ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  geosergap Unicode version

Theorem geosergap 11932
Description: The value of the finite geometric series  A ^ M  +  A ^ ( M  +  1 )  +...  +  A ^
( N  -  1 ). (Contributed by Mario Carneiro, 2-May-2016.) (Revised by Jim Kingdon, 24-Oct-2022.)
Hypotheses
Ref Expression
geoserg.1  |-  ( ph  ->  A  e.  CC )
geosergap.2  |-  ( ph  ->  A #  1 )
geoserg.3  |-  ( ph  ->  M  e.  NN0 )
geoserg.4  |-  ( ph  ->  N  e.  ( ZZ>= `  M ) )
Assertion
Ref Expression
geosergap  |-  ( ph  -> 
sum_ k  e.  ( M..^ N ) ( A ^ k )  =  ( ( ( A ^ M )  -  ( A ^ N ) )  / 
( 1  -  A
) ) )
Distinct variable groups:    A, k    k, M    k, N    ph, k

Proof of Theorem geosergap
Dummy variable  j is distinct from all other variables.
StepHypRef Expression
1 geoserg.3 . . . . . . 7  |-  ( ph  ->  M  e.  NN0 )
21nn0zd 9528 . . . . . 6  |-  ( ph  ->  M  e.  ZZ )
3 geoserg.4 . . . . . . 7  |-  ( ph  ->  N  e.  ( ZZ>= `  M ) )
4 eluzelz 9692 . . . . . . 7  |-  ( N  e.  ( ZZ>= `  M
)  ->  N  e.  ZZ )
53, 4syl 14 . . . . . 6  |-  ( ph  ->  N  e.  ZZ )
6 fzofig 10614 . . . . . 6  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( M..^ N )  e.  Fin )
72, 5, 6syl2anc 411 . . . . 5  |-  ( ph  ->  ( M..^ N )  e.  Fin )
8 ax-1cn 8053 . . . . . 6  |-  1  e.  CC
9 geoserg.1 . . . . . 6  |-  ( ph  ->  A  e.  CC )
10 subcl 8306 . . . . . 6  |-  ( ( 1  e.  CC  /\  A  e.  CC )  ->  ( 1  -  A
)  e.  CC )
118, 9, 10sylancr 414 . . . . 5  |-  ( ph  ->  ( 1  -  A
)  e.  CC )
129adantr 276 . . . . . 6  |-  ( (
ph  /\  k  e.  ( M..^ N ) )  ->  A  e.  CC )
13 elfzouz 10308 . . . . . . 7  |-  ( k  e.  ( M..^ N
)  ->  k  e.  ( ZZ>= `  M )
)
14 eluznn0 9755 . . . . . . 7  |-  ( ( M  e.  NN0  /\  k  e.  ( ZZ>= `  M ) )  -> 
k  e.  NN0 )
151, 13, 14syl2an 289 . . . . . 6  |-  ( (
ph  /\  k  e.  ( M..^ N ) )  ->  k  e.  NN0 )
1612, 15expcld 10855 . . . . 5  |-  ( (
ph  /\  k  e.  ( M..^ N ) )  ->  ( A ^
k )  e.  CC )
177, 11, 16fsummulc1 11875 . . . 4  |-  ( ph  ->  ( sum_ k  e.  ( M..^ N ) ( A ^ k )  x.  ( 1  -  A ) )  = 
sum_ k  e.  ( M..^ N ) ( ( A ^ k
)  x.  ( 1  -  A ) ) )
18 1cnd 8123 . . . . . . 7  |-  ( (
ph  /\  k  e.  ( M..^ N ) )  ->  1  e.  CC )
1916, 18, 12subdid 8521 . . . . . 6  |-  ( (
ph  /\  k  e.  ( M..^ N ) )  ->  ( ( A ^ k )  x.  ( 1  -  A
) )  =  ( ( ( A ^
k )  x.  1 )  -  ( ( A ^ k )  x.  A ) ) )
2016mulridd 8124 . . . . . . 7  |-  ( (
ph  /\  k  e.  ( M..^ N ) )  ->  ( ( A ^ k )  x.  1 )  =  ( A ^ k ) )
2112, 15expp1d 10856 . . . . . . . 8  |-  ( (
ph  /\  k  e.  ( M..^ N ) )  ->  ( A ^
( k  +  1 ) )  =  ( ( A ^ k
)  x.  A ) )
2221eqcomd 2213 . . . . . . 7  |-  ( (
ph  /\  k  e.  ( M..^ N ) )  ->  ( ( A ^ k )  x.  A )  =  ( A ^ ( k  +  1 ) ) )
2320, 22oveq12d 5985 . . . . . 6  |-  ( (
ph  /\  k  e.  ( M..^ N ) )  ->  ( ( ( A ^ k )  x.  1 )  -  ( ( A ^
k )  x.  A
) )  =  ( ( A ^ k
)  -  ( A ^ ( k  +  1 ) ) ) )
2419, 23eqtrd 2240 . . . . 5  |-  ( (
ph  /\  k  e.  ( M..^ N ) )  ->  ( ( A ^ k )  x.  ( 1  -  A
) )  =  ( ( A ^ k
)  -  ( A ^ ( k  +  1 ) ) ) )
2524sumeq2dv 11794 . . . 4  |-  ( ph  -> 
sum_ k  e.  ( M..^ N ) ( ( A ^ k
)  x.  ( 1  -  A ) )  =  sum_ k  e.  ( M..^ N ) ( ( A ^ k
)  -  ( A ^ ( k  +  1 ) ) ) )
26 oveq2 5975 . . . . 5  |-  ( j  =  k  ->  ( A ^ j )  =  ( A ^ k
) )
27 oveq2 5975 . . . . 5  |-  ( j  =  ( k  +  1 )  ->  ( A ^ j )  =  ( A ^ (
k  +  1 ) ) )
28 oveq2 5975 . . . . 5  |-  ( j  =  M  ->  ( A ^ j )  =  ( A ^ M
) )
29 oveq2 5975 . . . . 5  |-  ( j  =  N  ->  ( A ^ j )  =  ( A ^ N
) )
309adantr 276 . . . . . 6  |-  ( (
ph  /\  j  e.  ( M ... N ) )  ->  A  e.  CC )
31 elfzuz 10178 . . . . . . 7  |-  ( j  e.  ( M ... N )  ->  j  e.  ( ZZ>= `  M )
)
32 eluznn0 9755 . . . . . . 7  |-  ( ( M  e.  NN0  /\  j  e.  ( ZZ>= `  M ) )  -> 
j  e.  NN0 )
331, 31, 32syl2an 289 . . . . . 6  |-  ( (
ph  /\  j  e.  ( M ... N ) )  ->  j  e.  NN0 )
3430, 33expcld 10855 . . . . 5  |-  ( (
ph  /\  j  e.  ( M ... N ) )  ->  ( A ^ j )  e.  CC )
3526, 27, 28, 29, 3, 34telfsumo 11892 . . . 4  |-  ( ph  -> 
sum_ k  e.  ( M..^ N ) ( ( A ^ k
)  -  ( A ^ ( k  +  1 ) ) )  =  ( ( A ^ M )  -  ( A ^ N ) ) )
3617, 25, 353eqtrrd 2245 . . 3  |-  ( ph  ->  ( ( A ^ M )  -  ( A ^ N ) )  =  ( sum_ k  e.  ( M..^ N ) ( A ^ k
)  x.  ( 1  -  A ) ) )
379, 1expcld 10855 . . . . 5  |-  ( ph  ->  ( A ^ M
)  e.  CC )
38 eluznn0 9755 . . . . . . 7  |-  ( ( M  e.  NN0  /\  N  e.  ( ZZ>= `  M ) )  ->  N  e.  NN0 )
391, 3, 38syl2anc 411 . . . . . 6  |-  ( ph  ->  N  e.  NN0 )
409, 39expcld 10855 . . . . 5  |-  ( ph  ->  ( A ^ N
)  e.  CC )
4137, 40subcld 8418 . . . 4  |-  ( ph  ->  ( ( A ^ M )  -  ( A ^ N ) )  e.  CC )
427, 16fsumcl 11826 . . . 4  |-  ( ph  -> 
sum_ k  e.  ( M..^ N ) ( A ^ k )  e.  CC )
43 geosergap.2 . . . . . . 7  |-  ( ph  ->  A #  1 )
44 1cnd 8123 . . . . . . . 8  |-  ( ph  ->  1  e.  CC )
45 apneg 8719 . . . . . . . 8  |-  ( ( A  e.  CC  /\  1  e.  CC )  ->  ( A #  1  <->  -u A #  -u 1 ) )
469, 44, 45syl2anc 411 . . . . . . 7  |-  ( ph  ->  ( A #  1  <->  -u A #  -u 1 ) )
4743, 46mpbid 147 . . . . . 6  |-  ( ph  -> 
-u A #  -u 1
)
489negcld 8405 . . . . . . 7  |-  ( ph  -> 
-u A  e.  CC )
4944negcld 8405 . . . . . . 7  |-  ( ph  -> 
-u 1  e.  CC )
50 apadd2 8717 . . . . . . 7  |-  ( (
-u A  e.  CC  /\  -u 1  e.  CC  /\  1  e.  CC )  ->  ( -u A #  -u 1  <->  ( 1  + 
-u A ) #  ( 1  +  -u 1
) ) )
5148, 49, 44, 50syl3anc 1250 . . . . . 6  |-  ( ph  ->  ( -u A #  -u 1  <->  ( 1  +  -u A
) #  ( 1  + 
-u 1 ) ) )
5247, 51mpbid 147 . . . . 5  |-  ( ph  ->  ( 1  +  -u A ) #  ( 1  +  -u 1 ) )
5344, 9negsubd 8424 . . . . 5  |-  ( ph  ->  ( 1  +  -u A )  =  ( 1  -  A ) )
54 1pneg1e0 9182 . . . . . 6  |-  ( 1  +  -u 1 )  =  0
5554a1i 9 . . . . 5  |-  ( ph  ->  ( 1  +  -u
1 )  =  0 )
5652, 53, 553brtr3d 4090 . . . 4  |-  ( ph  ->  ( 1  -  A
) #  0 )
5741, 42, 11, 56divmulap3d 8933 . . 3  |-  ( ph  ->  ( ( ( ( A ^ M )  -  ( A ^ N ) )  / 
( 1  -  A
) )  =  sum_ k  e.  ( M..^ N ) ( A ^ k )  <->  ( ( A ^ M )  -  ( A ^ N ) )  =  ( sum_ k  e.  ( M..^ N ) ( A ^ k )  x.  ( 1  -  A
) ) ) )
5836, 57mpbird 167 . 2  |-  ( ph  ->  ( ( ( A ^ M )  -  ( A ^ N ) )  /  ( 1  -  A ) )  =  sum_ k  e.  ( M..^ N ) ( A ^ k ) )
5958eqcomd 2213 1  |-  ( ph  -> 
sum_ k  e.  ( M..^ N ) ( A ^ k )  =  ( ( ( A ^ M )  -  ( A ^ N ) )  / 
( 1  -  A
) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1373    e. wcel 2178   class class class wbr 4059   ` cfv 5290  (class class class)co 5967   Fincfn 6850   CCcc 7958   0cc0 7960   1c1 7961    + caddc 7963    x. cmul 7965    - cmin 8278   -ucneg 8279   # cap 8689    / cdiv 8780   NN0cn0 9330   ZZcz 9407   ZZ>=cuz 9683   ...cfz 10165  ..^cfzo 10299   ^cexp 10720   sum_csu 11779
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2180  ax-14 2181  ax-ext 2189  ax-coll 4175  ax-sep 4178  ax-nul 4186  ax-pow 4234  ax-pr 4269  ax-un 4498  ax-setind 4603  ax-iinf 4654  ax-cnex 8051  ax-resscn 8052  ax-1cn 8053  ax-1re 8054  ax-icn 8055  ax-addcl 8056  ax-addrcl 8057  ax-mulcl 8058  ax-mulrcl 8059  ax-addcom 8060  ax-mulcom 8061  ax-addass 8062  ax-mulass 8063  ax-distr 8064  ax-i2m1 8065  ax-0lt1 8066  ax-1rid 8067  ax-0id 8068  ax-rnegex 8069  ax-precex 8070  ax-cnre 8071  ax-pre-ltirr 8072  ax-pre-ltwlin 8073  ax-pre-lttrn 8074  ax-pre-apti 8075  ax-pre-ltadd 8076  ax-pre-mulgt0 8077  ax-pre-mulext 8078  ax-arch 8079  ax-caucvg 8080
This theorem depends on definitions:  df-bi 117  df-dc 837  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-ne 2379  df-nel 2474  df-ral 2491  df-rex 2492  df-reu 2493  df-rmo 2494  df-rab 2495  df-v 2778  df-sbc 3006  df-csb 3102  df-dif 3176  df-un 3178  df-in 3180  df-ss 3187  df-nul 3469  df-if 3580  df-pw 3628  df-sn 3649  df-pr 3650  df-op 3652  df-uni 3865  df-int 3900  df-iun 3943  df-br 4060  df-opab 4122  df-mpt 4123  df-tr 4159  df-id 4358  df-po 4361  df-iso 4362  df-iord 4431  df-on 4433  df-ilim 4434  df-suc 4436  df-iom 4657  df-xp 4699  df-rel 4700  df-cnv 4701  df-co 4702  df-dm 4703  df-rn 4704  df-res 4705  df-ima 4706  df-iota 5251  df-fun 5292  df-fn 5293  df-f 5294  df-f1 5295  df-fo 5296  df-f1o 5297  df-fv 5298  df-isom 5299  df-riota 5922  df-ov 5970  df-oprab 5971  df-mpo 5972  df-1st 6249  df-2nd 6250  df-recs 6414  df-irdg 6479  df-frec 6500  df-1o 6525  df-oadd 6529  df-er 6643  df-en 6851  df-dom 6852  df-fin 6853  df-pnf 8144  df-mnf 8145  df-xr 8146  df-ltxr 8147  df-le 8148  df-sub 8280  df-neg 8281  df-reap 8683  df-ap 8690  df-div 8781  df-inn 9072  df-2 9130  df-3 9131  df-4 9132  df-n0 9331  df-z 9408  df-uz 9684  df-q 9776  df-rp 9811  df-fz 10166  df-fzo 10300  df-seqfrec 10630  df-exp 10721  df-ihash 10958  df-cj 11268  df-re 11269  df-im 11270  df-rsqrt 11424  df-abs 11425  df-clim 11705  df-sumdc 11780
This theorem is referenced by:  geoserap  11933  cvgratnnlemsumlt  11954  cvgcmp2nlemabs  16173
  Copyright terms: Public domain W3C validator