ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  geosergap Unicode version

Theorem geosergap 10961
Description: The value of the finite geometric series  A ^ M  +  A ^ ( M  +  1 )  +...  +  A ^
( N  -  1 ). (Contributed by Mario Carneiro, 2-May-2016.) (Revised by Jim Kingdon, 24-Oct-2022.)
Hypotheses
Ref Expression
geoserg.1  |-  ( ph  ->  A  e.  CC )
geosergap.2  |-  ( ph  ->  A #  1 )
geoserg.3  |-  ( ph  ->  M  e.  NN0 )
geoserg.4  |-  ( ph  ->  N  e.  ( ZZ>= `  M ) )
Assertion
Ref Expression
geosergap  |-  ( ph  -> 
sum_ k  e.  ( M..^ N ) ( A ^ k )  =  ( ( ( A ^ M )  -  ( A ^ N ) )  / 
( 1  -  A
) ) )
Distinct variable groups:    A, k    k, M    k, N    ph, k

Proof of Theorem geosergap
Dummy variable  j is distinct from all other variables.
StepHypRef Expression
1 geoserg.3 . . . . . . 7  |-  ( ph  ->  M  e.  NN0 )
21nn0zd 8927 . . . . . 6  |-  ( ph  ->  M  e.  ZZ )
3 geoserg.4 . . . . . . 7  |-  ( ph  ->  N  e.  ( ZZ>= `  M ) )
4 eluzelz 9089 . . . . . . 7  |-  ( N  e.  ( ZZ>= `  M
)  ->  N  e.  ZZ )
53, 4syl 14 . . . . . 6  |-  ( ph  ->  N  e.  ZZ )
6 fzofig 9900 . . . . . 6  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( M..^ N )  e.  Fin )
72, 5, 6syl2anc 404 . . . . 5  |-  ( ph  ->  ( M..^ N )  e.  Fin )
8 ax-1cn 7499 . . . . . 6  |-  1  e.  CC
9 geoserg.1 . . . . . 6  |-  ( ph  ->  A  e.  CC )
10 subcl 7742 . . . . . 6  |-  ( ( 1  e.  CC  /\  A  e.  CC )  ->  ( 1  -  A
)  e.  CC )
118, 9, 10sylancr 406 . . . . 5  |-  ( ph  ->  ( 1  -  A
)  e.  CC )
129adantr 271 . . . . . 6  |-  ( (
ph  /\  k  e.  ( M..^ N ) )  ->  A  e.  CC )
13 elfzouz 9623 . . . . . . 7  |-  ( k  e.  ( M..^ N
)  ->  k  e.  ( ZZ>= `  M )
)
14 eluznn0 9147 . . . . . . 7  |-  ( ( M  e.  NN0  /\  k  e.  ( ZZ>= `  M ) )  -> 
k  e.  NN0 )
151, 13, 14syl2an 284 . . . . . 6  |-  ( (
ph  /\  k  e.  ( M..^ N ) )  ->  k  e.  NN0 )
1612, 15expcld 10147 . . . . 5  |-  ( (
ph  /\  k  e.  ( M..^ N ) )  ->  ( A ^
k )  e.  CC )
177, 11, 16fsummulc1 10904 . . . 4  |-  ( ph  ->  ( sum_ k  e.  ( M..^ N ) ( A ^ k )  x.  ( 1  -  A ) )  = 
sum_ k  e.  ( M..^ N ) ( ( A ^ k
)  x.  ( 1  -  A ) ) )
18 1cnd 7565 . . . . . . 7  |-  ( (
ph  /\  k  e.  ( M..^ N ) )  ->  1  e.  CC )
1916, 18, 12subdid 7953 . . . . . 6  |-  ( (
ph  /\  k  e.  ( M..^ N ) )  ->  ( ( A ^ k )  x.  ( 1  -  A
