ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  qusrhm Unicode version

Theorem qusrhm 14500
Description: If  S is a two-sided ideal in  R, then the "natural map" from elements to their cosets is a ring homomorphism from  R to  R  /  S. (Contributed by Mario Carneiro, 15-Jun-2015.)
Hypotheses
Ref Expression
qusring.u  |-  U  =  ( R  /.s  ( R ~QG  S
) )
qusring.i  |-  I  =  (2Ideal `  R )
qusrhm.x  |-  X  =  ( Base `  R
)
qusrhm.f  |-  F  =  ( x  e.  X  |->  [ x ] ( R ~QG  S ) )
Assertion
Ref Expression
qusrhm  |-  ( ( R  e.  Ring  /\  S  e.  I )  ->  F  e.  ( R RingHom  U )
)
Distinct variable groups:    x, I    x, R    x, S    x, U    x, X
Allowed substitution hint:    F( x)

Proof of Theorem qusrhm
Dummy variables  y  z  a  b  c  d are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 qusrhm.x . 2  |-  X  =  ( Base `  R
)
2 eqid 2229 . 2  |-  ( 1r
`  R )  =  ( 1r `  R
)
3 eqid 2229 . 2  |-  ( 1r
`  U )  =  ( 1r `  U
)
4 eqid 2229 . 2  |-  ( .r
`  R )  =  ( .r `  R
)
5 eqid 2229 . 2  |-  ( .r
`  U )  =  ( .r `  U
)
6 simpl 109 . 2  |-  ( ( R  e.  Ring  /\  S  e.  I )  ->  R  e.  Ring )
7 qusring.u . . 3  |-  U  =  ( R  /.s  ( R ~QG  S
) )
8 qusring.i . . 3  |-  I  =  (2Ideal `  R )
97, 8qusring 14499 . 2  |-  ( ( R  e.  Ring  /\  S  e.  I )  ->  U  e.  Ring )
10 eqid 2229 . . . . . . . 8  |-  (LIdeal `  R )  =  (LIdeal `  R )
11 eqid 2229 . . . . . . . 8  |-  (oppr `  R
)  =  (oppr `  R
)
12 eqid 2229 . . . . . . . 8  |-  (LIdeal `  (oppr `  R ) )  =  (LIdeal `  (oppr
`  R ) )
1310, 11, 12, 82idlelb 14477 . . . . . . 7  |-  ( S  e.  I  <->  ( S  e.  (LIdeal `  R )  /\  S  e.  (LIdeal `  (oppr
`  R ) ) ) )
1413simplbi 274 . . . . . 6  |-  ( S  e.  I  ->  S  e.  (LIdeal `  R )
)
1510lidlsubg 14458 . . . . . 6  |-  ( ( R  e.  Ring  /\  S  e.  (LIdeal `  R )
)  ->  S  e.  (SubGrp `  R ) )
1614, 15sylan2 286 . . . . 5  |-  ( ( R  e.  Ring  /\  S  e.  I )  ->  S  e.  (SubGrp `  R )
)
17 eqid 2229 . . . . . 6  |-  ( R ~QG  S )  =  ( R ~QG  S )
181, 17eqger 13769 . . . . 5  |-  ( S  e.  (SubGrp `  R
)  ->  ( R ~QG  S
)  Er  X )
1916, 18syl 14 . . . 4  |-  ( ( R  e.  Ring  /\  S  e.  I )  ->  ( R ~QG  S )  Er  X
)
20 basfn 13099 . . . . . 6  |-  Base  Fn  _V
216elexd 2813 . . . . . 6  |-  ( ( R  e.  Ring  /\  S  e.  I )  ->  R  e.  _V )
22 funfvex 5646 . . . . . . 7  |-  ( ( Fun  Base  /\  R  e. 
dom  Base )  ->  ( Base `  R )  e. 
_V )
2322funfni 5423 . . . . . 6  |-  ( (
Base  Fn  _V  /\  R  e.  _V )  ->  ( Base `  R )  e. 
_V )
2420, 21, 23sylancr 414 . . . . 5  |-  ( ( R  e.  Ring  /\  S  e.  I )  ->  ( Base `  R )  e. 
_V )
251, 24eqeltrid 2316 . . . 4  |-  ( ( R  e.  Ring  /\  S  e.  I )  ->  X  e.  _V )
26 qusrhm.f . . . 4  |-  F  =  ( x  e.  X  |->  [ x ] ( R ~QG  S ) )
2719, 25, 26divsfval 13369 . . 3  |-  ( ( R  e.  Ring  /\  S  e.  I )  ->  ( F `  ( 1r `  R ) )  =  [ ( 1r `  R ) ] ( R ~QG  S ) )
287, 8, 2qus1 14498 . . . 4  |-  ( ( R  e.  Ring  /\  S  e.  I )  ->  ( U  e.  Ring  /\  [
( 1r `  R
) ] ( R ~QG  S )  =  ( 1r
`  U ) ) )
2928simprd 114 . . 3  |-  ( ( R  e.  Ring  /\  S  e.  I )  ->  [ ( 1r `  R ) ] ( R ~QG  S )  =  ( 1r `  U ) )
3027, 29eqtrd 2262 . 2  |-  ( ( R  e.  Ring  /\  S  e.  I )  ->  ( F `  ( 1r `  R ) )  =  ( 1r `  U
) )
317a1i 9 . . . . 5  |-  ( ( R  e.  Ring  /\  S  e.  I )  ->  U  =  ( R  /.s  ( R ~QG  S ) ) )
321a1i 9 . . . . 5  |-  ( ( R  e.  Ring  /\  S  e.  I )  ->  X  =  ( Base `  R
) )
331, 17, 8, 42idlcpbl 14496 . . . . 5  |-  ( ( R  e.  Ring  /\  S  e.  I )  ->  (
( a ( R ~QG  S ) c  /\  b
( R ~QG  S ) d )  ->  ( a ( .r `  R ) b ) ( R ~QG  S ) ( c ( .r `  R ) d ) ) )
341, 4ringcl 13984 . . . . . . . 8  |-  ( ( R  e.  Ring  /\  y  e.  X  /\  z  e.  X )  ->  (
y ( .r `  R ) z )  e.  X )
35343expb 1228 . . . . . . 7  |-  ( ( R  e.  Ring  /\  (
y  e.  X  /\  z  e.  X )
)  ->  ( y
( .r `  R
) z )  e.  X )
3635adantlr 477 . . . . . 6  |-  ( ( ( R  e.  Ring  /\  S  e.  I )  /\  ( y  e.  X  /\  z  e.  X ) )  -> 
( y ( .r
`  R ) z )  e.  X )
3736caovclg 6164 . . . . 5  |-  ( ( ( R  e.  Ring  /\  S  e.  I )  /\  ( c  e.  X  /\  d  e.  X ) )  -> 
( c ( .r
`  R ) d )  e.  X )
3831, 32, 19, 6, 33, 37, 4, 5qusmulval 13378 . . . 4  |-  ( ( ( R  e.  Ring  /\  S  e.  I )  /\  y  e.  X  /\  z  e.  X
)  ->  ( [
y ] ( R ~QG  S ) ( .r `  U ) [ z ] ( R ~QG  S ) )  =  [ ( y ( .r `  R ) z ) ] ( R ~QG  S ) )
39383expb 1228 . . 3  |-  ( ( ( R  e.  Ring  /\  S  e.  I )  /\  ( y  e.  X  /\  z  e.  X ) )  -> 
( [ y ] ( R ~QG  S ) ( .r
`  U ) [ z ] ( R ~QG  S ) )  =  [
( y ( .r
`  R ) z ) ] ( R ~QG  S ) )
4019adantr 276 . . . . 5  |-  ( ( ( R  e.  Ring  /\  S  e.  I )  /\  ( y  e.  X  /\  z  e.  X ) )  -> 
( R ~QG  S )  Er  X
)
4125adantr 276 . . . . 5  |-  ( ( ( R  e.  Ring  /\  S  e.  I )  /\  ( y  e.  X  /\  z  e.  X ) )  ->  X  e.  _V )
4240, 41, 26divsfval 13369 . . . 4  |-  ( ( ( R  e.  Ring  /\  S  e.  I )  /\  ( y  e.  X  /\  z  e.  X ) )  -> 
( F `  y
)  =  [ y ] ( R ~QG  S ) )
4340, 41, 26divsfval 13369 . . . 4  |-  ( ( ( R  e.  Ring  /\  S  e.  I )  /\  ( y  e.  X  /\  z  e.  X ) )  -> 
( F `  z
)  =  [ z ] ( R ~QG  S ) )
4442, 43oveq12d 6025 . . 3  |-  ( ( ( R  e.  Ring  /\  S  e.  I )  /\  ( y  e.  X  /\  z  e.  X ) )  -> 
( ( F `  y ) ( .r
`  U ) ( F `  z ) )  =  ( [ y ] ( R ~QG  S ) ( .r `  U ) [ z ] ( R ~QG  S ) ) )
4540, 41, 26divsfval 13369 . . 3  |-  ( ( ( R  e.  Ring  /\  S  e.  I )  /\  ( y  e.  X  /\  z  e.  X ) )  -> 
( F `  (
y ( .r `  R ) z ) )  =  [ ( y ( .r `  R ) z ) ] ( R ~QG  S ) )
4639, 44, 453eqtr4rd 2273 . 2  |-  ( ( ( R  e.  Ring  /\  S  e.  I )  /\  ( y  e.  X  /\  z  e.  X ) )  -> 
( F `  (
y ( .r `  R ) z ) )  =  ( ( F `  y ) ( .r `  U
) ( F `  z ) ) )
47 ringabl 14003 . . . . . 6  |-  ( R  e.  Ring  ->  R  e. 
Abel )
4847adantr 276 . . . . 5  |-  ( ( R  e.  Ring  /\  S  e.  I )  ->  R  e.  Abel )
49 ablnsg 13879 . . . . 5  |-  ( R  e.  Abel  ->  (NrmSGrp `  R
)  =  (SubGrp `  R ) )
5048, 49syl 14 . . . 4  |-  ( ( R  e.  Ring  /\  S  e.  I )  ->  (NrmSGrp `  R )  =  (SubGrp `  R ) )
5116, 50eleqtrrd 2309 . . 3  |-  ( ( R  e.  Ring  /\  S  e.  I )  ->  S  e.  (NrmSGrp `  R )
)
521, 7, 26qusghm 13827 . . 3  |-  ( S  e.  (NrmSGrp `  R
)  ->  F  e.  ( R  GrpHom  U ) )
5351, 52syl 14 . 2  |-  ( ( R  e.  Ring  /\  S  e.  I )  ->  F  e.  ( R  GrpHom  U ) )
541, 2, 3, 4, 5, 6, 9, 30, 46, 53isrhm2d 14137 1  |-  ( ( R  e.  Ring  /\  S  e.  I )  ->  F  e.  ( R RingHom  U )
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1395    e. wcel 2200   _Vcvv 2799    |-> cmpt 4145    Fn wfn 5313   ` cfv 5318  (class class class)co 6007    Er wer 6685   [cec 6686   Basecbs 13040   .rcmulr 13119    /.s cqus 13341  SubGrpcsubg 13712  NrmSGrpcnsg 13713   ~QG cqg 13714    GrpHom cghm 13785   Abelcabl 13830   1rcur 13930   Ringcrg 13967  opprcoppr 14038   RingHom crh 14122  LIdealclidl 14439  2Idealc2idl 14471
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-coll 4199  ax-sep 4202  ax-nul 4210  ax-pow 4258  ax-pr 4293  ax-un 4524  ax-setind 4629  ax-cnex 8098  ax-resscn 8099  ax-1cn 8100  ax-1re 8101  ax-icn 8102  ax-addcl 8103  ax-addrcl 8104  ax-mulcl 8105  ax-addcom 8107  ax-addass 8109  ax-i2m1 8112  ax-0lt1 8113  ax-0id 8115  ax-rnegex 8116  ax-pre-ltirr 8119  ax-pre-lttrn 8121  ax-pre-ltadd 8123
This theorem depends on definitions:  df-bi 117  df-3or 1003  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-nel 2496  df-ral 2513  df-rex 2514  df-reu 2515  df-rmo 2516  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-pw 3651  df-sn 3672  df-pr 3673  df-tp 3674  df-op 3675  df-uni 3889  df-int 3924  df-iun 3967  df-br 4084  df-opab 4146  df-mpt 4147  df-id 4384  df-xp 4725  df-rel 4726  df-cnv 4727  df-co 4728  df-dm 4729  df-rn 4730  df-res 4731  df-ima 4732  df-iota 5278  df-fun 5320  df-fn 5321  df-f 5322  df-f1 5323  df-fo 5324  df-f1o 5325  df-fv 5326  df-riota 5960  df-ov 6010  df-oprab 6011  df-mpo 6012  df-1st 6292  df-2nd 6293  df-tpos 6397  df-er 6688  df-ec 6690  df-qs 6694  df-map 6805  df-pnf 8191  df-mnf 8192  df-ltxr 8194  df-inn 9119  df-2 9177  df-3 9178  df-4 9179  df-5 9180  df-6 9181  df-7 9182  df-8 9183  df-ndx 13043  df-slot 13044  df-base 13046  df-sets 13047  df-iress 13048  df-plusg 13131  df-mulr 13132  df-sca 13134  df-vsca 13135  df-ip 13136  df-0g 13299  df-iimas 13343  df-qus 13344  df-mgm 13397  df-sgrp 13443  df-mnd 13458  df-mhm 13500  df-grp 13544  df-minusg 13545  df-sbg 13546  df-subg 13715  df-nsg 13716  df-eqg 13717  df-ghm 13786  df-cmn 13831  df-abl 13832  df-mgp 13892  df-rng 13904  df-ur 13931  df-srg 13935  df-ring 13969  df-oppr 14039  df-rhm 14124  df-subrg 14191  df-lmod 14261  df-lssm 14325  df-sra 14407  df-rgmod 14408  df-lidl 14441  df-2idl 14472
This theorem is referenced by:  znzrh2  14618
  Copyright terms: Public domain W3C validator