ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  crim Unicode version

Theorem crim 10851
Description: The real part of a complex number representation. Definition 10-3.1 of [Gleason] p. 132. (Contributed by NM, 12-May-2005.) (Revised by Mario Carneiro, 7-Nov-2013.)
Assertion
Ref Expression
crim  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( Im `  ( A  +  ( _i  x.  B ) ) )  =  B )

Proof of Theorem crim
StepHypRef Expression
1 recn 7935 . . . 4  |-  ( A  e.  RR  ->  A  e.  CC )
2 ax-icn 7897 . . . . 5  |-  _i  e.  CC
3 recn 7935 . . . . 5  |-  ( B  e.  RR  ->  B  e.  CC )
4 mulcl 7929 . . . . 5  |-  ( ( _i  e.  CC  /\  B  e.  CC )  ->  ( _i  x.  B
)  e.  CC )
52, 3, 4sylancr 414 . . . 4  |-  ( B  e.  RR  ->  (
_i  x.  B )  e.  CC )
6 addcl 7927 . . . 4  |-  ( ( A  e.  CC  /\  ( _i  x.  B
)  e.  CC )  ->  ( A  +  ( _i  x.  B
) )  e.  CC )
71, 5, 6syl2an 289 . . 3  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( A  +  ( _i  x.  B ) )  e.  CC )
8 imval 10843 . . 3  |-  ( ( A  +  ( _i  x.  B ) )  e.  CC  ->  (
Im `  ( A  +  ( _i  x.  B ) ) )  =  ( Re `  ( ( A  +  ( _i  x.  B
) )  /  _i ) ) )
97, 8syl 14 . 2  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( Im `  ( A  +  ( _i  x.  B ) ) )  =  ( Re `  ( ( A  +  ( _i  x.  B
) )  /  _i ) ) )
102, 4mpan 424 . . . . . 6  |-  ( B  e.  CC  ->  (
_i  x.  B )  e.  CC )
11 iap0 9131 . . . . . . 7  |-  _i #  0
12 divdirap 8643 . . . . . . . 8  |-  ( ( A  e.  CC  /\  ( _i  x.  B
)  e.  CC  /\  ( _i  e.  CC  /\  _i #  0 ) )  ->  ( ( A  +  ( _i  x.  B ) )  /  _i )  =  (
( A  /  _i )  +  ( (
_i  x.  B )  /  _i ) ) )
13123expa 1203 . . . . . . 7  |-  ( ( ( A  e.  CC  /\  ( _i  x.  B
)  e.  CC )  /\  ( _i  e.  CC  /\  _i #  0 ) )  ->  ( ( A  +  ( _i  x.  B ) )  /  _i )  =  (
( A  /  _i )  +  ( (
_i  x.  B )  /  _i ) ) )
142, 11, 13mpanr12 439 . . . . . 6  |-  ( ( A  e.  CC  /\  ( _i  x.  B
)  e.  CC )  ->  ( ( A  +  ( _i  x.  B ) )  /  _i )  =  (
( A  /  _i )  +  ( (
_i  x.  B )  /  _i ) ) )
1510, 14sylan2 286 . . . . 5  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( A  +  ( _i  x.  B
) )  /  _i )  =  ( ( A  /  _i )  +  ( ( _i  x.  B )  /  _i ) ) )
16 divrecap2 8635 . . . . . . . 8  |-  ( ( A  e.  CC  /\  _i  e.  CC  /\  _i #  0 )  ->  ( A  /  _i )  =  ( ( 1  /  _i )  x.  A
) )
172, 11, 16mp3an23 1329 . . . . . . 7  |-  ( A  e.  CC  ->  ( A  /  _i )  =  ( ( 1  /  _i )  x.  A
) )
18 irec 10605 . . . . . . . . 9  |-  ( 1  /  _i )  = 
-u _i
1918oveq1i 5879 . . . . . . . 8  |-  ( ( 1  /  _i )  x.  A )  =  ( -u _i  x.  A )
2019a1i 9 . . . . . . 7  |-  ( A  e.  CC  ->  (
( 1  /  _i )  x.  A )  =  ( -u _i  x.  A ) )
21 mulneg12 8344 . . . . . . . 8  |-  ( ( _i  e.  CC  /\  A  e.  CC )  ->  ( -u _i  x.  A )  =  ( _i  x.  -u A
) )
222, 21mpan 424 . . . . . . 7  |-  ( A  e.  CC  ->  ( -u _i  x.  A )  =  ( _i  x.  -u A ) )
2317, 20, 223eqtrd 2214 . . . . . 6  |-  ( A  e.  CC  ->  ( A  /  _i )  =  ( _i  x.  -u A
) )
24 divcanap3 8644 . . . . . . 7  |-  ( ( B  e.  CC  /\  _i  e.  CC  /\  _i #  0 )  ->  (
( _i  x.  B
)  /  _i )  =  B )
252, 11, 24mp3an23 1329 . . . . . 6  |-  ( B  e.  CC  ->  (
( _i  x.  B
)  /  _i )  =  B )
2623, 25oveqan12d 5888 . . . . 5  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( A  /  _i )  +  (
( _i  x.  B
)  /  _i ) )  =  ( ( _i  x.  -u A
)  +  B ) )
