ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  crim Unicode version

Theorem crim 10623
Description: The real part of a complex number representation. Definition 10-3.1 of [Gleason] p. 132. (Contributed by NM, 12-May-2005.) (Revised by Mario Carneiro, 7-Nov-2013.)
Assertion
Ref Expression
crim  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( Im `  ( A  +  ( _i  x.  B ) ) )  =  B )

Proof of Theorem crim
StepHypRef Expression
1 recn 7746 . . . 4  |-  ( A  e.  RR  ->  A  e.  CC )
2 ax-icn 7708 . . . . 5  |-  _i  e.  CC
3 recn 7746 . . . . 5  |-  ( B  e.  RR  ->  B  e.  CC )
4 mulcl 7740 . . . . 5  |-  ( ( _i  e.  CC  /\  B  e.  CC )  ->  ( _i  x.  B
)  e.  CC )
52, 3, 4sylancr 410 . . . 4  |-  ( B  e.  RR  ->  (
_i  x.  B )  e.  CC )
6 addcl 7738 . . . 4  |-  ( ( A  e.  CC  /\  ( _i  x.  B
)  e.  CC )  ->  ( A  +  ( _i  x.  B
) )  e.  CC )
71, 5, 6syl2an 287 . . 3  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( A  +  ( _i  x.  B ) )  e.  CC )
8 imval 10615 . . 3  |-  ( ( A  +  ( _i  x.  B ) )  e.  CC  ->  (
Im `  ( A  +  ( _i  x.  B ) ) )  =  ( Re `  ( ( A  +  ( _i  x.  B
) )  /  _i ) ) )
97, 8syl 14 . 2  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( Im `  ( A  +  ( _i  x.  B ) ) )  =  ( Re `  ( ( A  +  ( _i  x.  B
) )  /  _i ) ) )
102, 4mpan 420 . . . . . 6  |-  ( B  e.  CC  ->  (
_i  x.  B )  e.  CC )
11 iap0 8936 . . . . . . 7  |-  _i #  0
12 divdirap 8450 . . . . . . . 8  |-  ( ( A  e.  CC  /\  ( _i  x.  B
)  e.  CC  /\  ( _i  e.  CC  /\  _i #  0 ) )  ->  ( ( A  +  ( _i  x.  B ) )  /  _i )  =  (
( A  /  _i )  +  ( (
_i  x.  B )  /  _i ) ) )
13123expa 1181 . . . . . . 7  |-  ( ( ( A  e.  CC  /\  ( _i  x.  B
)  e.  CC )  /\  ( _i  e.  CC  /\  _i #  0 ) )  ->  ( ( A  +  ( _i  x.  B ) )  /  _i )  =  (
( A  /  _i )  +  ( (
_i  x.  B )  /  _i ) ) )
142, 11, 13mpanr12 435 . . . . . 6  |-  ( ( A  e.  CC  /\  ( _i  x.  B
)  e.  CC )  ->  ( ( A  +  ( _i  x.  B ) )  /  _i )  =  (
( A  /  _i )  +  ( (
_i  x.  B )  /  _i ) ) )
1510, 14sylan2 284 . . . . 5  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( A  +  ( _i  x.  B
) )  /  _i )  =  ( ( A  /  _i )  +  ( ( _i  x.  B )  /  _i ) ) )
16 divrecap2 8442 . . . . . . . 8  |-  ( ( A  e.  CC  /\  _i  e.  CC  /\  _i #  0 )  ->  ( A  /  _i )  =  ( ( 1  /  _i )  x.  A
) )
172, 11, 16mp3an23 1307 . . . . . . 7  |-  ( A  e.  CC  ->  ( A  /  _i )  =  ( ( 1  /  _i )  x.  A
) )
18 irec 10385 . . . . . . . . 9  |-  ( 1  /  _i )  = 
-u _i
1918oveq1i 5777 . . . . . . . 8  |-  ( ( 1  /  _i )  x.  A )  =  ( -u _i  x.  A )
2019a1i 9 . . . . . . 7  |-  ( A  e.  CC  ->  (
( 1  /  _i )  x.  A )  =  ( -u _i  x.  A ) )
21 mulneg12 8152 . . . . . . . 8  |-  ( ( _i  e.  CC  /\  A  e.  CC )  ->  ( -u _i  x.  A )  =  ( _i  x.  -u A
) )
222, 21mpan 420 . . . . . . 7  |-  ( A  e.  CC  ->  ( -u _i  x.  A )  =  ( _i  x.  -u A ) )
2317, 20, 223eqtrd 2174 . . . . . 6  |-  ( A  e.  CC  ->  ( A  /  _i )  =  ( _i  x.  -u A
) )
24 divcanap3 8451 . . . . . . 7  |-  ( ( B  e.  CC  /\  _i  e.  CC  /\  _i #  0 )  ->  (
( _i  x.  B
)  /  _i )  =  B )
252, 11, 24mp3an23 1307 . . . . . 6  |-  ( B  e.  CC  ->  (
( _i  x.  B
)  /  _i )  =  B )
2623, 25oveqan12d 5786 . . . . 5  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( A  /  _i )  +  (
( _i  x.  B
)  /  _i ) )  =  ( ( _i  x.  -u A
)  +  B ) )
27 negcl 7955 . . . . . . 7  |-  ( A  e.  CC  ->  -u A  e.  CC )
