ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  opprunitd Unicode version

Theorem opprunitd 13277
Description: Being a unit is a symmetric property, so it transfers to the opposite ring. (Contributed by Mario Carneiro, 4-Dec-2014.)
Hypotheses
Ref Expression
opprunitd.1  |-  ( ph  ->  U  =  (Unit `  R ) )
opprunitd.2  |-  ( ph  ->  S  =  (oppr `  R
) )
opprunitd.r  |-  ( ph  ->  R  e.  Ring )
Assertion
Ref Expression
opprunitd  |-  ( ph  ->  U  =  (Unit `  S ) )

Proof of Theorem opprunitd
Dummy variables  y  x are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 opprunitd.1 . . . . . 6  |-  ( ph  ->  U  =  (Unit `  R ) )
2 eqidd 2178 . . . . . 6  |-  ( ph  ->  ( 1r `  R
)  =  ( 1r
`  R ) )
3 eqidd 2178 . . . . . 6  |-  ( ph  ->  ( ||r `
 R )  =  ( ||r `
 R ) )
4 opprunitd.2 . . . . . 6  |-  ( ph  ->  S  =  (oppr `  R
) )
5 eqidd 2178 . . . . . 6  |-  ( ph  ->  ( ||r `
 S )  =  ( ||r `
 S ) )
6 opprunitd.r . . . . . . 7  |-  ( ph  ->  R  e.  Ring )
7 ringsrg 13222 . . . . . . 7  |-  ( R  e.  Ring  ->  R  e. SRing
)
86, 7syl 14 . . . . . 6  |-  ( ph  ->  R  e. SRing )
91, 2, 3, 4, 5, 8isunitd 13273 . . . . 5  |-  ( ph  ->  ( x  e.  U  <->  ( x ( ||r `
 R ) ( 1r `  R )  /\  x ( ||r `  S
) ( 1r `  R ) ) ) )
10 eqid 2177 . . . . . . . . . . . . . . 15  |-  (oppr `  R
)  =  (oppr `  R
)
1110opprring 13247 . . . . . . . . . . . . . 14  |-  ( R  e.  Ring  ->  (oppr `  R
)  e.  Ring )
126, 11syl 14 . . . . . . . . . . . . 13  |-  ( ph  ->  (oppr
`  R )  e. 
Ring )
134, 12eqeltrd 2254 . . . . . . . . . . . 12  |-  ( ph  ->  S  e.  Ring )
14 vex 2740 . . . . . . . . . . . . 13  |-  y  e. 
_V
1514a1i 9 . . . . . . . . . . . 12  |-  ( ph  ->  y  e.  _V )
16 vex 2740 . . . . . . . . . . . . 13  |-  x  e. 
_V
1716a1i 9 . . . . . . . . . . . 12  |-  ( ph  ->  x  e.  _V )
18 eqid 2177 . . . . . . . . . . . . 13  |-  ( Base `  S )  =  (
Base `  S )
19 eqid 2177 . . . . . . . . . . . . 13  |-  ( .r
`  S )  =  ( .r `  S
)
20 eqid 2177 . . . . . . . . . . . . 13  |-  (oppr `  S
)  =  (oppr `  S
)
21 eqid 2177 . . . . . . . . . . . . 13  |-  ( .r
`  (oppr
`  S ) )  =  ( .r `  (oppr `  S ) )
2218, 19, 20, 21opprmulg 13241 . . . . . . . . . . . 12  |-  ( ( S  e.  Ring  /\  y  e.  _V  /\  x  e. 
_V )  ->  (
y ( .r `  (oppr `  S ) ) x )  =  ( x ( .r `  S
) y ) )
2313, 15, 17, 22syl3anc 1238 . . . . . . . . . . 11  |-  ( ph  ->  ( y ( .r
`  (oppr
`  S ) ) x )  =  ( x ( .r `  S ) y ) )
244fveq2d 5519 . . . . . . . . . . . 12  |-  ( ph  ->  ( .r `  S
)  =  ( .r
`  (oppr
`  R ) ) )
2524oveqd 5891 . . . . . . . . . . 11  |-  ( ph  ->  ( x ( .r
`  S ) y )  =  ( x ( .r `  (oppr `  R
) ) y ) )
26 eqid 2177 . . . . . . . . . . . . 13  |-  ( Base `  R )  =  (
Base `  R )
27 eqid 2177 . . . . . . . . . . . . 13  |-  ( .r
`  R )  =  ( .r `  R
)
28 eqid 2177 . . . . . . . . . . . . 13  |-  ( .r
`  (oppr
`  R ) )  =  ( .r `  (oppr `  R ) )
2926, 27, 10, 28opprmulg 13241 . . . . . . . . . . . 12  |-  ( ( R  e.  Ring  /\  x  e.  _V  /\  y  e. 
