| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > qusrhm | Unicode version | ||
| Description: If |
| Ref | Expression |
|---|---|
| qusring.u |
|
| qusring.i |
|
| qusrhm.x |
|
| qusrhm.f |
|
| Ref | Expression |
|---|---|
| qusrhm |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | qusrhm.x |
. 2
| |
| 2 | eqid 2229 |
. 2
| |
| 3 | eqid 2229 |
. 2
| |
| 4 | eqid 2229 |
. 2
| |
| 5 | eqid 2229 |
. 2
| |
| 6 | simpl 109 |
. 2
| |
| 7 | qusring.u |
. . 3
| |
| 8 | qusring.i |
. . 3
| |
| 9 | 7, 8 | qusring 14499 |
. 2
|
| 10 | eqid 2229 |
. . . . . . . 8
| |
| 11 | eqid 2229 |
. . . . . . . 8
| |
| 12 | eqid 2229 |
. . . . . . . 8
| |
| 13 | 10, 11, 12, 8 | 2idlelb 14477 |
. . . . . . 7
|
| 14 | 13 | simplbi 274 |
. . . . . 6
|
| 15 | 10 | lidlsubg 14458 |
. . . . . 6
|
| 16 | 14, 15 | sylan2 286 |
. . . . 5
|
| 17 | eqid 2229 |
. . . . . 6
| |
| 18 | 1, 17 | eqger 13769 |
. . . . 5
|
| 19 | 16, 18 | syl 14 |
. . . 4
|
| 20 | basfn 13099 |
. . . . . 6
| |
| 21 | 6 | elexd 2813 |
. . . . . 6
|
| 22 | funfvex 5646 |
. . . . . . 7
| |
| 23 | 22 | funfni 5423 |
. . . . . 6
|
| 24 | 20, 21, 23 | sylancr 414 |
. . . . 5
|
| 25 | 1, 24 | eqeltrid 2316 |
. . . 4
|
| 26 | qusrhm.f |
. . . 4
| |
| 27 | 19, 25, 26 | divsfval 13369 |
. . 3
|
| 28 | 7, 8, 2 | qus1 14498 |
. . . 4
|
| 29 | 28 | simprd 114 |
. . 3
|
| 30 | 27, 29 | eqtrd 2262 |
. 2
|
| 31 | 7 | a1i 9 |
. . . . 5
|
| 32 | 1 | a1i 9 |
. . . . 5
|
| 33 | 1, 17, 8, 4 | 2idlcpbl 14496 |
. . . . 5
|
| 34 | 1, 4 | ringcl 13984 |
. . . . . . . 8
|
| 35 | 34 | 3expb 1228 |
. . . . . . 7
|
| 36 | 35 | adantlr 477 |
. . . . . 6
|
| 37 | 36 | caovclg 6164 |
. . . . 5
|
| 38 | 31, 32, 19, 6, 33, 37, 4, 5 | qusmulval 13378 |
. . . 4
|
| 39 | 38 | 3expb 1228 |
. . 3
|
| 40 | 19 | adantr 276 |
. . . . 5
|
| 41 | 25 | adantr 276 |
. . . . 5
|
| 42 | 40, 41, 26 | divsfval 13369 |
. . . 4
|
| 43 | 40, 41, 26 | divsfval 13369 |
. . . 4
|
| 44 | 42, 43 | oveq12d 6025 |
. . 3
|
| 45 | 40, 41, 26 | divsfval 13369 |
. . 3
|
| 46 | 39, 44, 45 | 3eqtr4rd 2273 |
. 2
|
| 47 | ringabl 14003 |
. . . . . 6
| |
| 48 | 47 | adantr 276 |
. . . . 5
|
| 49 | ablnsg 13879 |
. . . . 5
| |
| 50 | 48, 49 | syl 14 |
. . . 4
|
| 51 | 16, 50 | eleqtrrd 2309 |
. . 3
|
| 52 | 1, 7, 26 | qusghm 13827 |
. . 3
|
| 53 | 51, 52 | syl 14 |
. 2
|
| 54 | 1, 2, 3, 4, 5, 6, 9, 30, 46, 53 | isrhm2d 14137 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-coll 4199 ax-sep 4202 ax-nul 4210 ax-pow 4258 ax-pr 4293 ax-un 4524 ax-setind 4629 ax-cnex 8098 ax-resscn 8099 ax-1cn 8100 ax-1re 8101 ax-icn 8102 ax-addcl 8103 ax-addrcl 8104 ax-mulcl 8105 ax-addcom 8107 ax-addass 8109 ax-i2m1 8112 ax-0lt1 8113 ax-0id 8115 ax-rnegex 8116 ax-pre-ltirr 8119 ax-pre-lttrn 8121 ax-pre-ltadd 8123 |
| This theorem depends on definitions: df-bi 117 df-3or 1003 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-nel 2496 df-ral 2513 df-rex 2514 df-reu 2515 df-rmo 2516 df-rab 2517 df-v 2801 df-sbc 3029 df-csb 3125 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-nul 3492 df-pw 3651 df-sn 3672 df-pr 3673 df-tp 3674 df-op 3675 df-uni 3889 df-int 3924 df-iun 3967 df-br 4084 df-opab 4146 df-mpt 4147 df-id 4384 df-xp 4725 df-rel 4726 df-cnv 4727 df-co 4728 df-dm 4729 df-rn 4730 df-res 4731 df-ima 4732 df-iota 5278 df-fun 5320 df-fn 5321 df-f 5322 df-f1 5323 df-fo 5324 df-f1o 5325 df-fv 5326 df-riota 5960 df-ov 6010 df-oprab 6011 df-mpo 6012 df-1st 6292 df-2nd 6293 df-tpos 6397 df-er 6688 df-ec 6690 df-qs 6694 df-map 6805 df-pnf 8191 df-mnf 8192 df-ltxr 8194 df-inn 9119 df-2 9177 df-3 9178 df-4 9179 df-5 9180 df-6 9181 df-7 9182 df-8 9183 df-ndx 13043 df-slot 13044 df-base 13046 df-sets 13047 df-iress 13048 df-plusg 13131 df-mulr 13132 df-sca 13134 df-vsca 13135 df-ip 13136 df-0g 13299 df-iimas 13343 df-qus 13344 df-mgm 13397 df-sgrp 13443 df-mnd 13458 df-mhm 13500 df-grp 13544 df-minusg 13545 df-sbg 13546 df-subg 13715 df-nsg 13716 df-eqg 13717 df-ghm 13786 df-cmn 13831 df-abl 13832 df-mgp 13892 df-rng 13904 df-ur 13931 df-srg 13935 df-ring 13969 df-oppr 14039 df-rhm 14124 df-subrg 14191 df-lmod 14261 df-lssm 14325 df-sra 14407 df-rgmod 14408 df-lidl 14441 df-2idl 14472 |
| This theorem is referenced by: znzrh2 14618 |
| Copyright terms: Public domain | W3C validator |