ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ablnsg Unicode version

Theorem ablnsg 13785
Description: Every subgroup of an abelian group is normal. (Contributed by Mario Carneiro, 14-Jun-2015.)
Assertion
Ref Expression
ablnsg  |-  ( G  e.  Abel  ->  (NrmSGrp `  G
)  =  (SubGrp `  G ) )

Proof of Theorem ablnsg
Dummy variables  x  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2207 . . . . . . 7  |-  ( Base `  G )  =  (
Base `  G )
2 eqid 2207 . . . . . . 7  |-  ( +g  `  G )  =  ( +g  `  G )
31, 2ablcom 13754 . . . . . 6  |-  ( ( G  e.  Abel  /\  y  e.  ( Base `  G
)  /\  z  e.  ( Base `  G )
)  ->  ( y
( +g  `  G ) z )  =  ( z ( +g  `  G
) y ) )
433expb 1207 . . . . 5  |-  ( ( G  e.  Abel  /\  (
y  e.  ( Base `  G )  /\  z  e.  ( Base `  G
) ) )  -> 
( y ( +g  `  G ) z )  =  ( z ( +g  `  G ) y ) )
54eleq1d 2276 . . . 4  |-  ( ( G  e.  Abel  /\  (
y  e.  ( Base `  G )  /\  z  e.  ( Base `  G
) ) )  -> 
( ( y ( +g  `  G ) z )  e.  x  <->  ( z ( +g  `  G
) y )  e.  x ) )
65ralrimivva 2590 . . 3  |-  ( G  e.  Abel  ->  A. y  e.  ( Base `  G
) A. z  e.  ( Base `  G
) ( ( y ( +g  `  G
) z )  e.  x  <->  ( z ( +g  `  G ) y )  e.  x
) )
71, 2isnsg 13653 . . . 4  |-  ( x  e.  (NrmSGrp `  G
)  <->  ( x  e.  (SubGrp `  G )  /\  A. y  e.  (
Base `  G ) A. z  e.  ( Base `  G ) ( ( y ( +g  `  G ) z )  e.  x  <->  ( z
( +g  `  G ) y )  e.  x
) ) )
87rbaib 923 . . 3  |-  ( A. y  e.  ( Base `  G ) A. z  e.  ( Base `  G
) ( ( y ( +g  `  G
) z )  e.  x  <->  ( z ( +g  `  G ) y )  e.  x
)  ->  ( x  e.  (NrmSGrp `  G )  <->  x  e.  (SubGrp `  G
) ) )
96, 8syl 14 . 2  |-  ( G  e.  Abel  ->  ( x  e.  (NrmSGrp `  G
)  <->  x  e.  (SubGrp `  G ) ) )
109eqrdv 2205 1  |-  ( G  e.  Abel  ->  (NrmSGrp `  G
)  =  (SubGrp `  G ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1373    e. wcel 2178   A.wral 2486   ` cfv 5290  (class class class)co 5967   Basecbs 12947   +g cplusg 13024  SubGrpcsubg 13618  NrmSGrpcnsg 13619   Abelcabl 13736
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2180  ax-14 2181  ax-ext 2189  ax-sep 4178  ax-pow 4234  ax-pr 4269  ax-un 4498  ax-cnex 8051  ax-resscn 8052  ax-1re 8054  ax-addrcl 8057
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-ral 2491  df-rex 2492  df-rab 2495  df-v 2778  df-sbc 3006  df-csb 3102  df-un 3178  df-in 3180  df-ss 3187  df-pw 3628  df-sn 3649  df-pr 3650  df-op 3652  df-uni 3865  df-int 3900  df-br 4060  df-opab 4122  df-mpt 4123  df-id 4358  df-xp 4699  df-rel 4700  df-cnv 4701  df-co 4702  df-dm 4703  df-rn 4704  df-res 4705  df-ima 4706  df-iota 5251  df-fun 5292  df-fn 5293  df-fv 5298  df-ov 5970  df-inn 9072  df-2 9130  df-ndx 12950  df-slot 12951  df-base 12953  df-plusg 13037  df-subg 13621  df-nsg 13622  df-cmn 13737  df-abl 13738
This theorem is referenced by:  rngansg  13827  qus2idrng  14402  qus1  14403  qusrhm  14405
  Copyright terms: Public domain W3C validator