28 mulcl 7740 . . . . . . 7  |-  ( ( _i  e.  CC  /\  -u A  e.  CC )  ->  ( _i  x.  -u A )  e.  CC )
292, 27, 28sylancr 410 . . . . . 6  |-  ( A  e.  CC  ->  (
_i  x.  -u A )  e.  CC )
30 addcom 7892 . . . . . 6  |-  ( ( ( _i  x.  -u A
)  e.  CC  /\  B  e.  CC )  ->  ( ( _i  x.  -u A )  +  B
)  =  ( B  +  ( _i  x.  -u A ) ) )
3129, 30sylan 281 . . . . 5  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( _i  x.  -u A )  +  B
)  =  ( B  +  ( _i  x.  -u A ) ) )
3215, 26, 313eqtrrd 2175 . . . 4  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( B  +  ( _i  x.  -u A
) )  =  ( ( A  +  ( _i  x.  B ) )  /  _i ) )
331, 3, 32syl2an 287 . . 3  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( B  +  ( _i  x.  -u A
) )  =  ( ( A  +  ( _i  x.  B ) )  /  _i ) )
3433fveq2d 5418 . 2  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( Re `  ( B  +  ( _i  x.  -u A ) ) )  =  ( Re
`  ( ( A  +  ( _i  x.  B ) )  /  _i ) ) )
35 id 19 . . 3  |-  ( B  e.  RR  ->  B  e.  RR )
36 renegcl 8016 . . 3  |-  ( A  e.  RR  ->  -u A  e.  RR )
37 crre 10622 . . 3  |-  ( ( B  e.  RR  /\  -u A  e.  RR )  ->  ( Re `  ( B  +  (
_i  x.  -u A ) ) )  =  B )
3835, 36, 37syl2anr 288 . 2  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( Re `  ( B  +  ( _i  x.  -u A ) ) )  =  B )
399, 34, 383eqtr2d 2176 1  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( Im `  ( A  +  ( _i  x.  B ) ) )  =  B )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    = wceq 1331    e. wcel 1480   class class class wbr 3924   ` cfv 5118  (class class class)co 5767   CCcc 7611   RRcr 7612   0cc0 7613   1c1 7614   _ici 7615    + caddc 7616    x. cmul 7618   -ucneg 7927   # cap 8336    / cdiv 8425   Recre 10605   Imcim 10606
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-13 1491  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2119  ax-sep 4041  ax-pow 4093  ax-pr 4126  ax-un 4350  ax-setind 4447  ax-cnex 7704  ax-resscn 7705  ax-1cn 7706  ax-1re 7707  ax-icn 7708  ax-addcl 7709  ax-addrcl 7710  ax-mulcl 7711  ax-mulrcl 7712  ax-addcom 7713  ax-mulcom 7714  ax-addass 7715  ax-mulass 7716  ax-distr 7717  ax-i2m1 7718  ax-0lt1 7719  ax-1rid 7720  ax-0id 7721  ax-rnegex 7722  ax-precex 7723  ax-cnre 7724  ax-pre-ltirr 7725  ax-pre-ltwlin 7726  ax-pre-lttrn 7727  ax-pre-apti 7728  ax-pre-ltadd 7729  ax-pre-mulgt0 7730  ax-pre-mulext 7731
This theorem depends on definitions:  df-bi 116  df-3an 964  df-tru 1334  df-fal 1337  df-nf 1437  df-sb 1736  df-eu 2000  df-mo 2001  df-clab 2124  df-cleq 2130  df-clel 2133  df-nfc 2268  df-ne 2307  df-nel 2402  df-ral 2419  df-rex 2420  df-reu 2421  df-rmo 2422  df-rab 2423  df-v 2683  df-sbc 2905  df-dif 3068  df-un 3070  df-in 3072  df-ss 3079  df-pw 3507  df-sn 3528  df-pr 3529  df-op 3531  df-uni 3732  df-br 3925  df-opab 3985  df-mpt 3986  df-id 4210  df-po 4213  df-iso 4214  df-xp 4540  df-rel 4541  df-cnv 4542  df-co 4543  df-dm 4544  df-rn 4545  df-res 4546  df-ima 4547  df-iota 5083  df-fun 5120  df-fn 5121  df-f 5122  df-fv 5126  df-riota 5723  df-ov 5770  df-oprab 5771  df-mpo 5772  df-pnf 7795  df-mnf 7796  df-xr 7797  df-ltxr 7798  df-le 7799  df-sub 7928  df-neg 7929  df-reap 8330  df-ap 8337  df-div 8426  df-2 8772  df-cj 10607  df-re 10608  df-im 10609
This theorem is referenced by:  replim  10624  reim0  10626  remullem  10636  imcj  10640  imneg  10641  imadd  10642  imi  10665  crimi  10702  crimd  10742  absreimsq  10832
  Copyright terms: Public domain W3C validator