ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  opprunitd Unicode version

Theorem opprunitd 14074
Description: Being a unit is a symmetric property, so it transfers to the opposite ring. (Contributed by Mario Carneiro, 4-Dec-2014.)
Hypotheses
Ref Expression
opprunitd.1  |-  ( ph  ->  U  =  (Unit `  R ) )
opprunitd.2  |-  ( ph  ->  S  =  (oppr `  R
) )
opprunitd.r  |-  ( ph  ->  R  e.  Ring )
Assertion
Ref Expression
opprunitd  |-  ( ph  ->  U  =  (Unit `  S ) )

Proof of Theorem opprunitd
Dummy variables  y  x are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 opprunitd.1 . . . . . 6  |-  ( ph  ->  U  =  (Unit `  R ) )
2 eqidd 2230 . . . . . 6  |-  ( ph  ->  ( 1r `  R
)  =  ( 1r
`  R ) )
3 eqidd 2230 . . . . . 6  |-  ( ph  ->  ( ||r `
 R )  =  ( ||r `
 R ) )
4 opprunitd.2 . . . . . 6  |-  ( ph  ->  S  =  (oppr `  R
) )
5 eqidd 2230 . . . . . 6  |-  ( ph  ->  ( ||r `
 S )  =  ( ||r `
 S ) )
6 opprunitd.r . . . . . . 7  |-  ( ph  ->  R  e.  Ring )
7 ringsrg 14010 . . . . . . 7  |-  ( R  e.  Ring  ->  R  e. SRing
)
86, 7syl 14 . . . . . 6  |-  ( ph  ->  R  e. SRing )
91, 2, 3, 4, 5, 8isunitd 14070 . . . . 5  |-  ( ph  ->  ( x  e.  U  <->  ( x ( ||r `
 R ) ( 1r `  R )  /\  x ( ||r `  S
) ( 1r `  R ) ) ) )
10 eqid 2229 . . . . . . . . . . . . . . 15  |-  (oppr `  R
)  =  (oppr `  R
)
1110opprring 14042 . . . . . . . . . . . . . 14  |-  ( R  e.  Ring  ->  (oppr `  R
)  e.  Ring )
126, 11syl 14 . . . . . . . . . . . . 13  |-  ( ph  ->  (oppr
`  R )  e. 
Ring )
134, 12eqeltrd 2306 . . . . . . . . . . . 12  |-  ( ph  ->  S  e.  Ring )
14 vex 2802 . . . . . . . . . . . . 13  |-  y  e. 
_V
1514a1i 9 . . . . . . . . . . . 12  |-  ( ph  ->  y  e.  _V )
16 vex 2802 . . . . . . . . . . . . 13  |-  x  e. 
_V
1716a1i 9 . . . . . . . . . . . 12  |-  ( ph  ->  x  e.  _V )
18 eqid 2229 . . . . . . . . . . . . 13  |-  ( Base `  S )  =  (
Base `  S )
19 eqid 2229 . . . . . . . . . . . . 13  |-  ( .r
`  S )  =  ( .r `  S
)
20 eqid 2229 . . . . . . . . . . . . 13  |-  (oppr `  S
)  =  (oppr `  S
)
21 eqid 2229 . . . . . . . . . . . . 13  |-  ( .r
`  (oppr
`  S ) )  =  ( .r `  (oppr `  S ) )
2218, 19, 20, 21opprmulg 14034 . . . . . . . . . . . 12  |-  ( ( S  e.  Ring  /\  y  e.  _V  /\  x  e. 
_V )  ->  (
y ( .r `  (oppr `  S ) ) x )  =  ( x ( .r `  S
) y ) )
2313, 15, 17, 22syl3anc 1271 . . . . . . . . . . 11  |-  ( ph  ->  ( y ( .r
`  (oppr
`  S ) ) x )  =  ( x ( .r `  S ) y ) )
244fveq2d 5631 . . . . . . . . . . . 12  |-  ( ph  ->  ( .r `  S
)  =  ( .r
`  (oppr
`  R ) ) )
2524oveqd 6018 . . . . . . . . . . 11  |-  ( ph  ->  ( x ( .r
`  S ) y )  =  ( x ( .r `  (oppr `  R
) ) y ) )
26 eqid 2229 . . . . . . . . . . . . 13  |-  ( Base `  R )  =  (
Base `  R )
27 eqid 2229 . . . . . . . . . . . . 13  |-  ( .r
`  R )  =  ( .r `  R
)
28 eqid 2229 . . . . . . . . . . . . 13  |-  ( .r
`  (oppr
`  R ) )  =  ( .r `  (oppr `  R ) )
2926, 27, 10, 28opprmulg 14034 . . . . . . . . . . . 12  |-  ( ( R  e.  Ring  /\  x  e.  _V  /\  y  e. 
_V )  ->  (
x ( .r `  (oppr `  R ) ) y )  =  ( y ( .r `  R
) x ) )
306, 17, 15, 29syl3anc 1271 . . . . . . . . . . 11  |-  ( ph  ->  ( x ( .r
`  (oppr
`  R ) ) y )  =  ( y ( .r `  R ) x ) )
3123, 25, 303eqtrrd 2267 . . . . . . . . . 10  |-  ( ph  ->  ( y ( .r
`  R ) x )  =  ( y ( .r `  (oppr `  S
) ) x ) )
3231eqeq1d 2238 . . . . . . . . 9  |-  ( ph  ->  ( ( y ( .r `  R ) x )  =  ( 1r `  R )  <-> 
( y ( .r
`  (oppr
`  S ) ) x )  =  ( 1r `  R ) ) )
3332rexbidv 2531 . . . . . . . 8  |-  ( ph  ->  ( E. y  e.  ( Base `  R
) ( y ( .r `  R ) x )  =  ( 1r `  R )  <->  E. y  e.  ( Base `  R ) ( y ( .r `  (oppr `  S ) ) x )  =  ( 1r
`  R ) ) )
3433anbi2d 464 . . . . . . 7  |-  ( ph  ->  ( ( x  e.  ( Base `  R
)  /\  E. y  e.  ( Base `  R
) ( y ( .r `  R ) x )  =  ( 1r `  R ) )  <->  ( x  e.  ( Base `  R
)  /\  E. y  e.  ( Base `  R
) ( y ( .r `  (oppr `  S
) ) x )  =  ( 1r `  R ) ) ) )
35 eqidd 2230 . . . . . . . 8  |-  ( ph  ->  ( Base `  R
)  =  ( Base `  R ) )
36 eqidd 2230 . . . . . . . 8  |-  ( ph  ->  ( .r `  R
)  =  ( .r
`  R ) )
3735, 3, 8, 36dvdsrd 14058 . . . . . . 7  |-  ( ph  ->  ( x ( ||r `  R
) ( 1r `  R )  <->  ( x  e.  ( Base `  R
)  /\  E. y  e.  ( Base `  R
) ( y ( .r `  R ) x )  =  ( 1r `  R ) ) ) )
3810, 26opprbasg 14038 . . . . . . . . . 10  |-  ( R  e. SRing  ->  ( Base `  R
)  =  ( Base `  (oppr
`  R ) ) )
398, 38syl 14 . . . . . . . . 9  |-  ( ph  ->  ( Base `  R
)  =  ( Base `  (oppr
`  R ) ) )
404fveq2d 5631 . . . . . . . . 9  |-  ( ph  ->  ( Base `  S
)  =  ( Base `  (oppr
`  R ) ) )
4120, 18opprbasg 14038 . . . . . . . . . 10  |-  ( S  e.  Ring  ->  ( Base `  S )  =  (
Base `  (oppr
`  S ) ) )
4213, 41syl 14 . . . . . . . . 9  |-  ( ph  ->  ( Base `  S
)  =  ( Base `  (oppr
`  S ) ) )
4339, 40, 423eqtr2d 2268 . . . . . . . 8  |-  ( ph  ->  ( Base `  R
)  =  ( Base `  (oppr
`  S ) ) )
44 eqidd 2230 . . . . . . . 8  |-  ( ph  ->  ( ||r `
 (oppr
`  S ) )  =  ( ||r `
 (oppr
`  S ) ) )
4520opprring 14042 . . . . . . . . . 10  |-  ( S  e.  Ring  ->  (oppr `  S
)  e.  Ring )
4613, 45syl 14 . . . . . . . . 9  |-  ( ph  ->  (oppr
`  S )  e. 
Ring )
47 ringsrg 14010 . . . . . . . . 9  |-  ( (oppr `  S )  e.  Ring  -> 
(oppr `  S )  e. SRing )
4846, 47syl 14 . . . . . . . 8  |-  ( ph  ->  (oppr
`  S )  e. SRing
)
49 eqidd 2230 . . . . . . . 8  |-  ( ph  ->  ( .r `  (oppr `  S
) )  =  ( .r `  (oppr `  S
) ) )
5043, 44, 48, 49dvdsrd 14058 . . . . . . 7  |-  ( ph  ->  ( x ( ||r `  (oppr `  S
) ) ( 1r
`  R )  <->  ( x  e.  ( Base `  R
)  /\  E. y  e.  ( Base `  R
) ( y ( .r `  (oppr `  S
) ) x )  =  ( 1r `  R ) ) ) )
5134, 37, 503bitr4d 220 . . . . . 6  |-  ( ph  ->  ( x ( ||r `  R
) ( 1r `  R )  <->  x ( ||r `  (oppr
`  S ) ) ( 1r `  R
) ) )
5251anbi1d 465 . . . . 5  |-  ( ph  ->  ( ( x (
||r `  R ) ( 1r
`  R )  /\  x ( ||r `
 S ) ( 1r `  R ) )  <->  ( x (
||r `  (oppr
`  S ) ) ( 1r `  R
)  /\  x ( ||r `  S ) ( 1r
`  R ) ) ) )
539, 52bitrd 188 . . . 4  |-  ( ph  ->  ( x  e.  U  <->  ( x ( ||r `
 (oppr
`  S ) ) ( 1r `  R
)  /\  x ( ||r `  S ) ( 1r
`  R ) ) ) )
5453biancomd 271 . . 3  |-  ( ph  ->  ( x  e.  U  <->  ( x ( ||r `
 S ) ( 1r `  R )  /\  x ( ||r `  (oppr `  S
) ) ( 1r
`  R ) ) ) )
55 eqidd 2230 . . . 4  |-  ( ph  ->  (Unit `  S )  =  (Unit `  S )
)
56 eqid 2229 . . . . . . 7  |-  ( 1r
`  R )  =  ( 1r `  R
)
5710, 56oppr1g 14045 . . . . . 6  |-  ( R  e.  Ring  ->  ( 1r
`  R )  =  ( 1r `  (oppr `  R
) ) )
586, 57syl 14 . . . . 5  |-  ( ph  ->  ( 1r `  R
)  =  ( 1r
`  (oppr
`  R ) ) )
594fveq2d 5631 . . . . 5  |-  ( ph  ->  ( 1r `  S
)  =  ( 1r
`  (oppr
`  R ) ) )
6058, 59eqtr4d 2265 . . . 4  |-  ( ph  ->  ( 1r `  R
)  =  ( 1r
`  S ) )
61 eqidd 2230 . . . 4  |-  ( ph  ->  (oppr
`  S )  =  (oppr
`  S ) )
62 ringsrg 14010 . . . . 5  |-  ( S  e.  Ring  ->  S  e. SRing
)
6313, 62syl 14 . . . 4  |-  ( ph  ->  S  e. SRing )
6455, 60, 5, 61, 44, 63isunitd 14070 . . 3  |-  ( ph  ->  ( x  e.  (Unit `  S )  <->  ( x
( ||r `
 S ) ( 1r `  R )  /\  x ( ||r `  (oppr `  S
) ) ( 1r
`  R ) ) ) )
6554, 64bitr4d 191 . 2  |-  ( ph  ->  ( x  e.  U  <->  x  e.  (Unit `  S
) ) )
6665eqrdv 2227 1  |-  ( ph  ->  U  =  (Unit `  S ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1395    e. wcel 2200   E.wrex 2509   _Vcvv 2799   class class class wbr 4083   ` cfv 5318  (class class class)co 6001   Basecbs 13032   .rcmulr 13111   1rcur 13922  SRingcsrg 13926   Ringcrg 13959  opprcoppr 14030   ||rcdsr 14049  Unitcui 14050
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-coll 4199  ax-sep 4202  ax-nul 4210  ax-pow 4258  ax-pr 4293  ax-un 4524  ax-setind 4629  ax-cnex 8090  ax-resscn 8091  ax-1cn 8092  ax-1re 8093  ax-icn 8094  ax-addcl 8095  ax-addrcl 8096  ax-mulcl 8097  ax-addcom 8099  ax-addass 8101  ax-i2m1 8104  ax-0lt1 8105  ax-0id 8107  ax-rnegex 8108  ax-pre-ltirr 8111  ax-pre-lttrn 8113  ax-pre-ltadd 8115
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-nel 2496  df-ral 2513  df-rex 2514  df-reu 2515  df-rmo 2516  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3889  df-int 3924  df-iun 3967  df-br 4084  df-opab 4146  df-mpt 4147  df-id 4384  df-xp 4725  df-rel 4726  df-cnv 4727  df-co 4728  df-dm 4729  df-rn 4730  df-res 4731  df-ima 4732  df-iota 5278  df-fun 5320  df-fn 5321  df-f 5322  df-f1 5323  df-fo 5324  df-f1o 5325  df-fv 5326  df-riota 5954  df-ov 6004  df-oprab 6005  df-mpo 6006  df-tpos 6391  df-pnf 8183  df-mnf 8184  df-ltxr 8186  df-inn 9111  df-2 9169  df-3 9170  df-ndx 13035  df-slot 13036  df-base 13038  df-sets 13039  df-plusg 13123  df-mulr 13124  df-0g 13291  df-mgm 13389  df-sgrp 13435  df-mnd 13450  df-grp 13536  df-minusg 13537  df-cmn 13823  df-abl 13824  df-mgp 13884  df-ur 13923  df-srg 13927  df-ring 13961  df-oppr 14031  df-dvdsr 14052  df-unit 14053
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator