| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > qusrhm | Unicode version | ||
| Description: If |
| Ref | Expression |
|---|---|
| qusring.u |
|
| qusring.i |
|
| qusrhm.x |
|
| qusrhm.f |
|
| Ref | Expression |
|---|---|
| qusrhm |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | qusrhm.x |
. 2
| |
| 2 | eqid 2196 |
. 2
| |
| 3 | eqid 2196 |
. 2
| |
| 4 | eqid 2196 |
. 2
| |
| 5 | eqid 2196 |
. 2
| |
| 6 | simpl 109 |
. 2
| |
| 7 | qusring.u |
. . 3
| |
| 8 | qusring.i |
. . 3
| |
| 9 | 7, 8 | qusring 14083 |
. 2
|
| 10 | eqid 2196 |
. . . . . . . 8
| |
| 11 | eqid 2196 |
. . . . . . . 8
| |
| 12 | eqid 2196 |
. . . . . . . 8
| |
| 13 | 10, 11, 12, 8 | 2idlelb 14061 |
. . . . . . 7
|
| 14 | 13 | simplbi 274 |
. . . . . 6
|
| 15 | 10 | lidlsubg 14042 |
. . . . . 6
|
| 16 | 14, 15 | sylan2 286 |
. . . . 5
|
| 17 | eqid 2196 |
. . . . . 6
| |
| 18 | 1, 17 | eqger 13354 |
. . . . 5
|
| 19 | 16, 18 | syl 14 |
. . . 4
|
| 20 | basfn 12736 |
. . . . . 6
| |
| 21 | 6 | elexd 2776 |
. . . . . 6
|
| 22 | funfvex 5575 |
. . . . . . 7
| |
| 23 | 22 | funfni 5358 |
. . . . . 6
|
| 24 | 20, 21, 23 | sylancr 414 |
. . . . 5
|
| 25 | 1, 24 | eqeltrid 2283 |
. . . 4
|
| 26 | qusrhm.f |
. . . 4
| |
| 27 | 19, 25, 26 | divsfval 12971 |
. . 3
|
| 28 | 7, 8, 2 | qus1 14082 |
. . . 4
|
| 29 | 28 | simprd 114 |
. . 3
|
| 30 | 27, 29 | eqtrd 2229 |
. 2
|
| 31 | 7 | a1i 9 |
. . . . 5
|
| 32 | 1 | a1i 9 |
. . . . 5
|
| 33 | 1, 17, 8, 4 | 2idlcpbl 14080 |
. . . . 5
|
| 34 | 1, 4 | ringcl 13569 |
. . . . . . . 8
|
| 35 | 34 | 3expb 1206 |
. . . . . . 7
|
| 36 | 35 | adantlr 477 |
. . . . . 6
|
| 37 | 36 | caovclg 6076 |
. . . . 5
|
| 38 | 31, 32, 19, 6, 33, 37, 4, 5 | qusmulval 12980 |
. . . 4
|
| 39 | 38 | 3expb 1206 |
. . 3
|
| 40 | 19 | adantr 276 |
. . . . 5
|
| 41 | 25 | adantr 276 |
. . . . 5
|
| 42 | 40, 41, 26 | divsfval 12971 |
. . . 4
|
| 43 | 40, 41, 26 | divsfval 12971 |
. . . 4
|
| 44 | 42, 43 | oveq12d 5940 |
. . 3
|
| 45 | 40, 41, 26 | divsfval 12971 |
. . 3
|
| 46 | 39, 44, 45 | 3eqtr4rd 2240 |
. 2
|
| 47 | ringabl 13588 |
. . . . . 6
| |
| 48 | 47 | adantr 276 |
. . . . 5
|
| 49 | ablnsg 13464 |
. . . . 5
| |
| 50 | 48, 49 | syl 14 |
. . . 4
|
| 51 | 16, 50 | eleqtrrd 2276 |
. . 3
|
| 52 | 1, 7, 26 | qusghm 13412 |
. . 3
|
| 53 | 51, 52 | syl 14 |
. 2
|
| 54 | 1, 2, 3, 4, 5, 6, 9, 30, 46, 53 | isrhm2d 13721 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-coll 4148 ax-sep 4151 ax-nul 4159 ax-pow 4207 ax-pr 4242 ax-un 4468 ax-setind 4573 ax-cnex 7970 ax-resscn 7971 ax-1cn 7972 ax-1re 7973 ax-icn 7974 ax-addcl 7975 ax-addrcl 7976 ax-mulcl 7977 ax-addcom 7979 ax-addass 7981 ax-i2m1 7984 ax-0lt1 7985 ax-0id 7987 ax-rnegex 7988 ax-pre-ltirr 7991 ax-pre-lttrn 7993 ax-pre-ltadd 7995 |
| This theorem depends on definitions: df-bi 117 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-nel 2463 df-ral 2480 df-rex 2481 df-reu 2482 df-rmo 2483 df-rab 2484 df-v 2765 df-sbc 2990 df-csb 3085 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-nul 3451 df-pw 3607 df-sn 3628 df-pr 3629 df-tp 3630 df-op 3631 df-uni 3840 df-int 3875 df-iun 3918 df-br 4034 df-opab 4095 df-mpt 4096 df-id 4328 df-xp 4669 df-rel 4670 df-cnv 4671 df-co 4672 df-dm 4673 df-rn 4674 df-res 4675 df-ima 4676 df-iota 5219 df-fun 5260 df-fn 5261 df-f 5262 df-f1 5263 df-fo 5264 df-f1o 5265 df-fv 5266 df-riota 5877 df-ov 5925 df-oprab 5926 df-mpo 5927 df-1st 6198 df-2nd 6199 df-tpos 6303 df-er 6592 df-ec 6594 df-qs 6598 df-map 6709 df-pnf 8063 df-mnf 8064 df-ltxr 8066 df-inn 8991 df-2 9049 df-3 9050 df-4 9051 df-5 9052 df-6 9053 df-7 9054 df-8 9055 df-ndx 12681 df-slot 12682 df-base 12684 df-sets 12685 df-iress 12686 df-plusg 12768 df-mulr 12769 df-sca 12771 df-vsca 12772 df-ip 12773 df-0g 12929 df-iimas 12945 df-qus 12946 df-mgm 12999 df-sgrp 13045 df-mnd 13058 df-mhm 13091 df-grp 13135 df-minusg 13136 df-sbg 13137 df-subg 13300 df-nsg 13301 df-eqg 13302 df-ghm 13371 df-cmn 13416 df-abl 13417 df-mgp 13477 df-rng 13489 df-ur 13516 df-srg 13520 df-ring 13554 df-oppr 13624 df-rhm 13708 df-subrg 13775 df-lmod 13845 df-lssm 13909 df-sra 13991 df-rgmod 13992 df-lidl 14025 df-2idl 14056 |
| This theorem is referenced by: znzrh2 14202 |
| Copyright terms: Public domain | W3C validator |