ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sincossq Unicode version

Theorem sincossq 11698
Description: Sine squared plus cosine squared is 1. Equation 17 of [Gleason] p. 311. Note that this holds for non-real arguments, even though individually each term is unbounded. (Contributed by NM, 15-Jan-2006.)
Assertion
Ref Expression
sincossq  |-  ( A  e.  CC  ->  (
( ( sin `  A
) ^ 2 )  +  ( ( cos `  A ) ^ 2 ) )  =  1 )

Proof of Theorem sincossq
StepHypRef Expression
1 negcl 8106 . . 3  |-  ( A  e.  CC  ->  -u A  e.  CC )
2 cosadd 11687 . . 3  |-  ( ( A  e.  CC  /\  -u A  e.  CC )  ->  ( cos `  ( A  +  -u A ) )  =  ( ( ( cos `  A
)  x.  ( cos `  -u A ) )  -  ( ( sin `  A )  x.  ( sin `  -u A ) ) ) )
31, 2mpdan 419 . 2  |-  ( A  e.  CC  ->  ( cos `  ( A  +  -u A ) )  =  ( ( ( cos `  A )  x.  ( cos `  -u A ) )  -  ( ( sin `  A )  x.  ( sin `  -u A ) ) ) )
4 negid 8153 . . . 4  |-  ( A  e.  CC  ->  ( A  +  -u A )  =  0 )
54fveq2d 5498 . . 3  |-  ( A  e.  CC  ->  ( cos `  ( A  +  -u A ) )  =  ( cos `  0
) )
6 cos0 11680 . . 3  |-  ( cos `  0 )  =  1
75, 6eqtrdi 2219 . 2  |-  ( A  e.  CC  ->  ( cos `  ( A  +  -u A ) )  =  1 )
8 sincl 11656 . . . . 5  |-  ( A  e.  CC  ->  ( sin `  A )  e.  CC )
98sqcld 10594 . . . 4  |-  ( A  e.  CC  ->  (
( sin `  A
) ^ 2 )  e.  CC )
10 coscl 11657 . . . . 5  |-  ( A  e.  CC  ->  ( cos `  A )  e.  CC )
1110sqcld 10594 . . . 4  |-  ( A  e.  CC  ->  (
( cos `  A
) ^ 2 )  e.  CC )
129, 11addcomd 8057 . . 3  |-  ( A  e.  CC  ->  (
( ( sin `  A
) ^ 2 )  +  ( ( cos `  A ) ^ 2 ) )  =  ( ( ( cos `  A
) ^ 2 )  +  ( ( sin `  A ) ^ 2 ) ) )
1310sqvald 10593 . . . . 5  |-  ( A  e.  CC  ->  (
( cos `  A
) ^ 2 )  =  ( ( cos `  A )  x.  ( cos `  A ) ) )
14 cosneg 11677 . . . . . 6  |-  ( A  e.  CC  ->  ( cos `  -u A )  =  ( cos `  A
) )
1514oveq2d 5866 . . . . 5  |-  ( A  e.  CC  ->  (
( cos `  A
)  x.  ( cos `  -u A ) )  =  ( ( cos `  A )  x.  ( cos `  A ) ) )
1613, 15eqtr4d 2206 . . . 4  |-  ( A  e.  CC  ->  (
( cos `  A
) ^ 2 )  =  ( ( cos `  A )  x.  ( cos `  -u A ) ) )
178sqvald 10593 . . . . . 6  |-  ( A  e.  CC  ->  (
( sin `  A
) ^ 2 )  =  ( ( sin `  A )  x.  ( sin `  A ) ) )
18 sinneg 11676 . . . . . . . . 9  |-  ( A  e.  CC  ->  ( sin `  -u A )  = 
-u ( sin `  A
) )
1918negeqd 8101 . . . . . . . 8  |-  ( A  e.  CC  ->  -u ( sin `  -u A )  = 
-u -u ( sin `  A
) )
208negnegd 8208 . . . . . . . 8  |-  ( A  e.  CC  ->  -u -u ( sin `  A )  =  ( sin `  A
) )
2119, 20eqtrd 2203 . . . . . . 7  |-  ( A  e.  CC  ->  -u ( sin `  -u A )  =  ( sin `  A
) )
2221oveq2d 5866 . . . . . 6  |-  ( A  e.  CC  ->  (
( sin `  A
)  x.  -u ( sin `  -u A ) )  =  ( ( sin `  A )  x.  ( sin `  A ) ) )
2317, 22eqtr4d 2206 . . . . 5  |-  ( A  e.  CC  ->  (
( sin `  A
) ^ 2 )  =  ( ( sin `  A )  x.  -u ( sin `  -u A ) ) )
241sincld 11660 . . . . . 6  |-  ( A  e.  CC  ->  ( sin `  -u A )  e.  CC )
258, 24mulneg2d 8318 . . . . 5  |-  ( A  e.  CC  ->  (
( sin `  A
)  x.  -u ( sin `  -u A ) )  =  -u ( ( sin `  A )  x.  ( sin `  -u A ) ) )
2623, 25eqtrd 2203 . . . 4  |-  ( A  e.  CC  ->  (
( sin `  A
) ^ 2 )  =  -u ( ( sin `  A )  x.  ( sin `  -u A ) ) )
2716, 26oveq12d 5868 . . 3  |-  ( A  e.  CC  ->  (
( ( cos `  A
) ^ 2 )  +  ( ( sin `  A ) ^ 2 ) )  =  ( ( ( cos `  A
)  x.  ( cos `  -u A ) )  +  -u ( ( sin `  A )  x.  ( sin `  -u A ) ) ) )
281coscld 11661 . . . . 5  |-  ( A  e.  CC  ->  ( cos `  -u A )  e.  CC )