_V )  ->  (
x ( .r `  (oppr `  R ) ) y )  =  ( y ( .r `  R
) x ) )
306, 17, 15, 29syl3anc 1238 . . . . . . . . . . 11  |-  ( ph  ->  ( x ( .r
`  (oppr
`  R ) ) y )  =  ( y ( .r `  R ) x ) )
3123, 25, 303eqtrrd 2215 . . . . . . . . . 10  |-  ( ph  ->  ( y ( .r
`  R ) x )  =  ( y ( .r `  (oppr `  S
) ) x ) )
3231eqeq1d 2186 . . . . . . . . 9  |-  ( ph  ->  ( ( y ( .r `  R ) x )  =  ( 1r `  R )  <-> 
( y ( .r
`  (oppr
`  S ) ) x )  =  ( 1r `  R ) ) )
3332rexbidv 2478 . . . . . . . 8  |-  ( ph  ->  ( E. y  e.  ( Base `  R
) ( y ( .r `  R ) x )  =  ( 1r `  R )  <->  E. y  e.  ( Base `  R ) ( y ( .r `  (oppr `  S ) ) x )  =  ( 1r
`  R ) ) )
3433anbi2d 464 . . . . . . 7  |-  ( ph  ->  ( ( x  e.  ( Base `  R
)  /\  E. y  e.  ( Base `  R
) ( y ( .r `  R ) x )  =  ( 1r `  R ) )  <->  ( x  e.  ( Base `  R
)  /\  E. y  e.  ( Base `  R
) ( y ( .r `  (oppr `  S
) ) x )  =  ( 1r `  R ) ) ) )
35 eqidd 2178 . . . . . . . 8  |-  ( ph  ->  ( Base `  R
)  =  ( Base `  R ) )
36 eqidd 2178 . . . . . . . 8  |-  ( ph  ->  ( .r `  R
)  =  ( .r
`  R ) )
3735, 3, 8, 36dvdsrd 13261 . . . . . . 7  |-  ( ph  ->  ( x ( ||r `  R
) ( 1r `  R )  <->  ( x  e.  ( Base `  R
)  /\  E. y  e.  ( Base `  R
) ( y ( .r `  R ) x )  =  ( 1r `  R ) ) ) )
3810, 26opprbasg 13245 . . . . . . . . . 10  |-  ( R  e. SRing  ->  ( Base `  R
)  =  ( Base `  (oppr
`  R ) ) )
398, 38syl 14 . . . . . . . . 9  |-  ( ph  ->  ( Base `  R
)  =  ( Base `  (oppr
`  R ) ) )
404fveq2d 5519 . . . . . . . . 9  |-  ( ph  ->  ( Base `  S
)  =  ( Base `  (oppr
`  R ) ) )
4120, 18opprbasg 13245 . . . . . . . . . 10  |-  ( S  e.  Ring  ->  ( Base `  S )  =  (
Base `  (oppr
`  S ) ) )
4213, 41syl 14 . . . . . . . . 9  |-  ( ph  ->  ( Base `  S
)  =  ( Base `  (oppr
`  S ) ) )
4339, 40, 423eqtr2d 2216 . . . . . . . 8  |-  ( ph  ->  ( Base `  R
)  =  ( Base `  (oppr
`  S ) ) )
44 eqidd 2178 . . . . . . . 8  |-  ( ph  ->  ( ||r `
 (oppr
`  S ) )  =  ( ||r `
 (oppr
`  S ) ) )
4520opprring 13247 . . . . . . . . . 10  |-  ( S  e.  Ring  ->  (oppr `  S
)  e.  Ring )
4613, 45syl 14 . . . . . . . . 9  |-  ( ph  ->  (oppr
`  S )  e. 