) )  =  ( ( ( A ^
k )  x.  1 )  -  ( ( A ^ k )  x.  A ) ) )
2016mulid1d 7566 . . . . . . 7  |-  ( (
ph  /\  k  e.  ( M..^ N ) )  ->  ( ( A ^ k )  x.  1 )  =  ( A ^ k ) )
2112, 15expp1d 10148 . . . . . . . 8  |-  ( (
ph  /\  k  e.  ( M..^ N ) )  ->  ( A ^
( k  +  1 ) )  =  ( ( A ^ k
)  x.  A ) )
2221eqcomd 2094 . . . . . . 7  |-  ( (
ph  /\  k  e.  ( M..^ N ) )  ->  ( ( A ^ k )  x.  A )  =  ( A ^ ( k  +  1 ) ) )
2320, 22oveq12d 5684 . . . . . 6  |-  ( (
ph  /\  k  e.  ( M..^ N ) )  ->  ( ( ( A ^ k )  x.  1 )  -  ( ( A ^
k )  x.  A
) )  =  ( ( A ^ k
)  -  ( A ^ ( k  +  1 ) ) ) )
2419, 23eqtrd 2121 . . . . 5  |-  ( (
ph  /\  k  e.  ( M..^ N ) )  ->  ( ( A ^ k )  x.  ( 1  -  A
) )  =  ( ( A ^ k
)  -  ( A ^ ( k  +  1 ) ) ) )
2524sumeq2dv 10818 . . . 4  |-  ( ph  -> 
sum_ k  e.  ( M..^ N ) ( ( A ^ k
)  x.  ( 1  -  A ) )  =  sum_ k  e.  ( M..^ N ) ( ( A ^ k
)  -  ( A ^ ( k  +  1 ) ) ) )
26 oveq2 5674 . . . . 5  |-  ( j  =  k  ->  ( A ^ j )  =  ( A ^ k
) )
27 oveq2 5674 . . . . 5  |-  ( j  =  ( k  +  1 )  ->  ( A ^ j )  =  ( A ^ (
k  +  1 ) ) )
28 oveq2 5674 . . . . 5  |-  ( j  =  M  ->  ( A ^ j )  =  ( A ^ M
) )
29 oveq2 5674 . . . . 5  |-  ( j  =  N  ->  ( A ^ j )  =  ( A ^ N
) )
309adantr 271 . . . . . 6  |-  ( (
ph  /\  j  e.  ( M ... N ) )  ->  A  e.  CC )
31 elfzuz 9497 . . . . . . 7  |-  ( j  e.  ( M ... N )  ->  j  e.  ( ZZ>= `  M )
)
32 eluznn0 9147 . . . . . . 7  |-  ( ( M  e.  NN0  /\  j  e.  ( ZZ>= `  M ) )  -> 
j  e.  NN0 )
331, 31, 32syl2an 284 . . . . . 6  |-  ( (
ph  /\  j  e.  ( M ... N ) )  ->  j  e.  NN0 )
3430, 33expcld 10147 . . . . 5  |-  ( (
ph  /\  j  e.  ( M ... N ) )  ->  ( A ^ j )  e.  CC )
3526, 27, 28, 29, 3, 34telfsumo 10921 . . . 4  |-  ( ph  -> 
sum_ k  e.  ( M..^ N ) ( ( A ^ k
)  -  ( A ^ ( k  +  1 ) ) )  =  ( ( A ^ M )  -  ( A ^ N ) ) )
3617, 25, 353eqtrrd 2126 . . 3  |-  ( ph  ->  ( ( A ^ M )  -  ( A ^ N ) )  =  ( sum_ k  e.  ( M..^ N ) ( A ^ k
)  x.  ( 1  -  A ) ) )
379, 1expcld 10147 . . . . 5  |-  ( ph  ->  ( A ^ M
)  e.  CC )
38 eluznn0 9147 . . . . . . 7  |-  ( ( M  e.  NN0  /\  N  e.  ( ZZ>= `  M ) )  ->  N  e.  NN0 )
391, 3, 38syl2anc 404 . . . . . 6  |-  ( ph  ->  N  e.  NN0 )
409, 39expcld 10147 . . . . 5  |-  ( ph  ->  ( A ^ N
)  e.  CC )
4137, 40subcld 7854 . . . 4  |-  ( ph  ->  ( ( A ^ M )  -  ( A ^ N ) )  e.  CC )
427, 16fsumcl 10855 . . . 4  |-  ( ph  -> 
sum_ k  e.  ( M..^ N ) ( A ^ k )  e.  CC )
43 geosergap.2 . . . . . . 7  |-  ( ph  ->  A #  1 )
44 1cnd 7565 . . . . . . . 8  |-  ( ph  ->  1  e.  CC )
45 apneg 8149 . . . . . . . 8  |-  ( ( A  e.  CC  /\  1  e.  CC )  ->  ( A #  1  <->  -u A #  -u 1 ) )
469, 44, 45syl2anc 404 . . . . . . 7  |-  ( ph  ->  ( A #  1  <->  -u A #  -u 1 ) )
4743, 46mpbid 146 . . . . . 6  |-  ( ph  -> 
-u A #  -u 1
)
489negcld 7841 . . . . . . 7  |-  ( ph  -> 
-u A  e.  CC )
4944negcld 7841 . . . . . . 7  |-  ( ph  -> 
-u 1  e.  CC )
50 apadd2 8147 . . . . . . 7  |-  ( (
-u A  e.  CC  /\  -u 1  e.  CC  /\  1  e.  CC )  ->  ( -u A #  -u 1  <->  ( 1  + 
-u A ) #  ( 1  +  -u 1
) ) )
5148, 49, 44, 50syl3anc 1175 . . . . . 6  |-  ( ph  ->  ( -u A #  -u 1  <->  ( 1  +  -u A
) #  ( 1  + 
-u 1 ) ) )
5247, 51mpbid 146 . . . . 5  |-  ( ph  ->  ( 1  +  -u A ) #  ( 1  +  -u 1 ) )
5344, 9negsubd 7860 . . . . 5  |-  ( ph  ->  ( 1  +  -u A )  =  ( 1  -  A ) )
54 1pneg1e0 8594 . . . . . 6  |-  ( 1  +  -u 1 )  =  0
5554a1i 9 . . . . 5  |-  ( ph  ->  ( 1  +  -u
1 )  =  0 )
5652, 53, 553brtr3d 3880 . . . 4  |-  ( ph  ->  ( 1  -  A
) #  0 )
5741, 42, 11, 56divmulap3d 8353 . . 3  |-  ( ph  ->  ( ( ( ( A ^ M )  -  ( A ^ N ) )  / 
( 1  -  A
) )  =  sum_ k  e.  ( M..^ N ) ( A ^ k )  <->  ( ( A ^ M )  -  ( A ^ N ) )  =  ( sum_ k  e.  ( M..^ N ) ( A ^ k )  x.  ( 1  -  A
) ) ) )
5836, 57mpbird 166 . 2  |-  ( ph  ->  ( ( ( A ^ M )  -  ( A ^ N ) )  /  ( 1  -  A ) )  =  sum_ k  e.  ( M..^ N ) ( A ^ k ) )
5958eqcomd 2094 1  |-  ( ph  -> 
sum_ k  e.  ( M..^ N ) ( A ^ k )  =  ( ( ( A ^ M )  -  ( A ^ N ) )  / 
( 1  -  A
) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104    = wceq 1290    e. wcel 1439   class class class wbr 3851   ` cfv 5028  (class class class)co 5666   Fincfn 6511   CCcc 7409   0cc0 7411   1c1 7412    + caddc 7414    x. cmul 7416    - cmin 7714   -ucneg 7715   # cap 8119    / cdiv 8200   NN0cn0 8734   ZZcz 8811   ZZ>=cuz 9080   ...cfz 9485  ..^cfzo 9614   ^cexp 10015   sum_csu 10803
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 580  ax-in2 581  ax-io 666  ax-5 1382  ax-7 1383  ax-gen 1384  ax-ie1 1428  ax-ie2 1429  ax-8 1441  ax-10 1442  ax-11 1443  ax-i12 1444  ax-bndl 1445  ax-4 1446  ax-13 1450  ax-14 1451  ax-17 1465  ax-i9 1469  ax-ial 1473  ax-i5r 1474  ax-ext 2071  ax-coll 3960  ax-sep 3963  ax-nul 3971  ax-pow 4015  ax-pr 4045  ax-un 4269  ax-setind 4366  ax-iinf 4416  ax-cnex 7497  ax-resscn 7498  ax-1cn 7499  ax-1re 7500  ax-icn 7501  ax-addcl 7502  ax-addrcl 7503  ax-mulcl 7504  ax-mulrcl 7505  ax-addcom 7506  ax-mulcom 7507  ax-addass 7508  ax-mulass 7509  ax-distr 7510  ax-i2m1 7511  ax-0lt1 7512  ax-1rid 7513  ax-0id 7514  ax-rnegex 7515  ax-precex 7516  ax-cnre 7517  ax-pre-ltirr 7518  ax-pre-ltwlin 7519  ax-pre-lttrn 7520  ax-pre-apti 7521  ax-pre-ltadd 7522  ax-pre-mulgt0 7523  ax-pre-mulext 7524  ax-arch 7525  ax-caucvg 7526
This theorem depends on definitions:  df-bi 116  df-dc 782  df-3or 926  df-3an 927  df-tru 1293  df-fal 1296  df-nf 1396  df-sb 1694  df-eu 1952  df-mo 1953  df-clab 2076  df-cleq 2082  df-clel 2085  df-nfc 2218  df-ne 2257  df-nel 2352  df-ral 2365  df-rex 2366  df-reu 2367  df-rmo 2368  df-rab 2369  df-v 2622  df-sbc 2842  df-csb 2935  df-dif 3002  df-un 3004  df-in 3006  df-ss 3013  df-nul 3288  df-if 3398  df-pw 3435  df-sn 3456  df-pr 3457  df-op 3459  df-uni 3660  df-int 3695  df-iun 3738  df-br 3852  df-opab 3906  df-mpt 3907  df-tr 3943  df-id 4129  df-po 4132  df-iso 4133  df-iord 4202  df-on 4204  df-ilim 4205  df-suc 4207  df-iom 4419  df-xp 4458  df-rel 4459  df-cnv 4460  df-co 4461  df-dm 4462  df-rn 4463  df-res 4464  df-ima 4465  df-iota 4993  df-fun 5030  df-fn 5031  df-f 5032  df-f1 5033  df-fo 5034  df-f1o 5035  df-fv 5036  df-isom 5037  df-riota 5622  df-ov 5669  df-oprab 5670  df-mpt2 5671  df-1st 5925  df-2nd 5926  df-recs 6084  df-irdg 6149  df-frec 6170  df-1o 6195  df-oadd 6199  df-er 6306  df-en 6512  df-dom 6513  df-fin 6514  df-pnf 7585  df-mnf 7586  df-xr 7587  df-ltxr 7588  df-le 7589  df-sub 7716  df-neg 7717  df-reap 8113  df-ap 8120  df-div 8201  df-inn 8484  df-2 8542  df-3 8543  df-4 8544  df-n0 8735  df-z 8812  df-uz 9081  df-q 9166  df-rp 9196  df-fz 9486  df-fzo 9615  df-iseq 9914  df-seq3 9915  df-exp 10016  df-ihash 10245  df-cj 10337  df-re 10338  df-im 10339  df-rsqrt 10492  df-abs 10493  df-clim 10728  df-isum 10804
This theorem is referenced by:  geoserap  10962  cvgratnnlemsumlt  10983
  Copyright terms: Public domain W3C validator