ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  geosergap Unicode version

Theorem geosergap 11817
Description: The value of the finite geometric series  A ^ M  +  A ^ ( M  +  1 )  +...  +  A ^
( N  -  1 ). (Contributed by Mario Carneiro, 2-May-2016.) (Revised by Jim Kingdon, 24-Oct-2022.)
Hypotheses
Ref Expression
geoserg.1  |-  ( ph  ->  A  e.  CC )
geosergap.2  |-  ( ph  ->  A #  1 )
geoserg.3  |-  ( ph  ->  M  e.  NN0 )
geoserg.4  |-  ( ph  ->  N  e.  ( ZZ>= `  M ) )
Assertion
Ref Expression
geosergap  |-  ( ph  -> 
sum_ k  e.  ( M..^ N ) ( A ^ k )  =  ( ( ( A ^ M )  -  ( A ^ N ) )  / 
( 1  -  A
) ) )
Distinct variable groups:    A, k    k, M    k, N    ph, k

Proof of Theorem geosergap
Dummy variable  j is distinct from all other variables.
StepHypRef Expression
1 geoserg.3 . . . . . . 7  |-  ( ph  ->  M  e.  NN0 )
21nn0zd 9493 . . . . . 6  |-  ( ph  ->  M  e.  ZZ )
3 geoserg.4 . . . . . . 7  |-  ( ph  ->  N  e.  ( ZZ>= `  M ) )
4 eluzelz 9657 . . . . . . 7  |-  ( N  e.  ( ZZ>= `  M
)  ->  N  e.  ZZ )
53, 4syl 14 . . . . . 6  |-  ( ph  ->  N  e.  ZZ )
6 fzofig 10577 . . . . . 6  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( M..^ N )  e.  Fin )
72, 5, 6syl2anc 411 . . . . 5  |-  ( ph  ->  ( M..^ N )  e.  Fin )
8 ax-1cn 8018 . . . . . 6  |-  1  e.  CC
9 geoserg.1 . . . . . 6  |-  ( ph  ->  A  e.  CC )
10 subcl 8271 . . . . . 6  |-  ( ( 1  e.  CC  /\  A  e.  CC )  ->  ( 1  -  A
)  e.  CC )
118, 9, 10sylancr 414 . . . . 5  |-  ( ph  ->  ( 1  -  A
)  e.  CC )
129adantr 276 . . . . . 6  |-  ( (
ph  /\  k  e.  ( M..^ N ) )  ->  A  e.  CC )
13 elfzouz 10273 . . . . . . 7  |-  ( k  e.  ( M..^ N
)  ->  k  e.  ( ZZ>= `  M )
)
14 eluznn0 9720 . . . . . . 7  |-  ( ( M  e.  NN0  /\  k  e.  ( ZZ>= `  M ) )  -> 
k  e.  NN0 )
151, 13, 14syl2an 289 . . . . . 6  |-  ( (
ph  /\  k  e.  ( M..^ N ) )  ->  k  e.  NN0 )
1612, 15expcld 10818 . . . . 5  |-  ( (
ph  /\  k  e.  ( M..^ N ) )  ->  ( A ^
k )  e.  CC )
177, 11, 16fsummulc1 11760 . . . 4  |-  ( ph  ->  ( sum_ k  e.  ( M..^ N ) ( A ^ k )  x.  ( 1  -  A ) )  = 
sum_ k  e.  ( M..^ N ) ( ( A ^ k
)  x.  ( 1  -  A ) ) )
18 1cnd 8088 . . . . . . 7  |-  ( (
ph  /\  k  e.  ( M..^ N ) )  ->  1  e.  CC )
1916, 18, 12subdid 8486 . . . . . 6  |-  ( (
ph  /\  k  e.  ( M..^ N ) )  ->  ( ( A ^ k )  x.  ( 1  -  A
) )  =  ( ( ( A ^
k )  x.  1 )  -  ( ( A ^ k )  x.  A ) ) )
2016mulridd 8089 . . . . . . 7  |-  ( (
ph  /\  k  e.  ( M..^ N ) )  ->  ( ( A ^ k )  x.  1 )  =  ( A ^ k ) )
2112, 15expp1d 10819 . . . . . . . 8  |-  ( (
ph  /\  k  e.  ( M..^ N ) )  ->  ( A ^
( k  +  1 ) )  =  ( ( A ^ k
)  x.  A ) )
2221eqcomd 2211 . . . . . . 7  |-  ( (
ph  /\  k  e.  ( M..^ N ) )  ->  ( ( A ^ k )  x.  A )  =  ( A ^ ( k  +  1 ) ) )
2320, 22oveq12d 5962 . . . . . 6  |-  ( (
ph  /\  k  e.  ( M..^ N ) )  ->  ( ( ( A ^ k )  x.  1 )  -  ( ( A ^
k )  x.  A
) )  =  ( ( A ^ k
)  -  ( A ^ ( k  +  1 ) ) ) )
2419, 23eqtrd 2238 . . . . 5  |-  ( (
ph  /\  k  e.  ( M..^ N ) )  ->  ( ( A ^ k )  x.  ( 1  -  A
) )  =  ( ( A ^ k
)  -  ( A ^ ( k  +  1 ) ) ) )
2524sumeq2dv 11679 . . . 4  |-  ( ph  -> 
sum_ k  e.  ( M..^ N ) ( ( A ^ k
)  x.  ( 1  -  A ) )  =  sum_ k  e.  ( M..^ N ) ( ( A ^ k
)  -  ( A ^ ( k  +  1 ) ) ) )
26 oveq2 5952 . . . . 5  |-  ( j  =  k  ->  ( A ^ j )  =  ( A ^ k
) )
27 oveq2 5952 . . . . 5  |-  ( j  =  ( k  +  1 )  ->  ( A ^ j )  =  ( A ^ (
k  +  1 ) ) )
28 oveq2 5952 . . . . 5  |-  ( j  =  M  ->  ( A ^ j )  =  ( A ^ M
) )
29 oveq2 5952 . . . . 5  |-  ( j  =  N  ->  ( A ^ j )  =  ( A ^ N
) )
309adantr 276 . . . . . 6  |-  ( (
ph  /\  j  e.  ( M ... N ) )  ->  A  e.  CC )
31 elfzuz 10143 . . . . . . 7  |-  ( j  e.  ( M ... N )  ->  j  e.  ( ZZ>= `  M )
)
32 eluznn0 9720 . . . . . . 7  |-  ( ( M  e.  NN0  /\  j  e.  ( ZZ>= `  M ) )  -> 
j  e.  NN0 )
331, 31, 32syl2an 289 . . . . . 6  |-  ( (
ph  /\  j  e.  ( M ... N ) )  ->  j  e.  NN0 )
3430, 33expcld 10818 . . . . 5  |-  ( (
ph  /\  j  e.  ( M ... N ) )  ->  ( A ^ j )  e.  CC )
3526, 27, 28, 29, 3, 34telfsumo 11777 . . . 4  |-  ( ph  -> 
sum_ k  e.  ( M..^ N ) ( ( A ^ k
)  -  ( A ^ ( k  +  1 ) ) )  =  ( ( A ^ M )  -  ( A ^ N ) ) )
3617, 25, 353eqtrrd 2243 . . 3  |-  ( ph  ->  ( ( A ^ M )  -  ( A ^ N ) )  =  ( sum_ k  e.  ( M..^ N ) ( A ^ k
)  x.  ( 1  -  A ) ) )
379, 1expcld 10818 . . . . 5  |-  ( ph  ->  ( A ^ M
)  e.  CC )
38 eluznn0 9720 . . . . . . 7  |-  ( ( M  e.  NN0  /\  N  e.  ( ZZ>= `  M ) )  ->  N  e.  NN0 )
391, 3, 38syl2anc 411 . . . . . 6  |-  ( ph  ->  N  e.  NN0 )
409, 39expcld 10818 . . . . 5  |-  ( ph  ->  ( A ^ N
)  e.  CC )
4137, 40subcld 8383 . . . 4  |-  ( ph  ->  ( ( A ^ M )  -  ( A ^ N ) )  e.  CC )
427, 16fsumcl 11711 . . . 4  |-  ( ph  -> 
sum_ k  e.  ( M..^ N ) ( A ^ k )  e.  CC )
43 geosergap.2 . . . . . . 7  |-  ( ph  ->  A #  1 )
44 1cnd 8088 . . . . . . . 8  |-  ( ph  ->  1  e.  CC )
45 apneg 8684 . . . . . . . 8  |-  ( ( A  e.  CC  /\  1  e.  CC )  ->  ( A #  1  <->  -u A #  -u 1 ) )
469, 44, 45syl2anc 411 . . . . . . 7  |-  ( ph  ->  ( A #  1  <->  -u A #  -u 1 ) )
4743, 46mpbid 147 . . . . . 6  |-  ( ph  -> 
-u A #  -u 1
)
489negcld 8370 . . . . . . 7  |-  ( ph  -> 
-u A  e.  CC )
4944negcld 8370 . . . . . . 7  |-  ( ph  -> 
-u 1  e.  CC )
50 apadd2 8682 . . . . . . 7  |-  ( (
-u A  e.  CC  /\  -u 1  e.  CC  /\  1  e.  CC )  ->  ( -u A #  -u 1  <->  ( 1  + 
-u A ) #  ( 1  +  -u 1
) ) )
5148, 49, 44, 50syl3anc 1250 . . . . . 6  |-  ( ph  ->  ( -u A #  -u 1  <->  ( 1  +  -u A
) #  ( 1  + 
-u 1 ) ) )
5247, 51mpbid 147 . . . . 5  |-  ( ph  ->  ( 1  +  -u A ) #  ( 1  +  -u 1 ) )
5344, 9negsubd 8389 . . . . 5  |-  ( ph  ->  ( 1  +  -u A )  =  ( 1  -  A ) )
54 1pneg1e0 9147 . . . . . 6  |-  ( 1  +  -u 1 )  =  0
5554a1i 9 . . . . 5  |-  ( ph  ->  ( 1  +  -u
1 )  =  0 )
5652, 53, 553brtr3d 4075 . . . 4  |-  ( ph  ->  ( 1  -  A
) #  0 )
5741, 42, 11, 56divmulap3d 8898 . . 3  |-  ( ph  ->  ( ( ( ( A ^ M )  -  ( A ^ N ) )  / 
( 1  -  A
) )  =  sum_ k  e.  ( M..^ N ) ( A ^ k )  <->  ( ( A ^ M )  -  ( A ^ N ) )  =  ( sum_ k  e.  ( M..^ N ) ( A ^ k )  x.  ( 1  -  A
) ) ) )
5836, 57mpbird 167 . 2  |-  ( ph  ->  ( ( ( A ^ M )  -  ( A ^ N ) )  /  ( 1  -  A ) )  =  sum_ k  e.  ( M..^ N ) ( A ^ k ) )
5958eqcomd 2211 1  |-  ( ph  -> 
sum_ k  e.  ( M..^ N ) ( A ^ k )  =  ( ( ( A ^ M )  -  ( A ^ N ) )  / 
( 1  -  A
) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1373    e. wcel 2176   class class class wbr 4044   ` cfv 5271  (class class class)co 5944   Fincfn 6827   CCcc 7923   0cc0 7925   1c1 7926    + caddc 7928    x. cmul 7930    - cmin 8243   -ucneg 8244   # cap 8654    / cdiv 8745   NN0cn0 9295   ZZcz 9372   ZZ>=cuz 9648   ...cfz 10130  ..^cfzo 10264   ^cexp 10683   sum_csu 11664
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-13 2178  ax-14 2179  ax-ext 2187  ax-coll 4159  ax-sep 4162  ax-nul 4170  ax-pow 4218  ax-pr 4253  ax-un 4480  ax-setind 4585  ax-iinf 4636  ax-cnex 8016  ax-resscn 8017  ax-1cn 8018  ax-1re 8019  ax-icn 8020  ax-addcl 8021  ax-addrcl 8022  ax-mulcl 8023  ax-mulrcl 8024  ax-addcom 8025  ax-mulcom 8026  ax-addass 8027  ax-mulass 8028  ax-distr 8029  ax-i2m1 8030  ax-0lt1 8031  ax-1rid 8032  ax-0id 8033  ax-rnegex 8034  ax-precex 8035  ax-cnre 8036  ax-pre-ltirr 8037  ax-pre-ltwlin 8038  ax-pre-lttrn 8039  ax-pre-apti 8040  ax-pre-ltadd 8041  ax-pre-mulgt0 8042  ax-pre-mulext 8043  ax-arch 8044  ax-caucvg 8045
This theorem depends on definitions:  df-bi 117  df-dc 837  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1484  df-sb 1786  df-eu 2057  df-mo 2058  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ne 2377  df-nel 2472  df-ral 2489  df-rex 2490  df-reu 2491  df-rmo 2492  df-rab 2493  df-v 2774  df-sbc 2999  df-csb 3094  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-nul 3461  df-if 3572  df-pw 3618  df-sn 3639  df-pr 3640  df-op 3642  df-uni 3851  df-int 3886  df-iun 3929  df-br 4045  df-opab 4106  df-mpt 4107  df-tr 4143  df-id 4340  df-po 4343  df-iso 4344  df-iord 4413  df-on 4415  df-ilim 4416  df-suc 4418  df-iom 4639  df-xp 4681  df-rel 4682  df-cnv 4683  df-co 4684  df-dm 4685  df-rn 4686  df-res 4687  df-ima 4688  df-iota 5232  df-fun 5273  df-fn 5274  df-f 5275  df-f1 5276  df-fo 5277  df-f1o 5278  df-fv 5279  df-isom 5280  df-riota 5899  df-ov 5947  df-oprab 5948  df-mpo 5949  df-1st 6226  df-2nd 6227  df-recs 6391  df-irdg 6456  df-frec 6477  df-1o 6502  df-oadd 6506  df-er 6620  df-en 6828  df-dom 6829  df-fin 6830  df-pnf 8109  df-mnf 8110  df-xr 8111  df-ltxr 8112  df-le 8113  df-sub 8245  df-neg 8246  df-reap 8648  df-ap 8655  df-div 8746  df-inn 9037  df-2 9095  df-3 9096  df-4 9097  df-n0 9296  df-z 9373  df-uz 9649  df-q 9741  df-rp 9776  df-fz 10131  df-fzo 10265  df-seqfrec 10593  df-exp 10684  df-ihash 10921  df-cj 11153  df-re 11154  df-im 11155  df-rsqrt 11309  df-abs 11310  df-clim 11590  df-sumdc 11665
This theorem is referenced by:  geoserap  11818  cvgratnnlemsumlt  11839  cvgcmp2nlemabs  15971
  Copyright terms: Public domain W3C validator