ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  opprunitd Unicode version

Theorem opprunitd 13987
Description: Being a unit is a symmetric property, so it transfers to the opposite ring. (Contributed by Mario Carneiro, 4-Dec-2014.)
Hypotheses
Ref Expression
opprunitd.1  |-  ( ph  ->  U  =  (Unit `  R ) )
opprunitd.2  |-  ( ph  ->  S  =  (oppr `  R
) )
opprunitd.r  |-  ( ph  ->  R  e.  Ring )
Assertion
Ref Expression
opprunitd  |-  ( ph  ->  U  =  (Unit `  S ) )

Proof of Theorem opprunitd
Dummy variables  y  x are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 opprunitd.1 . . . . . 6  |-  ( ph  ->  U  =  (Unit `  R ) )
2 eqidd 2208 . . . . . 6  |-  ( ph  ->  ( 1r `  R
)  =  ( 1r
`  R ) )
3 eqidd 2208 . . . . . 6  |-  ( ph  ->  ( ||r `
 R )  =  ( ||r `
 R ) )
4 opprunitd.2 . . . . . 6  |-  ( ph  ->  S  =  (oppr `  R
) )
5 eqidd 2208 . . . . . 6  |-  ( ph  ->  ( ||r `
 S )  =  ( ||r `
 S ) )
6 opprunitd.r . . . . . . 7  |-  ( ph  ->  R  e.  Ring )
7 ringsrg 13924 . . . . . . 7  |-  ( R  e.  Ring  ->  R  e. SRing
)
86, 7syl 14 . . . . . 6  |-  ( ph  ->  R  e. SRing )
91, 2, 3, 4, 5, 8isunitd 13983 . . . . 5  |-  ( ph  ->  ( x  e.  U  <->  ( x ( ||r `
 R ) ( 1r `  R )  /\  x ( ||r `  S
) ( 1r `  R ) ) ) )
10 eqid 2207 . . . . . . . . . . . . . . 15  |-  (oppr `  R
)  =  (oppr `  R
)
1110opprring 13956 . . . . . . . . . . . . . 14  |-  ( R  e.  Ring  ->  (oppr `  R
)  e.  Ring )
126, 11syl 14 . . . . . . . . . . . . 13  |-  ( ph  ->  (oppr
`  R )  e. 
Ring )
134, 12eqeltrd 2284 . . . . . . . . . . . 12  |-  ( ph  ->  S  e.  Ring )
14 vex 2779 . . . . . . . . . . . . 13  |-  y  e. 
_V
1514a1i 9 . . . . . . . . . . . 12  |-  ( ph  ->  y  e.  _V )
16 vex 2779 . . . . . . . . . . . . 13  |-  x  e. 
_V
1716a1i 9 . . . . . . . . . . . 12  |-  ( ph  ->  x  e.  _V )
18 eqid 2207 . . . . . . . . . . . . 13  |-  ( Base `  S )  =  (
Base `  S )
19 eqid 2207 . . . . . . . . . . . . 13  |-  ( .r
`  S )  =  ( .r `  S
)
20 eqid 2207 . . . . . . . . . . . . 13  |-  (oppr `  S
)  =  (oppr `  S
)
21 eqid 2207 . . . . . . . . . . . . 13  |-  ( .r
`  (oppr
`  S ) )  =  ( .r `  (oppr `  S ) )
2218, 19, 20, 21opprmulg 13948 . . . . . . . . . . . 12  |-  ( ( S  e.  Ring  /\  y  e.  _V  /\  x  e. 
_V )  ->  (
y ( .r `  (oppr `  S ) ) x )  =  ( x ( .r `  S
) y ) )
2313, 15, 17, 22syl3anc 1250 . . . . . . . . . . 11  |-  ( ph  ->  ( y ( .r
`  (oppr
`  S ) ) x )  =  ( x ( .r `  S ) y ) )
244fveq2d 5603 . . . . . . . . . . . 12  |-  ( ph  ->  ( .r `  S
)  =  ( .r
`  (oppr
`  R ) ) )
2524oveqd 5984 . . . . . . . . . . 11  |-  ( ph  ->  ( x ( .r
`  S ) y )  =  ( x ( .r `  (oppr `  R
) ) y ) )
26 eqid 2207 . . . . . . . . . . . . 13  |-  ( Base `  R )  =  (
Base `  R )
27 eqid 2207 . . . . . . . . . . . . 13  |-  ( .r
`  R )  =  ( .r `  R
)
28 eqid 2207 . . . . . . . . . . . . 13  |-  ( .r
`  (oppr
`  R ) )  =  ( .r `  (oppr `  R ) )
2926, 27, 10, 28opprmulg 13948 . . . . . . . . . . . 12  |-  ( ( R  e.  Ring  /\  x  e.  _V  /\  y  e. 
