ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ablnsg Unicode version

Theorem ablnsg 13670
Description: Every subgroup of an abelian group is normal. (Contributed by Mario Carneiro, 14-Jun-2015.)
Assertion
Ref Expression
ablnsg  |-  ( G  e.  Abel  ->  (NrmSGrp `  G
)  =  (SubGrp `  G ) )

Proof of Theorem ablnsg
Dummy variables  x  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2205 . . . . . . 7  |-  ( Base `  G )  =  (
Base `  G )
2 eqid 2205 . . . . . . 7  |-  ( +g  `  G )  =  ( +g  `  G )
31, 2ablcom 13639 . . . . . 6  |-  ( ( G  e.  Abel  /\  y  e.  ( Base `  G
)  /\  z  e.  ( Base `  G )
)  ->  ( y
( +g  `  G ) z )  =  ( z ( +g  `  G
) y ) )
433expb 1207 . . . . 5  |-  ( ( G  e.  Abel  /\  (
y  e.  ( Base `  G )  /\  z  e.  ( Base `  G
) ) )  -> 
( y ( +g  `  G ) z )  =  ( z ( +g  `  G ) y ) )
54eleq1d 2274 . . . 4  |-  ( ( G  e.  Abel  /\  (
y  e.  ( Base `  G )  /\  z  e.  ( Base `  G
) ) )  -> 
( ( y ( +g  `  G ) z )  e.  x  <->  ( z ( +g  `  G
) y )  e.  x ) )
65ralrimivva 2588 . . 3  |-  ( G  e.  Abel  ->  A. y  e.  ( Base `  G
) A. z  e.  ( Base `  G
) ( ( y ( +g  `  G
) z )  e.  x  <->  ( z ( +g  `  G ) y )  e.  x
) )
71, 2isnsg 13538 . . . 4  |-  ( x  e.  (NrmSGrp `  G
)  <->  ( x  e.  (SubGrp `  G )  /\  A. y  e.  (
Base `  G ) A. z  e.  ( Base `  G ) ( ( y ( +g  `  G ) z )  e.  x  <->  ( z
( +g  `  G ) y )  e.  x
) ) )
87rbaib 923 . . 3  |-  ( A. y  e.  ( Base `  G ) A. z  e.  ( Base `  G
) ( ( y ( +g  `  G
) z )  e.  x  <->  ( z ( +g  `  G ) y )  e.  x
)  ->  ( x  e.  (NrmSGrp `  G )  <->  x  e.  (SubGrp `  G
) ) )
96, 8syl 14 . 2  |-  ( G  e.  Abel  ->  ( x  e.  (NrmSGrp `  G
)  <->  x  e.  (SubGrp `  G ) ) )
109eqrdv 2203 1  |-  ( G  e.  Abel  ->  (NrmSGrp `  G
)  =  (SubGrp `  G ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1373    e. wcel 2176   A.wral 2484   ` cfv 5271  (class class class)co 5944   Basecbs 12832   +g cplusg 12909  SubGrpcsubg 13503  NrmSGrpcnsg 13504   Abelcabl 13621
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-13 2178  ax-14 2179  ax-ext 2187  ax-sep 4162  ax-pow 4218  ax-pr 4253  ax-un 4480  ax-cnex 8016  ax-resscn 8017  ax-1re 8019  ax-addrcl 8022
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1484  df-sb 1786  df-eu 2057  df-mo 2058  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ral 2489  df-rex 2490  df-rab 2493  df-v 2774  df-sbc 2999  df-csb 3094  df-un 3170  df-in 3172  df-ss 3179  df-pw 3618  df-sn 3639  df-pr 3640  df-op 3642  df-uni 3851  df-int 3886  df-br 4045  df-opab 4106  df-mpt 4107  df-id 4340  df-xp 4681  df-rel 4682  df-cnv 4683  df-co 4684  df-dm 4685  df-rn 4686  df-res 4687  df-ima 4688  df-iota 5232  df-fun 5273  df-fn 5274  df-fv 5279  df-ov 5947  df-inn 9037  df-2 9095  df-ndx 12835  df-slot 12836  df-base 12838  df-plusg 12922  df-subg 13506  df-nsg 13507  df-cmn 13622  df-abl 13623
This theorem is referenced by:  rngansg  13712  qus2idrng  14287  qus1  14288  qusrhm  14290
  Copyright terms: Public domain W3C validator