ) )  /  _i )  =  (
( A  /  _i )  +  ( (
_i  x.  B )  /  _i ) ) )
13123expa 1198 . . . . . . 7  |-  ( ( ( A  e.  CC  /\  ( _i  x.  B
)  e.  CC )  /\  ( _i  e.  CC  /\  _i #  0 ) )  ->  ( ( A  +  ( _i  x.  B ) )  /  _i )  =  (
( A  /  _i )  +  ( (
_i  x.  B )  /  _i ) ) )
142, 11, 13mpanr12 437 . . . . . 6  |-  ( ( A  e.  CC  /\  ( _i  x.  B
)  e.  CC )  ->  ( ( A  +  ( _i  x.  B ) )  /  _i )  =  (
( A  /  _i )  +  ( (
_i  x.  B )  /  _i ) ) )
1510, 14sylan2 284 . . . . 5  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( A  +  ( _i  x.  B
) )  /  _i )  =  ( ( A  /  _i )  +  ( ( _i  x.  B )  /  _i ) ) )
16 divrecap2 8606 . . . . . . . 8  |-  ( ( A  e.  CC  /\  _i  e.  CC  /\  _i #  0 )  ->  ( A  /  _i )  =  ( ( 1  /  _i )  x.  A
) )
172, 11, 16mp3an23 1324 . . . . . . 7  |-  ( A  e.  CC  ->  ( A  /  _i )  =  ( ( 1  /  _i )  x.  A
) )
18 irec 10575 . . . . . . . . 9  |-  ( 1  /  _i )  = 
-u _i
1918oveq1i 5863 . . . . . . . 8  |-  ( ( 1  /  _i )  x.  A )  =  ( -u _i  x.  A )
2019a1i 9 . . . . . . 7  |-  ( A  e.  CC  ->  (
( 1  /  _i )  x.  A )  =  ( -u _i  x.  A ) )
21 mulneg12 8316 . . . . . . . 8  |-  ( ( _i  e.  CC  /\  A  e.  CC )  ->  ( -u _i  x.  A )  =  ( _i  x.  -u A
) )
222, 21mpan 422 . . . . . . 7  |-  ( A  e.  CC  ->  ( -u _i  x.  A )  =  ( _i  x.  -u A ) )
2317, 20, 223eqtrd 2207 . . . . . 6  |-  ( A  e.  CC  ->  ( A  /  _i )  =  ( _i  x.  -u A
) )
24 divcanap3 8615 . . . . . . 7  |-  ( ( B  e.  CC  /\  _i  e.  CC  /\  _i #  0 )  ->  (
( _i  x.  B
)  /  _i )  =  B )
252, 11, 24mp3an23 1324 . . . . . 6  |-  ( B  e.  CC  ->  (
( _i  x.  B
)  /  _i )  =  B )
2623, 25oveqan12d 5872 . . . . 5  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( A  /  _i )  +  (
( _i  x.  B
)  /  _i ) )  =  ( ( _i  x.  -u A
)  +  B ) )
27 negcl 8119 . . . . . . 7  |-  ( A  e.  CC  ->  -u A  e.  CC )
28 mulcl 7901 . . . . . . 7  |-  ( ( _i  e.  CC  /\  -u A  e.  CC )  ->  ( _i  x.  -u A )  e.  CC )
292, 27, 28sylancr 412 . . . . . 6  |-  ( A  e.  CC  ->  (
_i  x.  -u A )  e.  CC )
30 addcom 8056 . . . . . 6  |-  ( ( ( _i  x.  -u A
)  e.  CC  /\  B  e.  CC )  ->  ( ( _i  x.  -u A )  +  B
)  =  ( B  +  ( _i  x.  -u A ) ) )
3129, 30sylan 281 . . . . 5  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( _i  x.  -u A )  +  B
)  =  ( B  +  ( _i  x.  -u A ) ) )
3215, 26, 313eqtrrd 2208 . . . 4  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( B  +  ( _i  x.  -u A
) )  =  ( ( A  +  ( _i  x.  B ) )  /  _i ) )
331, 3, 32syl2an 287 . . 3  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( B  +  ( _i  x.  -u A
) )  =  ( ( A  +  ( _i  x.  B ) )  /  _i ) )