Ring )
47 ringsrg 13222 . . . . . . . . 9  |-  ( (oppr `  S )  e.  Ring  -> 
(oppr `  S )  e. SRing )
4846, 47syl 14 . . . . . . . 8  |-  ( ph  ->  (oppr
`  S )  e. SRing
)
49 eqidd 2178 . . . . . . . 8  |-  ( ph  ->  ( .r `  (oppr `  S
) )  =  ( .r `  (oppr `  S
) ) )
5043, 44, 48, 49dvdsrd 13261 . . . . . . 7  |-  ( ph  ->  ( x ( ||r `  (oppr `  S
) ) ( 1r
`  R )  <->  ( x  e.  ( Base `  R
)  /\  E. y  e.  ( Base `  R
) ( y ( .r `  (oppr `  S
) ) x )  =  ( 1r `  R ) ) ) )
5134, 37, 503bitr4d 220 . . . . . 6  |-  ( ph  ->  ( x ( ||r `  R
) ( 1r `  R )  <->  x ( ||r `  (oppr
`  S ) ) ( 1r `  R
) ) )
5251anbi1d 465 . . . . 5  |-  ( ph  ->  ( ( x (
||r `  R ) ( 1r
`  R )  /\  x ( ||r `
 S ) ( 1r `  R ) )  <->  ( x (
||r `  (oppr
`  S ) ) ( 1r `  R
)  /\  x ( ||r `  S ) ( 1r
`  R ) ) ) )
539, 52bitrd 188 . . . 4  |-  ( ph  ->  ( x  e.  U  <->  ( x ( ||r `
 (oppr
`  S ) ) ( 1r `  R
)  /\  x ( ||r `  S ) ( 1r
`  R ) ) ) )
5453biancomd 271 . . 3  |-  ( ph  ->  ( x  e.  U  <->  ( x ( ||r `
 S ) ( 1r `  R )  /\  x ( ||r `  (oppr `  S
) ) ( 1r
`  R ) ) ) )
55 eqidd 2178 . . . 4  |-  ( ph  ->  (Unit `  S )  =  (Unit `  S )
)
56 eqid 2177 . . . . . . 7  |-  ( 1r
`  R )  =  ( 1r `  R
)
5710, 56oppr1g 13250 . . . . . 6  |-  ( R  e.  Ring  ->  ( 1r
`  R )  =  ( 1r `  (oppr `  R
) ) )
586, 57syl 14 . . . . 5  |-  ( ph  ->  ( 1r `  R
)  =  ( 1r
`  (oppr
`  R ) ) )
594fveq2d 5519 . . . . 5  |-  ( ph  ->  ( 1r `  S
)  =  ( 1r
`  (oppr
`  R ) ) )
6058, 59eqtr4d 2213 . . . 4  |-  ( ph  ->  ( 1r `  R
)  =  ( 1r
`  S ) )
61 eqidd 2178 . . . 4  |-  ( ph  ->  (oppr
`  S )  =  (oppr
`  S ) )
62 ringsrg 13222 . . . . 5  |-  ( S  e.  Ring  ->  S  e. SRing
)
6313, 62syl 14 . . . 4  |-  ( ph  ->  S  e. SRing )
6455, 60, 5, 61, 44, 63isunitd 13273 . . 3  |-  ( ph  ->  ( x  e.  (Unit `  S )  <->  ( x
( ||r `
 S ) ( 1r `  R )  /\  x ( ||r `  (oppr `  S
) ) ( 1r
`  R ) ) ) )
6554, 64bitr4d 191 . 2  |-  ( ph  ->  ( x  e.  U  <->  x  e.  (Unit `  S
) ) )
6665eqrdv 2175 1  |-  ( ph  ->  U  =  (Unit `  S ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1353    e. wcel 2148   E.wrex 2456   _Vcvv 2737   class class class wbr 4003   ` cfv 5216  (class class class)co 5874   Basecbs 12461   .rcmulr 12536   1rcur 13140  SRingcsrg 13144   Ringcrg 13177  opprcoppr 13237   ||rcdsr 13253  Unitcui 13254
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-coll 4118  ax-sep 4121  ax-nul 4129  ax-pow 4174  ax-pr 4209  ax-un 4433  ax-setind 4536  ax-cnex 7901  ax-resscn 7902  ax-1cn 7903  ax-1re 7904  ax-icn 7905  ax-addcl 7906  ax-addrcl 7907  ax-mulcl 7908  ax-addcom 7910  ax-addass 7912  ax-i2m1 7915  ax-0lt1 7916  ax-0id 7918  ax-rnegex 7919  ax-pre-ltirr 7922  ax-pre-lttrn 7924  ax-pre-ltadd 7926
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-nel 2443  df-ral 2460  df-rex 2461  df-reu 2462  df-rmo 2463  df-rab 2464  df-v 2739  df-sbc 2963  df-csb 3058  df-dif 3131  df-un 3133  df-in 3135  df-ss 3142  df-nul 3423  df-pw 3577  df-sn 3598  df-pr 3599  df-op 3601  df-uni 3810  df-int 3845  df-iun 3888  df-br 4004  df-opab 4065  df-mpt 4066  df-id 4293  df-xp 4632  df-rel 4633  df-cnv 4634  df-co 4635  df-dm 4636  df-rn 4637  df-res 4638  df-ima 4639  df-iota 5178  df-fun 5218  df-fn 5219  df-f 5220  df-f1 5221  df-fo 5222  df-f1o 5223  df-fv 5224  df-riota 5830  df-ov 5877  df-oprab 5878  df-mpo 5879  df-tpos 6245  df-pnf 7993  df-mnf 7994  df-ltxr 7996  df-inn 8919  df-2 8977  df-3 8978  df-ndx 12464  df-slot 12465  df-base 12467  df-sets 12468  df-plusg 12548  df-mulr 12549  df-0g 12706  df-mgm 12774  df-sgrp 12807  df-mnd 12817  df-grp 12879  df-minusg 12880  df-cmn 13088  df-abl 13089  df-mgp 13129  df-ur 13141  df-srg 13145  df-ring 13179  df-oppr 13238  df-dvdsr 13256  df-unit 13257
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator