ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  qusrhm Unicode version

Theorem qusrhm 14160
Description: If  S is a two-sided ideal in  R, then the "natural map" from elements to their cosets is a ring homomorphism from  R to  R  /  S. (Contributed by Mario Carneiro, 15-Jun-2015.)
Hypotheses
Ref Expression
qusring.u  |-  U  =  ( R  /.s  ( R ~QG  S
) )
qusring.i  |-  I  =  (2Ideal `  R )
qusrhm.x  |-  X  =  ( Base `  R
)
qusrhm.f  |-  F  =  ( x  e.  X  |->  [ x ] ( R ~QG  S ) )
Assertion
Ref Expression
qusrhm  |-  ( ( R  e.  Ring  /\  S  e.  I )  ->  F  e.  ( R RingHom  U )
)
Distinct variable groups:    x, I    x, R    x, S    x, U    x, X
Allowed substitution hint:    F( x)

Proof of Theorem qusrhm
Dummy variables  y  z  a  b  c  d are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 qusrhm.x . 2  |-  X  =  ( Base `  R
)
2 eqid 2196 . 2  |-  ( 1r
`  R )  =  ( 1r `  R
)
3 eqid 2196 . 2  |-  ( 1r
`  U )  =  ( 1r `  U
)
4 eqid 2196 . 2  |-  ( .r
`  R )  =  ( .r `  R
)
5 eqid 2196 . 2  |-  ( .r
`  U )  =  ( .r `  U
)
6 simpl 109 . 2  |-  ( ( R  e.  Ring  /\  S  e.  I )  ->  R  e.  Ring )
7 qusring.u . . 3  |-  U  =  ( R  /.s  ( R ~QG  S
) )
8 qusring.i . . 3  |-  I  =  (2Ideal `  R )
97, 8qusring 14159 . 2  |-  ( ( R  e.  Ring  /\  S  e.  I )  ->  U  e.  Ring )
10 eqid 2196 . . . . . . . 8  |-  (LIdeal `  R )  =  (LIdeal `  R )
11 eqid 2196 . . . . . . . 8  |-  (oppr `  R
)  =  (oppr `  R
)
12 eqid 2196 . . . . . . . 8  |-  (LIdeal `  (oppr `  R ) )  =  (LIdeal `  (oppr
`  R ) )
1310, 11, 12, 82idlelb 14137 . . . . . . 7  |-  ( S  e.  I  <->  ( S  e.  (LIdeal `  R )  /\  S  e.  (LIdeal `  (oppr
`  R ) ) ) )
1413simplbi 274 . . . . . 6  |-  ( S  e.  I  ->  S  e.  (LIdeal `  R )
)
1510lidlsubg 14118 . . . . . 6  |-  ( ( R  e.  Ring  /\  S  e.  (LIdeal `  R )
)  ->  S  e.  (SubGrp `  R ) )
1614, 15sylan2 286 . . . . 5  |-  ( ( R  e.  Ring  /\  S  e.  I )  ->  S  e.  (SubGrp `  R )
)
17 eqid 2196 . . . . . 6  |-  ( R ~QG  S )  =  ( R ~QG  S )
181, 17eqger 13430 . . . . 5  |-  ( S  e.  (SubGrp `  R
)  ->  ( R ~QG  S
)  Er  X )
1916, 18syl 14 . . . 4  |-  ( ( R  e.  Ring  /\  S  e.  I )  ->  ( R ~QG  S )  Er  X
)
20 basfn 12761 . . . . . 6  |-  Base  Fn  _V
216elexd 2776 . . . . . 6  |-  ( ( R  e.  Ring  /\  S  e.  I )  ->  R  e.  _V )
22 funfvex 5578 . . . . . . 7  |-  ( ( Fun  Base  /\  R  e. 
dom  Base )  ->  ( Base `  R )  e. 
_V )
2322funfni 5361 . . . . . 6  |-  ( (
Base  Fn  _V  /\  R  e.  _V )  ->  ( Base `  R )  e. 
_V )
2420, 21, 23sylancr 414 . . . . 5  |-  ( ( R  e.  Ring  /\  S  e.  I )  ->  ( Base `  R )  e. 
_V )
251, 24eqeltrid 2283 . . . 4  |-  ( ( R  e.  Ring  /\  S  e.  I )  ->  X  e.  _V )
26 qusrhm.f . . . 4  |-  F  =  ( x  e.  X  |->  [ x ] ( R ~QG  S ) )
2719, 25, 26divsfval 13030 . . 3  |-  ( ( R  e.  Ring  /\  S  e.  I )  ->  ( F `  ( 1r `  R ) )  =  [ ( 1r `  R ) ] ( R ~QG  S ) )
287, 8, 2qus1 14158 . . . 4  |-  ( ( R  e.  Ring  /\  S  e.  I )  ->  ( U  e.  Ring  /\  [
( 1r `  R
) ] ( R ~QG  S )  =  ( 1r
`  U ) ) )
2928simprd 114 . . 3  |-  ( ( R  e.  Ring  /\  S  e.  I )  ->  [ ( 1r `  R ) ] ( R ~QG  S )  =  ( 1r `  U ) )
3027, 29eqtrd 2229 . 2  |-  ( ( R  e.  Ring  /\  S  e.  I )  ->  ( F `  ( 1r `  R ) )  =  ( 1r `  U
) )
317a1i 9 . . . . 5  |-  ( ( R  e.  Ring  /\  S  e.  I )  ->  U  =  ( R  /.s  ( R ~QG  S ) ) )
321a1i 9 . . . . 5  |-  ( ( R  e.  Ring  /\  S  e.  I )  ->  X  =  ( Base `  R
) )
331, 17, 8, 42idlcpbl 14156 . . . . 5  |-  ( ( R  e.  Ring  /\  S  e.  I )  ->  (
( a ( R ~QG  S ) c  /\  b
( R ~QG  S ) d )  ->  ( a ( .r `  R ) b ) ( R ~QG  S ) ( c ( .r `  R ) d ) ) )
341, 4ringcl 13645 . . . . . . . 8  |-  ( ( R  e.  Ring  /\  y  e.  X  /\  z  e.  X )  ->  (
y ( .r `  R ) z )  e.  X )
35343expb 1206 . . . . . . 7  |-  ( ( R  e.  Ring  /\  (
y  e.  X  /\  z  e.  X )
)  ->  ( y
( .r `  R
) z )  e.  X )
3635adantlr 477 . . . . . 6  |-  ( ( ( R  e.  Ring  /\  S  e.  I )  /\  ( y  e.  X  /\  z  e.  X ) )  -> 
( y ( .r
`  R ) z )  e.  X )
3736caovclg 6080 . . . . 5  |-  ( ( ( R  e.  Ring  /\  S  e.  I )  /\  ( c  e.  X  /\  d  e.  X ) )  -> 
( c ( .r
`  R ) d )  e.  X )
3831, 32, 19, 6, 33, 37, 4, 5qusmulval 13039 . . . 4  |-  ( ( ( R  e.  Ring  /\  S  e.  I )  /\  y  e.  X  /\  z  e.  X
)  ->  ( [
y ] ( R ~QG  S ) ( .r `  U ) [ z ] ( R ~QG  S ) )  =  [ ( y ( .r `  R ) z ) ] ( R ~QG  S ) )
39383expb 1206 . . 3  |-  ( ( ( R  e.  Ring  /\  S  e.  I )  /\  ( y  e.  X  /\  z  e.  X ) )  -> 
( [ y ] ( R ~QG  S ) ( .r
`  U ) [ z ] ( R ~QG  S ) )  =  [
( y ( .r
`  R ) z ) ] ( R ~QG  S ) )
4019adantr 276 . . . . 5  |-  ( ( ( R  e.  Ring  /\  S  e.  I )  /\  ( y  e.  X  /\  z  e.  X ) )  -> 
( R ~QG  S )  Er  X
)
4125adantr 276 . . . . 5  |-  ( ( ( R  e.  Ring  /\  S  e.  I )  /\  ( y  e.  X  /\  z  e.  X ) )  ->  X  e.  _V )
4240, 41, 26divsfval 13030 . . . 4  |-  ( ( ( R  e.  Ring  /\  S  e.  I )  /\  ( y  e.  X  /\  z  e.  X ) )  -> 
( F `  y
)  =  [ y ] ( R ~QG  S ) )
4340, 41, 26divsfval 13030 . . . 4  |-  ( ( ( R  e.  Ring  /\  S  e.  I )  /\  ( y  e.  X  /\  z  e.  X ) )  -> 
( F `  z
)  =  [ z ] ( R ~QG  S ) )
4442, 43oveq12d 5943 . . 3  |-  ( ( ( R  e.  Ring  /\  S  e.  I )  /\  ( y  e.  X  /\  z  e.  X ) )  -> 
( ( F `  y ) ( .r
`  U ) ( F `  z ) )  =  ( [ y ] ( R ~QG  S ) ( .r `  U ) [ z ] ( R ~QG  S ) ) )
4540, 41, 26divsfval 13030 . . 3  |-  ( ( ( R  e.  Ring  /\  S  e.  I )  /\  ( y  e.  X  /\  z  e.  X ) )  -> 
( F `  (
y ( .r `  R ) z ) )  =  [ ( y ( .r `  R ) z ) ] ( R ~QG  S ) )
4639, 44, 453eqtr4rd 2240 . 2  |-  ( ( ( R  e.  Ring  /\  S  e.  I )  /\  ( y  e.  X  /\  z  e.  X ) )  -> 
( F `  (
y ( .r `  R ) z ) )  =  ( ( F `  y ) ( .r `  U
) ( F `  z ) ) )
47 ringabl 13664 . . . . . 6  |-  ( R  e.  Ring  ->  R  e. 
Abel )
4847adantr 276 . . . . 5  |-  ( ( R  e.  Ring  /\  S  e.  I )  ->  R  e.  Abel )
49 ablnsg 13540 . . . . 5  |-  ( R  e.  Abel  ->  (NrmSGrp `  R
)  =  (SubGrp `  R ) )
5048, 49syl 14 . . . 4  |-  ( ( R  e.  Ring  /\  S  e.  I )  ->  (NrmSGrp `  R )  =  (SubGrp `  R ) )
5116, 50eleqtrrd 2276 . . 3  |-  ( ( R  e.  Ring  /\  S  e.  I )  ->  S  e.  (NrmSGrp `  R )
)
521, 7, 26qusghm 13488 . . 3  |-  ( S  e.  (NrmSGrp `  R
)  ->  F  e.  ( R  GrpHom  U ) )
5351, 52syl 14 . 2  |-  ( ( R  e.  Ring  /\  S  e.  I )  ->  F  e.  ( R  GrpHom  U ) )
541, 2, 3, 4, 5, 6, 9, 30, 46, 53isrhm2d 13797 1  |-  ( ( R  e.  Ring  /\  S  e.  I )  ->  F  e.  ( R RingHom  U )
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1364    e. wcel 2167   _Vcvv 2763    |-> cmpt 4095    Fn wfn 5254   ` cfv 5259  (class class class)co 5925    Er wer 6598   [cec 6599   Basecbs 12703   .rcmulr 12781    /.s cqus 13002  SubGrpcsubg 13373  NrmSGrpcnsg 13374   ~QG cqg 13375    GrpHom cghm 13446   Abelcabl 13491   1rcur 13591   Ringcrg 13628  opprcoppr 13699   RingHom crh 13782  LIdealclidl 14099  2Idealc2idl 14131
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4149  ax-sep 4152  ax-nul 4160  ax-pow 4208  ax-pr 4243  ax-un 4469  ax-setind 4574  ax-cnex 7987  ax-resscn 7988  ax-1cn 7989  ax-1re 7990  ax-icn 7991  ax-addcl 7992  ax-addrcl 7993  ax-mulcl 7994  ax-addcom 7996  ax-addass 7998  ax-i2m1 8001  ax-0lt1 8002  ax-0id 8004  ax-rnegex 8005  ax-pre-ltirr 8008  ax-pre-lttrn 8010  ax-pre-ltadd 8012
This theorem depends on definitions:  df-bi 117  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rmo 2483  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3452  df-pw 3608  df-sn 3629  df-pr 3630  df-tp 3631  df-op 3632  df-uni 3841  df-int 3876  df-iun 3919  df-br 4035  df-opab 4096  df-mpt 4097  df-id 4329  df-xp 4670  df-rel 4671  df-cnv 4672  df-co 4673  df-dm 4674  df-rn 4675  df-res 4676  df-ima 4677  df-iota 5220  df-fun 5261  df-fn 5262  df-f 5263  df-f1 5264  df-fo 5265  df-f1o 5266  df-fv 5267  df-riota 5880  df-ov 5928  df-oprab 5929  df-mpo 5930  df-1st 6207  df-2nd 6208  df-tpos 6312  df-er 6601  df-ec 6603  df-qs 6607  df-map 6718  df-pnf 8080  df-mnf 8081  df-ltxr 8083  df-inn 9008  df-2 9066  df-3 9067  df-4 9068  df-5 9069  df-6 9070  df-7 9071  df-8 9072  df-ndx 12706  df-slot 12707  df-base 12709  df-sets 12710  df-iress 12711  df-plusg 12793  df-mulr 12794  df-sca 12796  df-vsca 12797  df-ip 12798  df-0g 12960  df-iimas 13004  df-qus 13005  df-mgm 13058  df-sgrp 13104  df-mnd 13119  df-mhm 13161  df-grp 13205  df-minusg 13206  df-sbg 13207  df-subg 13376  df-nsg 13377  df-eqg 13378  df-ghm 13447  df-cmn 13492  df-abl 13493  df-mgp 13553  df-rng 13565  df-ur 13592  df-srg 13596  df-ring 13630  df-oppr 13700  df-rhm 13784  df-subrg 13851  df-lmod 13921  df-lssm 13985  df-sra 14067  df-rgmod 14068  df-lidl 14101  df-2idl 14132
This theorem is referenced by:  znzrh2  14278
  Copyright terms: Public domain W3C validator