27 negcl 8147 . . . . . . 7  |-  ( A  e.  CC  ->  -u A  e.  CC )
28 mulcl 7929 . . . . . . 7  |-  ( ( _i  e.  CC  /\  -u A  e.  CC )  ->  ( _i  x.  -u A )  e.  CC )
292, 27, 28sylancr 414 . . . . . 6  |-  ( A  e.  CC  ->  (
_i  x.  -u A )  e.  CC )
30 addcom 8084 . . . . . 6  |-  ( ( ( _i  x.  -u A
)  e.  CC  /\  B  e.  CC )  ->  ( ( _i  x.  -u A )  +  B
)  =  ( B  +  ( _i  x.  -u A ) ) )
3129, 30sylan 283 . . . . 5  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( _i  x.  -u A )  +  B
)  =  ( B  +  ( _i  x.  -u A ) ) )
3215, 26, 313eqtrrd 2215 . . . 4  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( B  +  ( _i  x.  -u A
) )  =  ( ( A  +  ( _i  x.  B ) )  /  _i ) )
331, 3, 32syl2an 289 . . 3  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( B  +  ( _i  x.  -u A
) )  =  ( ( A  +  ( _i  x.  B ) )  /  _i ) )
3433fveq2d 5515 . 2  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( Re `  ( B  +  ( _i  x.  -u A ) ) )  =  ( Re
`  ( ( A  +  ( _i  x.  B ) )  /  _i ) ) )
35 id 19 . . 3  |-  ( B  e.  RR  ->  B  e.  RR )
36 renegcl 8208 . . 3  |-  ( A  e.  RR  ->  -u A  e.  RR )
37 crre 10850 . . 3  |-  ( ( B  e.  RR  /\  -u A  e.  RR )  ->  ( Re `  ( B  +  (
_i  x.  -u A ) ) )  =  B )
3835, 36, 37syl2anr 290 . 2  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( Re `  ( B  +  ( _i  x.  -u A ) ) )  =  B )
399, 34, 383eqtr2d 2216 1  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( Im `  ( A  +  ( _i  x.  B ) ) )  =  B )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1353    e. wcel 2148   class class class wbr 4000   ` cfv 5212  (class class class)co 5869   CCcc 7800   RRcr 7801   0cc0 7802   1c1 7803   _ici 7804    + caddc 7805    x. cmul 7807   -ucneg 8119   # cap 8528    / cdiv 8618   Recre 10833   Imcim 10834
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-sep 4118  ax-pow 4171  ax-pr 4206  ax-un 4430  ax-setind 4533  ax-cnex 7893  ax-resscn 7894  ax-1cn 7895  ax-1re 7896  ax-icn 7897  ax-addcl 7898  ax-addrcl 7899  ax-mulcl 7900  ax-mulrcl 7901  ax-addcom 7902  ax-mulcom 7903  ax-addass 7904  ax-mulass 7905  ax-distr 7906  ax-i2m1 7907  ax-0lt1 7908  ax-1rid 7909  ax-0id 7910  ax-rnegex 7911  ax-precex 7912  ax-cnre 7913  ax-pre-ltirr 7914  ax-pre-ltwlin 7915  ax-pre-lttrn 7916  ax-pre-apti 7917  ax-pre-ltadd 7918  ax-pre-mulgt0 7919  ax-pre-mulext 7920
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-nel 2443  df-ral 2460  df-rex 2461  df-reu 2462  df-rmo 2463  df-rab 2464  df-v 2739  df-sbc 2963  df-dif 3131  df-un 3133  df-in 3135  df-ss 3142  df-pw 3576  df-sn 3597  df-pr 3598  df-op 3600  df-uni 3808  df-br 4001  df-opab 4062  df-mpt 4063  df-id 4290  df-po 4293  df-iso 4294  df-xp 4629  df-rel 4630  df-cnv 4631  df-co 4632  df-dm 4633  df-rn 4634  df-res 4635  df-ima 4636  df-iota 5174  df-fun 5214  df-fn 5215  df-f 5216  df-fv 5220  df-riota 5825  df-ov 5872  df-oprab 5873  df-mpo 5874  df-pnf 7984  df-mnf 7985  df-xr 7986  df-ltxr 7987  df-le 7988  df-sub 8120  df-neg 8121  df-reap 8522  df-ap 8529  df-div 8619  df-2 8967  df-cj 10835  df-re 10836  df-im 10837
This theorem is referenced by:  replim  10852  reim0  10854  remullem  10864  imcj  10868  imneg  10869  imadd  10870  imi  10893  crimi  10930  crimd  10970  absreimsq  11060  4sqlem4  12373  2sqlem2  14118
  Copyright terms: Public domain W3C validator