2910, 28mulcld 7927 . . . 4  |-  ( A  e.  CC  ->  (
( cos `  A
)  x.  ( cos `  -u A ) )  e.  CC )
308, 24mulcld 7927 . . . 4  |-  ( A  e.  CC  ->  (
( sin `  A
)  x.  ( sin `  -u A ) )  e.  CC )
3129, 30negsubd 8223 . . 3  |-  ( A  e.  CC  ->  (
( ( cos `  A
)  x.  ( cos `  -u A ) )  +  -u ( ( sin `  A )  x.  ( sin `  -u A ) ) )  =  ( ( ( cos `  A
)  x.  ( cos `  -u A ) )  -  ( ( sin `  A )  x.  ( sin `  -u A ) ) ) )
3212, 27, 313eqtrrd 2208 . 2  |-  ( A  e.  CC  ->  (
( ( cos `  A
)  x.  ( cos `  -u A ) )  -  ( ( sin `  A )  x.  ( sin `  -u A ) ) )  =  ( ( ( sin `  A
) ^ 2 )  +  ( ( cos `  A ) ^ 2 ) ) )
333, 7, 323eqtr3rd 2212 1  |-  ( A  e.  CC  ->  (
( ( sin `  A
) ^ 2 )  +  ( ( cos `  A ) ^ 2 ) )  =  1 )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1348    e. wcel 2141   ` cfv 5196  (class class class)co 5850   CCcc 7759   0cc0 7761   1c1 7762    + caddc 7764    x. cmul 7766    - cmin 8077   -ucneg 8078   2c2 8916   ^cexp 10462   sincsin 11594   cosccos 11595
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-13 2143  ax-14 2144  ax-ext 2152  ax-coll 4102  ax-sep 4105  ax-nul 4113  ax-pow 4158  ax-pr 4192  ax-un 4416  ax-setind 4519  ax-iinf 4570  ax-cnex 7852  ax-resscn 7853  ax-1cn 7854  ax-1re 7855  ax-icn 7856  ax-addcl 7857  ax-addrcl 7858  ax-mulcl 7859  ax-mulrcl 7860  ax-addcom 7861  ax-mulcom 7862  ax-addass 7863  ax-mulass 7864  ax-distr 7865  ax-i2m1 7866  ax-0lt1 7867  ax-1rid 7868  ax-0id 7869  ax-rnegex 7870  ax-precex 7871  ax-cnre 7872  ax-pre-ltirr 7873  ax-pre-ltwlin 7874  ax-pre-lttrn 7875  ax-pre-apti 7876  ax-pre-ltadd 7877  ax-pre-mulgt0 7878  ax-pre-mulext 7879  ax-arch 7880  ax-caucvg 7881
This theorem depends on definitions:  df-bi 116  df-dc 830  df-3or 974  df-3an 975  df-tru 1351  df-fal 1354  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ne 2341  df-nel 2436  df-ral 2453  df-rex 2454  df-reu 2455  df-rmo 2456  df-rab 2457  df-v 2732  df-sbc 2956  df-csb 3050  df-dif 3123  df-un 3125  df-in 3127  df-ss 3134  df-nul 3415  df-if 3526  df-pw 3566  df-sn 3587  df-pr 3588  df-op 3590  df-uni 3795  df-int 3830  df-iun 3873  df-disj 3965  df-br 3988  df-opab 4049  df-mpt 4050  df-tr 4086  df-id 4276  df-po 4279  df-iso 4280  df-iord 4349  df-on 4351  df-ilim 4352  df-suc 4354  df-iom 4573  df-xp 4615  df-rel 4616  df-cnv 4617  df-co 4618  df-dm 4619  df-rn 4620  df-res 4621  df-ima 4622  df-iota 5158  df-fun 5198  df-fn 5199  df-f 5200  df-f1 5201  df-fo 5202  df-f1o 5203  df-fv 5204  df-isom 5205  df-riota 5806  df-ov 5853  df-oprab 5854  df-mpo 5855  df-1st 6116  df-2nd 6117  df-recs 6281  df-irdg 6346  df-frec 6367  df-1o 6392  df-oadd 6396  df-er 6509  df-en 6715  df-dom 6716  df-fin 6717  df-sup 6957  df-pnf 7943  df-mnf 7944  df-xr 7945  df-ltxr 7946  df-le 7947  df-sub 8079  df-neg 8080  df-reap 8481  df-ap 8488  df-div 8577  df-inn 8866  df-2 8924  df-3 8925  df-4 8926  df-n0 9123  df-z 9200  df-uz 9475  df-q 9566  df-rp 9598  df-ico 9838  df-fz 9953  df-fzo 10086  df-seqfrec 10389  df-exp 10463  df-fac 10647  df-bc 10669  df-ihash 10697  df-cj 10793  df-re 10794  df-im 10795  df-rsqrt 10949  df-abs 10950  df-clim 11229  df-sumdc 11304  df-ef 11598  df-sin 11600  df-cos 11601
This theorem is referenced by:  cos2t  11700  cos2tsin  11701  sinbnd  11702  cosbnd  11703  absefi  11718  sinhalfpilem  13427  sincos6thpi  13478
  Copyright terms: Public domain W3C validator