_V )  ->  (
x ( .r `  (oppr `  R ) ) y )  =  ( y ( .r `  R
) x ) )
306, 17, 15, 29syl3anc 1250 . . . . . . . . . . 11  |-  ( ph  ->  ( x ( .r
`  (oppr
`  R ) ) y )  =  ( y ( .r `  R ) x ) )
3123, 25, 303eqtrrd 2245 . . . . . . . . . 10  |-  ( ph  ->  ( y ( .r
`  R ) x )  =  ( y ( .r `  (oppr `  S
) ) x ) )
3231eqeq1d 2216 . . . . . . . . 9  |-  ( ph  ->  ( ( y ( .r `  R ) x )  =  ( 1r `  R )  <-> 
( y ( .r
`  (oppr
`  S ) ) x )  =  ( 1r `  R ) ) )
3332rexbidv 2509 . . . . . . . 8  |-  ( ph  ->  ( E. y  e.  ( Base `  R
) ( y ( .r `  R ) x )  =  ( 1r `  R )  <->  E. y  e.  ( Base `  R ) ( y ( .r `  (oppr `  S ) ) x )  =  ( 1r
`  R ) ) )
3433anbi2d 464 . . . . . . 7  |-  ( ph  ->  ( ( x  e.  ( Base `  R
)  /\  E. y  e.  ( Base `  R
) ( y ( .r `  R ) x )  =  ( 1r `  R ) )  <->  ( x  e.  ( Base `  R
)  /\  E. y  e.  ( Base `  R
) ( y ( .r `  (oppr `  S
) ) x )  =  ( 1r `  R ) ) ) )
35 eqidd 2208 . . . . . . . 8  |-  ( ph  ->  ( Base `  R
)  =  ( Base `  R ) )
36 eqidd 2208 . . . . . . . 8  |-  ( ph  ->  ( .r `  R
)  =  ( .r
`  R ) )
3735, 3, 8, 36dvdsrd 13971 . . . . . . 7  |-  ( ph  ->  ( x ( ||r `  R
) ( 1r `  R )  <->  ( x  e.  ( Base `  R
)  /\  E. y  e.  ( Base `  R
) ( y ( .r `  R ) x )  =  ( 1r `  R ) ) ) )
3810, 26opprbasg 13952 . . . . . . . . . 10  |-  ( R  e. SRing  ->  ( Base `  R
)  =  ( Base `  (oppr
`  R ) ) )
398, 38syl 14 . . . . . . . . 9  |-  ( ph  ->  ( Base `  R
)  =  ( Base `  (oppr
`  R ) ) )
404fveq2d 5603 . . . . . . . . 9  |-  ( ph  ->  ( Base `  S
)  =  ( Base `  (oppr
`  R ) ) )
4120, 18opprbasg 13952 . . . . . . . . . 10  |-  ( S  e.  Ring  ->  ( Base `  S )  =  (
Base `  (oppr
`  S ) ) )
4213, 41syl 14 . . . . . . . . 9  |-  ( ph  ->  ( Base `  S
)  =  ( Base `  (oppr
`  S ) ) )
4339, 40, 423eqtr2d 2246 . . . . . . . 8  |-  ( ph  ->  ( Base `  R
)  =  ( Base `  (oppr
`  S ) ) )
44 eqidd 2208 . . . . . . . 8  |-  ( ph  ->  ( ||r `
 (oppr
`  S ) )  =  ( ||r `
 (oppr
`  S ) ) )
4520opprring 13956 . . . . . . . . . 10  |-  ( S  e.  Ring  ->  (oppr `  S
)  e.  Ring )
4613, 45syl 14 . . . . . . . . 9  |-  ( ph  ->  (oppr
`  S )  e. 
Ring )
47 ringsrg 13924 . . . . . . . . 9  |-  ( (oppr `  S )  e.  Ring  -> 
(oppr `  S )  e. SRing )
4846, 47syl 14 . . . . . . . 8  |-  ( ph  ->  (oppr
`  S )  e. SRing
)
49 eqidd 2208 . . . . . . . 8  |-  ( ph  ->  ( .r `  (oppr `  S
) )  =  ( .r `  (oppr `  S
) ) )
5043, 44, 48, 49dvdsrd 13971 . . . . . . 7  |-  ( ph  ->  ( x ( ||r `  (oppr `  S
) ) ( 1r
`  R )  <->  ( x  e.  ( Base `  R
)  /\  E. y  e.  ( Base `  R
) ( y ( .r `  (oppr `  S
) ) x )  =  ( 1r `  R ) ) ) )
5134, 37, 503bitr4d 220 . . . . . 6  |-  ( ph  ->  ( x ( ||r `  R
) ( 1r `  R )  <->  x ( ||r `  (oppr
`  S ) ) ( 1r `  R
) ) )
5251anbi1d 465 . . . . 5  |-  ( ph  ->  ( ( x (
||r `  R ) ( 1r
`  R )  /\  x ( ||r `
 S ) ( 1r `  R ) )  <->  ( x (
||r `  (oppr
`  S ) ) ( 1r `  R
)  /\  x ( ||r `  S ) ( 1r
`  R ) ) ) )
539, 52bitrd 188 . . . 4  |-  ( ph  ->  ( x  e.  U  <->  ( x ( ||r `
 (oppr
`  S ) ) ( 1r `  R
)  /\  x ( ||r `  S ) ( 1r
`  R ) ) ) )
5453biancomd 271 . . 3  |-  ( ph  ->  ( x  e.  U  <->  ( x ( ||r `
 S ) ( 1r `  R )  /\  x ( ||r `  (oppr `  S
) ) ( 1r
`  R ) ) ) )
55 eqidd 2208 . . . 4  |-  ( ph  ->  (Unit `  S )  =  (Unit `  S )
)
56 eqid 2207 . . . . . . 7  |-  ( 1r
`  R )  =  ( 1r `  R
)
5710, 56oppr1g 13959 . . . . . 6  |-  ( R  e.  Ring  ->  ( 1r
`  R )  =  ( 1r `  (oppr `  R
) ) )
586, 57syl 14 . . . . 5  |-  ( ph  ->  ( 1r `  R
)  =  ( 1r
`  (oppr
`  R ) ) )
594fveq2d 5603 . . . . 5  |-  ( ph  ->  ( 1r `  S
)  =  ( 1r
`  (oppr
`  R ) ) )
6058, 59eqtr4d 2243 . . . 4  |-  ( ph  ->  ( 1r `  R
)  =  ( 1r
`  S ) )
61 eqidd 2208 . . . 4  |-  ( ph  ->  (oppr
`  S )  =  (oppr
`  S ) )
62 ringsrg 13924 . . . . 5  |-  ( S  e.  Ring  ->  S  e. SRing
)
6313, 62syl 14 . . . 4  |-  ( ph  ->  S  e. SRing )
6455, 60, 5, 61, 44, 63isunitd 13983 . . 3  |-  ( ph  ->  ( x  e.  (Unit `  S )  <->  ( x
( ||r `
 S ) ( 1r `  R )  /\  x ( ||r `  (oppr `  S
) ) ( 1r
`  R ) ) ) )
6554, 64bitr4d 191 . 2  |-  ( ph  ->  ( x  e.  U  <->  x  e.  (Unit `  S
) ) )
6665eqrdv 2205 1  |-  ( ph  ->  U  =  (Unit `  S ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1373    e. wcel 2178   E.wrex 2487   _Vcvv 2776   class class class wbr 4059   ` cfv 5290  (class class class)co 5967   Basecbs 12947   .rcmulr 13025   1rcur 13836  SRingcsrg 13840   Ringcrg 13873  opprcoppr 13944   ||rcdsr 13963  Unitcui 13964
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2180  ax-14 2181  ax-ext 2189  ax-coll 4175  ax-sep 4178  ax-nul 4186  ax-pow 4234  ax-pr 4269  ax-un 4498  ax-setind 4603  ax-cnex 8051  ax-resscn 8052  ax-1cn 8053  ax-1re 8054  ax-icn 8055  ax-addcl 8056  ax-addrcl 8057  ax-mulcl 8058  ax-addcom 8060  ax-addass 8062  ax-i2m1 8065  ax-0lt1 8066  ax-0id 8068  ax-rnegex 8069  ax-pre-ltirr 8072  ax-pre-lttrn 8074  ax-pre-ltadd 8076
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-ne 2379  df-nel 2474  df-ral 2491  df-rex 2492  df-reu 2493  df-rmo 2494  df-rab 2495  df-v 2778  df-sbc 3006  df-csb 3102  df-dif 3176  df-un 3178  df-in 3180  df-ss 3187  df-nul 3469  df-pw 3628  df-sn 3649  df-pr 3650  df-op 3652  df-uni 3865  df-int 3900  df-iun 3943  df-br 4060  df-opab 4122  df-mpt 4123  df-id 4358  df-xp 4699  df-rel 4700  df-cnv 4701  df-co 4702  df-dm 4703  df-rn 4704  df-res 4705  df-ima 4706  df-iota 5251  df-fun 5292  df-fn 5293  df-f 5294  df-f1 5295  df-fo 5296  df-f1o 5297  df-fv 5298  df-riota 5922  df-ov 5970  df-oprab 5971  df-mpo 5972  df-tpos 6354  df-pnf 8144  df-mnf 8145  df-ltxr 8147  df-inn 9072  df-2 9130  df-3 9131  df-ndx 12950  df-slot 12951  df-base 12953  df-sets 12954  df-plusg 13037  df-mulr 13038  df-0g 13205  df-mgm 13303  df-sgrp 13349  df-mnd 13364  df-grp 13450  df-minusg 13451  df-cmn 13737  df-abl 13738  df-mgp 13798  df-ur 13837  df-srg 13841  df-ring 13875  df-oppr 13945  df-dvdsr 13966  df-unit 13967
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator