ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  opprunitd Unicode version

Theorem opprunitd 13742
Description: Being a unit is a symmetric property, so it transfers to the opposite ring. (Contributed by Mario Carneiro, 4-Dec-2014.)
Hypotheses
Ref Expression
opprunitd.1  |-  ( ph  ->  U  =  (Unit `  R ) )
opprunitd.2  |-  ( ph  ->  S  =  (oppr `  R
) )
opprunitd.r  |-  ( ph  ->  R  e.  Ring )
Assertion
Ref Expression
opprunitd  |-  ( ph  ->  U  =  (Unit `  S ) )

Proof of Theorem opprunitd
Dummy variables  y  x are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 opprunitd.1 . . . . . 6  |-  ( ph  ->  U  =  (Unit `  R ) )
2 eqidd 2197 . . . . . 6  |-  ( ph  ->  ( 1r `  R
)  =  ( 1r
`  R ) )
3 eqidd 2197 . . . . . 6  |-  ( ph  ->  ( ||r `
 R )  =  ( ||r `
 R ) )
4 opprunitd.2 . . . . . 6  |-  ( ph  ->  S  =  (oppr `  R
) )
5 eqidd 2197 . . . . . 6  |-  ( ph  ->  ( ||r `
 S )  =  ( ||r `
 S ) )
6 opprunitd.r . . . . . . 7  |-  ( ph  ->  R  e.  Ring )
7 ringsrg 13679 . . . . . . 7  |-  ( R  e.  Ring  ->  R  e. SRing
)
86, 7syl 14 . . . . . 6  |-  ( ph  ->  R  e. SRing )
91, 2, 3, 4, 5, 8isunitd 13738 . . . . 5  |-  ( ph  ->  ( x  e.  U  <->  ( x ( ||r `
 R ) ( 1r `  R )  /\  x ( ||r `  S
) ( 1r `  R ) ) ) )
10 eqid 2196 . . . . . . . . . . . . . . 15  |-  (oppr `  R
)  =  (oppr `  R
)
1110opprring 13711 . . . . . . . . . . . . . 14  |-  ( R  e.  Ring  ->  (oppr `  R
)  e.  Ring )
126, 11syl 14 . . . . . . . . . . . . 13  |-  ( ph  ->  (oppr
`  R )  e. 
Ring )
134, 12eqeltrd 2273 . . . . . . . . . . . 12  |-  ( ph  ->  S  e.  Ring )
14 vex 2766 . . . . . . . . . . . . 13  |-  y  e. 
_V
1514a1i 9 . . . . . . . . . . . 12  |-  ( ph  ->  y  e.  _V )
16 vex 2766 . . . . . . . . . . . . 13  |-  x  e. 
_V
1716a1i 9 . . . . . . . . . . . 12  |-  ( ph  ->  x  e.  _V )
18 eqid 2196 . . . . . . . . . . . . 13  |-  ( Base `  S )  =  (
Base `  S )
19 eqid 2196 . . . . . . . . . . . . 13  |-  ( .r
`  S )  =  ( .r `  S
)
20 eqid 2196 . . . . . . . . . . . . 13  |-  (oppr `  S
)  =  (oppr `  S
)
21 eqid 2196 . . . . . . . . . . . . 13  |-  ( .r
`  (oppr
`  S ) )  =  ( .r `  (oppr `  S ) )
2218, 19, 20, 21opprmulg 13703 . . . . . . . . . . . 12  |-  ( ( S  e.  Ring  /\  y  e.  _V  /\  x  e. 
_V )  ->  (
y ( .r `  (oppr `  S ) ) x )  =  ( x ( .r `  S
) y ) )
2313, 15, 17, 22syl3anc 1249 . . . . . . . . . . 11  |-  ( ph  ->  ( y ( .r
`  (oppr
`  S ) ) x )  =  ( x ( .r `  S ) y ) )
244fveq2d 5565 . . . . . . . . . . . 12  |-  ( ph  ->  ( .r `  S
)  =  ( .r
`  (oppr
`  R ) ) )
2524oveqd 5942 . . . . . . . . . . 11  |-  ( ph  ->  ( x ( .r
`  S ) y )  =  ( x ( .r `  (oppr `  R
) ) y ) )
26 eqid 2196 . . . . . . . . . . . . 13  |-  ( Base `  R )  =  (
Base `  R )
27 eqid 2196 . . . . . . . . . . . . 13  |-  ( .r
`  R )  =  ( .r `  R
)
28 eqid 2196 . . . . . . . . . . . . 13  |-  ( .r
`  (oppr
`  R ) )  =  ( .r `  (oppr `  R ) )
2926, 27, 10, 28opprmulg 13703 . . . . . . . . . . . 12  |-  ( ( R  e.  Ring  /\  x  e.  _V  /\  y  e. 
_V )  ->  (
x ( .r `  (oppr `  R ) ) y )  =  ( y ( .r `  R
) x ) )
306, 17, 15, 29syl3anc 1249 . . . . . . . . . . 11  |-  ( ph  ->  ( x ( .r
`  (oppr
`  R ) ) y )  =  ( y ( .r `  R ) x ) )
3123, 25, 303eqtrrd 2234 . . . . . . . . . 10  |-  ( ph  ->  ( y ( .r
`  R ) x )  =  ( y ( .r `  (oppr `  S
) ) x ) )
3231eqeq1d 2205 . . . . . . . . 9  |-  ( ph  ->  ( ( y ( .r `  R ) x )  =  ( 1r `  R )  <-> 
( y ( .r
`  (oppr
`  S ) ) x )  =  ( 1r `  R ) ) )
3332rexbidv 2498 . . . . . . . 8  |-  ( ph  ->  ( E. y  e.  ( Base `  R
) ( y ( .r `  R ) x )  =  ( 1r `  R )  <->  E. y  e.  ( Base `  R ) ( y ( .r `  (oppr `  S ) ) x )  =  ( 1r
`  R ) ) )
3433anbi2d 464 . . . . . . 7  |-  ( ph  ->  ( ( x  e.  ( Base `  R
)  /\  E. y  e.  ( Base `  R
) ( y ( .r `  R ) x )  =  ( 1r `  R ) )  <->  ( x  e.  ( Base `  R
)  /\  E. y  e.  ( Base `  R
) ( y ( .r `  (oppr `  S
) ) x )  =  ( 1r `  R ) ) ) )
35 eqidd 2197 . . . . . . . 8  |-  ( ph  ->  ( Base `  R
)  =  ( Base `  R ) )
36 eqidd 2197 . . . . . . . 8  |-  ( ph  ->  ( .r `  R
)  =  ( .r
`  R ) )
3735, 3, 8, 36dvdsrd 13726 . . . . . . 7  |-  ( ph  ->  ( x ( ||r `  R
) ( 1r `  R )  <->  ( x  e.  ( Base `  R
)  /\  E. y  e.  ( Base `  R
) ( y ( .r `  R ) x )  =  ( 1r `  R ) ) ) )
3810, 26opprbasg 13707 . . . . . . . . . 10  |-  ( R  e. SRing  ->  ( Base `  R
)  =  ( Base `  (oppr
`  R ) ) )
398, 38syl 14 . . . . . . . . 9  |-  ( ph  ->  ( Base `  R
)  =  ( Base `  (oppr
`  R ) ) )
404fveq2d 5565 . . . . . . . . 9  |-  ( ph  ->  ( Base `  S
)  =  ( Base `  (oppr
`  R ) ) )
4120, 18opprbasg 13707 . . . . . . . . . 10  |-  ( S  e.  Ring  ->  ( Base `  S )  =  (
Base `  (oppr
`  S ) ) )
4213, 41syl 14 . . . . . . . . 9  |-  ( ph  ->  ( Base `  S
)  =  ( Base `  (oppr
`  S ) ) )
4339, 40, 423eqtr2d 2235 . . . . . . . 8  |-  ( ph  ->  ( Base `  R
)  =  ( Base `  (oppr
`  S ) ) )
44 eqidd 2197 . . . . . . . 8  |-  ( ph  ->  ( ||r `
 (oppr
`  S ) )  =  ( ||r `
 (oppr
`  S ) ) )
4520opprring 13711 . . . . . . . . . 10  |-  ( S  e.  Ring  ->  (oppr `  S
)  e.  Ring )
4613, 45syl 14 . . . . . . . . 9  |-  ( ph  ->  (oppr
`  S )  e. 
Ring )
47 ringsrg 13679 . . . . . . . . 9  |-  ( (oppr `  S )  e.  Ring  -> 
(oppr `  S )  e. SRing )
4846, 47syl 14 . . . . . . . 8  |-  ( ph  ->  (oppr
`  S )  e. SRing
)
49 eqidd 2197 . . . . . . . 8  |-  ( ph  ->  ( .r `  (oppr `  S
) )  =  ( .r `  (oppr `  S
) ) )
5043, 44, 48, 49dvdsrd 13726 . . . . . . 7  |-  ( ph  ->  ( x ( ||r `  (oppr `  S
) ) ( 1r
`  R )  <->  ( x  e.  ( Base `  R
)  /\  E. y  e.  ( Base `  R
) ( y ( .r `  (oppr `  S
) ) x )  =  ( 1r `  R ) ) ) )
5134, 37, 503bitr4d 220 . . . . . 6  |-  ( ph  ->  ( x ( ||r `  R
) ( 1r `  R )  <->  x ( ||r `  (oppr
`  S ) ) ( 1r `  R
) ) )
5251anbi1d 465 . . . . 5  |-  ( ph  ->  ( ( x (
||r `  R ) ( 1r
`  R )  /\  x ( ||r `
 S ) ( 1r `  R ) )  <->  ( x (
||r `  (oppr
`  S ) ) ( 1r `  R
)  /\  x ( ||r `  S ) ( 1r
`  R ) ) ) )
539, 52bitrd 188 . . . 4  |-  ( ph  ->  ( x  e.  U  <->  ( x ( ||r `
 (oppr
`  S ) ) ( 1r `  R
)  /\  x ( ||r `  S ) ( 1r
`  R ) ) ) )
5453biancomd 271 . . 3  |-  ( ph  ->  ( x  e.  U  <->  ( x ( ||r `
 S ) ( 1r `  R )  /\  x ( ||r `  (oppr `  S
) ) ( 1r
`  R ) ) ) )
55 eqidd 2197 . . . 4  |-  ( ph  ->  (Unit `  S )  =  (Unit `  S )
)
56 eqid 2196 . . . . . . 7  |-  ( 1r
`  R )  =  ( 1r `  R
)
5710, 56oppr1g 13714 . . . . . 6  |-  ( R  e.  Ring  ->  ( 1r
`  R )  =  ( 1r `  (oppr `  R
) ) )
586, 57syl 14 . . . . 5  |-  ( ph  ->  ( 1r `  R
)  =  ( 1r
`  (oppr
`  R ) ) )
594fveq2d 5565 . . . . 5  |-  ( ph  ->  ( 1r `  S
)  =  ( 1r
`  (oppr
`  R ) ) )
6058, 59eqtr4d 2232 . . . 4  |-  ( ph  ->  ( 1r `  R
)  =  ( 1r
`  S ) )
61 eqidd 2197 . . . 4  |-  ( ph  ->  (oppr
`  S )  =  (oppr
`  S ) )
62 ringsrg 13679 . . . . 5  |-  ( S  e.  Ring  ->  S  e. SRing
)
6313, 62syl 14 . . . 4  |-  ( ph  ->  S  e. SRing )
6455, 60, 5, 61, 44, 63isunitd 13738 . . 3  |-  ( ph  ->  ( x  e.  (Unit `  S )  <->  ( x
( ||r `
 S ) ( 1r `  R )  /\  x ( ||r `  (oppr `  S
) ) ( 1r
`  R ) ) ) )
6554, 64bitr4d 191 . 2  |-  ( ph  ->  ( x  e.  U  <->  x  e.  (Unit `  S
) ) )
6665eqrdv 2194 1  |-  ( ph  ->  U  =  (Unit `  S ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1364    e. wcel 2167   E.wrex 2476   _Vcvv 2763   class class class wbr 4034   ` cfv 5259  (class class class)co 5925   Basecbs 12703   .rcmulr 12781   1rcur 13591  SRingcsrg 13595   Ringcrg 13628  opprcoppr 13699   ||rcdsr 13718  Unitcui 13719
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4149  ax-sep 4152  ax-nul 4160  ax-pow 4208  ax-pr 4243  ax-un 4469  ax-setind 4574  ax-cnex 7987  ax-resscn 7988  ax-1cn 7989  ax-1re 7990  ax-icn 7991  ax-addcl 7992  ax-addrcl 7993  ax-mulcl 7994  ax-addcom 7996  ax-addass 7998  ax-i2m1 8001  ax-0lt1 8002  ax-0id 8004  ax-rnegex 8005  ax-pre-ltirr 8008  ax-pre-lttrn 8010  ax-pre-ltadd 8012
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rmo 2483  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3452  df-pw 3608  df-sn 3629  df-pr 3630  df-op 3632  df-uni 3841  df-int 3876  df-iun 3919  df-br 4035  df-opab 4096  df-mpt 4097  df-id 4329  df-xp 4670  df-rel 4671  df-cnv 4672  df-co 4673  df-dm 4674  df-rn 4675  df-res 4676  df-ima 4677  df-iota 5220  df-fun 5261  df-fn 5262  df-f 5263  df-f1 5264  df-fo 5265  df-f1o 5266  df-fv 5267  df-riota 5880  df-ov 5928  df-oprab 5929  df-mpo 5930  df-tpos 6312  df-pnf 8080  df-mnf 8081  df-ltxr 8083  df-inn 9008  df-2 9066  df-3 9067  df-ndx 12706  df-slot 12707  df-base 12709  df-sets 12710  df-plusg 12793  df-mulr 12794  df-0g 12960  df-mgm 13058  df-sgrp 13104  df-mnd 13119  df-grp 13205  df-minusg 13206  df-cmn 13492  df-abl 13493  df-mgp 13553  df-ur 13592  df-srg 13596  df-ring 13630  df-oppr 13700  df-dvdsr 13721  df-unit 13722
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator