ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  qusrhm Unicode version

Theorem qusrhm 14027
Description: If  S is a two-sided ideal in  R, then the "natural map" from elements to their cosets is a ring homomorphism from  R to  R  /  S. (Contributed by Mario Carneiro, 15-Jun-2015.)
Hypotheses
Ref Expression
qusring.u  |-  U  =  ( R  /.s  ( R ~QG  S
) )
qusring.i  |-  I  =  (2Ideal `  R )
qusrhm.x  |-  X  =  ( Base `  R
)
qusrhm.f  |-  F  =  ( x  e.  X  |->  [ x ] ( R ~QG  S ) )
Assertion
Ref Expression
qusrhm  |-  ( ( R  e.  Ring  /\  S  e.  I )  ->  F  e.  ( R RingHom  U )
)
Distinct variable groups:    x, I    x, R    x, S    x, U    x, X
Allowed substitution hint:    F( x)

Proof of Theorem qusrhm
Dummy variables  y  z  a  b  c  d are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 qusrhm.x . 2  |-  X  =  ( Base `  R
)
2 eqid 2193 . 2  |-  ( 1r
`  R )  =  ( 1r `  R
)
3 eqid 2193 . 2  |-  ( 1r
`  U )  =  ( 1r `  U
)
4 eqid 2193 . 2  |-  ( .r
`  R )  =  ( .r `  R
)
5 eqid 2193 . 2  |-  ( .r
`  U )  =  ( .r `  U
)
6 simpl 109 . 2  |-  ( ( R  e.  Ring  /\  S  e.  I )  ->  R  e.  Ring )
7 qusring.u . . 3  |-  U  =  ( R  /.s  ( R ~QG  S
) )
8 qusring.i . . 3  |-  I  =  (2Ideal `  R )
97, 8qusring 14026 . 2  |-  ( ( R  e.  Ring  /\  S  e.  I )  ->  U  e.  Ring )
10 eqid 2193 . . . . . . . 8  |-  (LIdeal `  R )  =  (LIdeal `  R )
11 eqid 2193 . . . . . . . 8  |-  (oppr `  R
)  =  (oppr `  R
)
12 eqid 2193 . . . . . . . 8  |-  (LIdeal `  (oppr `  R ) )  =  (LIdeal `  (oppr
`  R ) )
1310, 11, 12, 82idlelb 14004 . . . . . . 7  |-  ( S  e.  I  <->  ( S  e.  (LIdeal `  R )  /\  S  e.  (LIdeal `  (oppr
`  R ) ) ) )
1413simplbi 274 . . . . . 6  |-  ( S  e.  I  ->  S  e.  (LIdeal `  R )
)
1510lidlsubg 13985 . . . . . 6  |-  ( ( R  e.  Ring  /\  S  e.  (LIdeal `  R )
)  ->  S  e.  (SubGrp `  R ) )
1614, 15sylan2 286 . . . . 5  |-  ( ( R  e.  Ring  /\  S  e.  I )  ->  S  e.  (SubGrp `  R )
)
17 eqid 2193 . . . . . 6  |-  ( R ~QG  S )  =  ( R ~QG  S )
181, 17eqger 13297 . . . . 5  |-  ( S  e.  (SubGrp `  R
)  ->  ( R ~QG  S
)  Er  X )
1916, 18syl 14 . . . 4  |-  ( ( R  e.  Ring  /\  S  e.  I )  ->  ( R ~QG  S )  Er  X
)
20 basfn 12679 . . . . . 6  |-  Base  Fn  _V
216elexd 2773 . . . . . 6  |-  ( ( R  e.  Ring  /\  S  e.  I )  ->  R  e.  _V )
22 funfvex 5572 . . . . . . 7  |-  ( ( Fun  Base  /\  R  e. 
dom  Base )  ->  ( Base `  R )  e. 
_V )
2322funfni 5355 . . . . . 6  |-  ( (
Base  Fn  _V  /\  R  e.  _V )  ->  ( Base `  R )  e. 
_V )
2420, 21, 23sylancr 414 . . . . 5  |-  ( ( R  e.  Ring  /\  S  e.  I )  ->  ( Base `  R )  e. 
_V )
251, 24eqeltrid 2280 . . . 4  |-  ( ( R  e.  Ring  /\  S  e.  I )  ->  X  e.  _V )
26 qusrhm.f . . . 4  |-  F  =  ( x  e.  X  |->  [ x ] ( R ~QG  S ) )
2719, 25, 26divsfval 12914 . . 3  |-  ( ( R  e.  Ring  /\  S  e.  I )  ->  ( F `  ( 1r `  R ) )  =  [ ( 1r `  R ) ] ( R ~QG  S ) )
287, 8, 2qus1 14025 . . . 4  |-  ( ( R  e.  Ring  /\  S  e.  I )  ->  ( U  e.  Ring  /\  [
( 1r `  R
) ] ( R ~QG  S )  =  ( 1r
`  U ) ) )
2928simprd 114 . . 3  |-  ( ( R  e.  Ring  /\  S  e.  I )  ->  [ ( 1r `  R ) ] ( R ~QG  S )  =  ( 1r `  U ) )
3027, 29eqtrd 2226 . 2  |-  ( ( R  e.  Ring  /\  S  e.  I )  ->  ( F `  ( 1r `  R ) )  =  ( 1r `  U
) )
317a1i 9 . . . . 5  |-  ( ( R  e.  Ring  /\  S  e.  I )  ->  U  =  ( R  /.s  ( R ~QG  S ) ) )
321a1i 9 . . . . 5  |-  ( ( R  e.  Ring  /\  S  e.  I )  ->  X  =  ( Base `  R
) )
331, 17, 8, 42idlcpbl 14023 . . . . 5  |-  ( ( R  e.  Ring  /\  S  e.  I )  ->  (
( a ( R ~QG  S ) c  /\  b
( R ~QG  S ) d )  ->  ( a ( .r `  R ) b ) ( R ~QG  S ) ( c ( .r `  R ) d ) ) )
341, 4ringcl 13512 . . . . . . . 8  |-  ( ( R  e.  Ring  /\  y  e.  X  /\  z  e.  X )  ->  (
y ( .r `  R ) z )  e.  X )
35343expb 1206 . . . . . . 7  |-  ( ( R  e.  Ring  /\  (
y  e.  X  /\  z  e.  X )
)  ->  ( y
( .r `  R
) z )  e.  X )
3635adantlr 477 . . . . . 6  |-  ( ( ( R  e.  Ring  /\  S  e.  I )  /\  ( y  e.  X  /\  z  e.  X ) )  -> 
( y ( .r
`  R ) z )  e.  X )
3736caovclg 6073 . . . . 5  |-  ( ( ( R  e.  Ring  /\  S  e.  I )  /\  ( c  e.  X  /\  d  e.  X ) )  -> 
( c ( .r
`  R ) d )  e.  X )
3831, 32, 19, 6, 33, 37, 4, 5qusmulval 12923 . . . 4  |-  ( ( ( R  e.  Ring  /\  S  e.  I )  /\  y  e.  X  /\  z  e.  X
)  ->  ( [
y ] ( R ~QG  S ) ( .r `  U ) [ z ] ( R ~QG  S ) )  =  [ ( y ( .r `  R ) z ) ] ( R ~QG  S ) )
39383expb 1206 . . 3  |-  ( ( ( R  e.  Ring  /\  S  e.  I )  /\  ( y  e.  X  /\  z  e.  X ) )  -> 
( [ y ] ( R ~QG  S ) ( .r
`  U ) [ z ] ( R ~QG  S ) )  =  [
( y ( .r
`  R ) z ) ] ( R ~QG  S ) )
4019adantr 276 . . . . 5  |-  ( ( ( R  e.  Ring  /\  S  e.  I )  /\  ( y  e.  X  /\  z  e.  X ) )  -> 
( R ~QG  S )  Er  X
)
4125adantr 276 . . . . 5  |-  ( ( ( R  e.  Ring  /\  S  e.  I )  /\  ( y  e.  X  /\  z  e.  X ) )  ->  X  e.  _V )
4240, 41, 26divsfval 12914 . . . 4  |-  ( ( ( R  e.  Ring  /\  S  e.  I )  /\  ( y  e.  X  /\  z  e.  X ) )  -> 
( F `  y
)  =  [ y ] ( R ~QG  S ) )
4340, 41, 26divsfval 12914 . . . 4  |-  ( ( ( R  e.  Ring  /\  S  e.  I )  /\  ( y  e.  X  /\  z  e.  X ) )  -> 
( F `  z
)  =  [ z ] ( R ~QG  S ) )
4442, 43oveq12d 5937 . . 3  |-  ( ( ( R  e.  Ring  /\  S  e.  I )  /\  ( y  e.  X  /\  z  e.  X ) )  -> 
( ( F `  y ) ( .r
`  U ) ( F `  z ) )  =  ( [ y ] ( R ~QG  S ) ( .r `  U ) [ z ] ( R ~QG  S ) ) )
4540, 41, 26divsfval 12914 . . 3  |-  ( ( ( R  e.  Ring  /\  S  e.  I )  /\  ( y  e.  X  /\  z  e.  X ) )  -> 
( F `  (
y ( .r `  R ) z ) )  =  [ ( y ( .r `  R ) z ) ] ( R ~QG  S ) )
4639, 44, 453eqtr4rd 2237 . 2  |-  ( ( ( R  e.  Ring  /\  S  e.  I )  /\  ( y  e.  X  /\  z  e.  X ) )  -> 
( F `  (
y ( .r `  R ) z ) )  =  ( ( F `  y ) ( .r `  U
) ( F `  z ) ) )
47 ringabl 13531 . . . . . 6  |-  ( R  e.  Ring  ->  R  e. 
Abel )
4847adantr 276 . . . . 5  |-  ( ( R  e.  Ring  /\  S  e.  I )  ->  R  e.  Abel )
49 ablnsg 13407 . . . . 5  |-  ( R  e.  Abel  ->  (NrmSGrp `  R
)  =  (SubGrp `  R ) )
5048, 49syl 14 . . . 4  |-  ( ( R  e.  Ring  /\  S  e.  I )  ->  (NrmSGrp `  R )  =  (SubGrp `  R ) )
5116, 50eleqtrrd 2273 . . 3  |-  ( ( R  e.  Ring  /\  S  e.  I )  ->  S  e.  (NrmSGrp `  R )
)
521, 7, 26qusghm 13355 . . 3  |-  ( S  e.  (NrmSGrp `  R
)  ->  F  e.  ( R  GrpHom  U ) )
5351, 52syl 14 . 2  |-  ( ( R  e.  Ring  /\  S  e.  I )  ->  F  e.  ( R  GrpHom  U ) )
541, 2, 3, 4, 5, 6, 9, 30, 46, 53isrhm2d 13664 1  |-  ( ( R  e.  Ring  /\  S  e.  I )  ->  F  e.  ( R RingHom  U )
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1364    e. wcel 2164   _Vcvv 2760    |-> cmpt 4091    Fn wfn 5250   ` cfv 5255  (class class class)co 5919    Er wer 6586   [cec 6587   Basecbs 12621   .rcmulr 12699    /.s cqus 12886  SubGrpcsubg 13240  NrmSGrpcnsg 13241   ~QG cqg 13242    GrpHom cghm 13313   Abelcabl 13358   1rcur 13458   Ringcrg 13495  opprcoppr 13566   RingHom crh 13649  LIdealclidl 13966  2Idealc2idl 13998
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-coll 4145  ax-sep 4148  ax-nul 4156  ax-pow 4204  ax-pr 4239  ax-un 4465  ax-setind 4570  ax-cnex 7965  ax-resscn 7966  ax-1cn 7967  ax-1re 7968  ax-icn 7969  ax-addcl 7970  ax-addrcl 7971  ax-mulcl 7972  ax-addcom 7974  ax-addass 7976  ax-i2m1 7979  ax-0lt1 7980  ax-0id 7982  ax-rnegex 7983  ax-pre-ltirr 7986  ax-pre-lttrn 7988  ax-pre-ltadd 7990
This theorem depends on definitions:  df-bi 117  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-nel 2460  df-ral 2477  df-rex 2478  df-reu 2479  df-rmo 2480  df-rab 2481  df-v 2762  df-sbc 2987  df-csb 3082  df-dif 3156  df-un 3158  df-in 3160  df-ss 3167  df-nul 3448  df-pw 3604  df-sn 3625  df-pr 3626  df-tp 3627  df-op 3628  df-uni 3837  df-int 3872  df-iun 3915  df-br 4031  df-opab 4092  df-mpt 4093  df-id 4325  df-xp 4666  df-rel 4667  df-cnv 4668  df-co 4669  df-dm 4670  df-rn 4671  df-res 4672  df-ima 4673  df-iota 5216  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-riota 5874  df-ov 5922  df-oprab 5923  df-mpo 5924  df-1st 6195  df-2nd 6196  df-tpos 6300  df-er 6589  df-ec 6591  df-qs 6595  df-map 6706  df-pnf 8058  df-mnf 8059  df-ltxr 8061  df-inn 8985  df-2 9043  df-3 9044  df-4 9045  df-5 9046  df-6 9047  df-7 9048  df-8 9049  df-ndx 12624  df-slot 12625  df-base 12627  df-sets 12628  df-iress 12629  df-plusg 12711  df-mulr 12712  df-sca 12714  df-vsca 12715  df-ip 12716  df-0g 12872  df-iimas 12888  df-qus 12889  df-mgm 12942  df-sgrp 12988  df-mnd 13001  df-mhm 13034  df-grp 13078  df-minusg 13079  df-sbg 13080  df-subg 13243  df-nsg 13244  df-eqg 13245  df-ghm 13314  df-cmn 13359  df-abl 13360  df-mgp 13420  df-rng 13432  df-ur 13459  df-srg 13463  df-ring 13497  df-oppr 13567  df-rhm 13651  df-subrg 13718  df-lmod 13788  df-lssm 13852  df-sra 13934  df-rgmod 13935  df-lidl 13968  df-2idl 13999
This theorem is referenced by:  znzrh2  14145
  Copyright terms: Public domain W3C validator