Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > grpsubid | Unicode version |
Description: Subtraction of a group element from itself. (Contributed by NM, 31-Mar-2014.) |
Ref | Expression |
---|---|
grpsubid.b | |
grpsubid.o | |
grpsubid.m |
Ref | Expression |
---|---|
grpsubid |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | grpsubid.b | . . . . 5 | |
2 | eqid 2173 | . . . . 5 | |
3 | eqid 2173 | . . . . 5 | |
4 | grpsubid.m | . . . . 5 | |
5 | 1, 2, 3, 4 | grpsubval 12776 | . . . 4 |
6 | 5 | anidms 397 | . . 3 |
7 | 6 | adantl 277 | . 2 |
8 | grpsubid.o | . . 3 | |
9 | 1, 2, 8, 3 | grprinv 12780 | . 2 |
10 | 7, 9 | eqtrd 2206 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 104 wceq 1351 wcel 2144 cfv 5205 (class class class)co 5862 cbs 12425 cplusg 12489 c0g 12623 cgrp 12735 cminusg 12736 csg 12737 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 612 ax-in2 613 ax-io 707 ax-5 1443 ax-7 1444 ax-gen 1445 ax-ie1 1489 ax-ie2 1490 ax-8 1500 ax-10 1501 ax-11 1502 ax-i12 1503 ax-bndl 1505 ax-4 1506 ax-17 1522 ax-i9 1526 ax-ial 1530 ax-i5r 1531 ax-13 2146 ax-14 2147 ax-ext 2155 ax-coll 4110 ax-sep 4113 ax-pow 4166 ax-pr 4200 ax-un 4424 ax-setind 4527 ax-cnex 7874 ax-resscn 7875 ax-1re 7877 ax-addrcl 7880 |
This theorem depends on definitions: df-bi 117 df-3an 978 df-tru 1354 df-fal 1357 df-nf 1457 df-sb 1759 df-eu 2025 df-mo 2026 df-clab 2160 df-cleq 2166 df-clel 2169 df-nfc 2304 df-ne 2344 df-ral 2456 df-rex 2457 df-reu 2458 df-rmo 2459 df-rab 2460 df-v 2735 df-sbc 2959 df-csb 3053 df-dif 3126 df-un 3128 df-in 3130 df-ss 3137 df-pw 3571 df-sn 3592 df-pr 3593 df-op 3595 df-uni 3803 df-int 3838 df-iun 3881 df-br 3996 df-opab 4057 df-mpt 4058 df-id 4284 df-xp 4623 df-rel 4624 df-cnv 4625 df-co 4626 df-dm 4627 df-rn 4628 df-res 4629 df-ima 4630 df-iota 5167 df-fun 5207 df-fn 5208 df-f 5209 df-f1 5210 df-fo 5211 df-f1o 5212 df-fv 5213 df-riota 5818 df-ov 5865 df-oprab 5866 df-mpo 5867 df-1st 6128 df-2nd 6129 df-inn 8888 df-2 8946 df-ndx 12428 df-slot 12429 df-base 12431 df-plusg 12502 df-0g 12625 df-mgm 12637 df-sgrp 12670 df-mnd 12680 df-grp 12738 df-minusg 12739 df-sbg 12740 |
This theorem is referenced by: grppncan 12817 grpnpncan0 12822 abladdsub4 12910 ablpncan2 12912 ablpnpcan 12916 ablnncan 12917 |
Copyright terms: Public domain | W3C validator |