3433fveq2d 5500 . 2  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( Re `  ( B  +  ( _i  x.  -u A ) ) )  =  ( Re
`  ( ( A  +  ( _i  x.  B ) )  /  _i ) ) )
35 id 19 . . 3  |-  ( B  e.  RR  ->  B  e.  RR )
36 renegcl 8180 . . 3  |-  ( A  e.  RR  ->  -u A  e.  RR )
37 crre 10821 . . 3  |-  ( ( B  e.  RR  /\  -u A  e.  RR )  ->  ( Re `  ( B  +  (
_i  x.  -u A ) ) )  =  B )
3835, 36, 37syl2anr 288 . 2  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( Re `  ( B  +  ( _i  x.  -u A ) ) )  =  B )
399, 34, 383eqtr2d 2209 1  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( Im `  ( A  +  ( _i  x.  B ) ) )  =  B )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    = wceq 1348    e. wcel 2141   class class class wbr 3989   ` cfv 5198  (class class class)co 5853   CCcc 7772   RRcr 7773   0cc0 7774   1c1 7775   _ici 7776    + caddc 7777    x. cmul 7779   -ucneg 8091   # cap 8500    / cdiv 8589   Recre 10804   Imcim 10805
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-13 2143  ax-14 2144  ax-ext 2152  ax-sep 4107  ax-pow 4160  ax-pr 4194  ax-un 4418  ax-setind 4521  ax-cnex 7865  ax-resscn 7866  ax-1cn 7867  ax-1re 7868  ax-icn 7869  ax-addcl 7870  ax-addrcl 7871  ax-mulcl 7872  ax-mulrcl 7873  ax-addcom 7874  ax-mulcom 7875  ax-addass 7876  ax-mulass 7877  ax-distr 7878  ax-i2m1 7879  ax-0lt1 7880  ax-1rid 7881  ax-0id 7882  ax-rnegex 7883  ax-precex 7884  ax-cnre 7885  ax-pre-ltirr 7886  ax-pre-ltwlin 7887  ax-pre-lttrn 7888  ax-pre-apti 7889  ax-pre-ltadd 7890  ax-pre-mulgt0 7891  ax-pre-mulext 7892
This theorem depends on definitions:  df-bi 116  df-3an 975  df-tru 1351  df-fal 1354  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ne 2341  df-nel 2436  df-ral 2453  df-rex 2454  df-reu 2455  df-rmo 2456  df-rab 2457  df-v 2732  df-sbc 2956  df-dif 3123  df-un 3125  df-in 3127  df-ss 3134  df-pw 3568  df-sn 3589  df-pr 3590  df-op 3592  df-uni 3797  df-br 3990  df-opab 4051  df-mpt 4052  df-id 4278  df-po 4281  df-iso 4282  df-xp 4617  df-rel 4618  df-cnv 4619  df-co 4620  df-dm 4621  df-rn 4622  df-res 4623  df-ima 4624  df-iota 5160  df-fun 5200  df-fn 5201  df-f 5202  df-fv 5206  df-riota 5809  df-ov 5856  df-oprab 5857  df-mpo 5858  df-pnf 7956  df-mnf 7957  df-xr 7958  df-ltxr 7959  df-le 7960  df-sub 8092  df-neg 8093  df-reap 8494  df-ap 8501  df-div 8590  df-2 8937  df-cj 10806  df-re 10807  df-im 10808
This theorem is referenced by:  replim  10823  reim0  10825  remullem  10835  imcj  10839  imneg  10840  imadd  10841  imi  10864  crimi  10901  crimd  10941  absreimsq  11031  4sqlem4  12344  2sqlem2  13745
  Copyright terms: Public domain W3C validator