| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > qusrhm | Unicode version | ||
| Description: If |
| Ref | Expression |
|---|---|
| qusring.u |
|
| qusring.i |
|
| qusrhm.x |
|
| qusrhm.f |
|
| Ref | Expression |
|---|---|
| qusrhm |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | qusrhm.x |
. 2
| |
| 2 | eqid 2206 |
. 2
| |
| 3 | eqid 2206 |
. 2
| |
| 4 | eqid 2206 |
. 2
| |
| 5 | eqid 2206 |
. 2
| |
| 6 | simpl 109 |
. 2
| |
| 7 | qusring.u |
. . 3
| |
| 8 | qusring.i |
. . 3
| |
| 9 | 7, 8 | qusring 14333 |
. 2
|
| 10 | eqid 2206 |
. . . . . . . 8
| |
| 11 | eqid 2206 |
. . . . . . . 8
| |
| 12 | eqid 2206 |
. . . . . . . 8
| |
| 13 | 10, 11, 12, 8 | 2idlelb 14311 |
. . . . . . 7
|
| 14 | 13 | simplbi 274 |
. . . . . 6
|
| 15 | 10 | lidlsubg 14292 |
. . . . . 6
|
| 16 | 14, 15 | sylan2 286 |
. . . . 5
|
| 17 | eqid 2206 |
. . . . . 6
| |
| 18 | 1, 17 | eqger 13604 |
. . . . 5
|
| 19 | 16, 18 | syl 14 |
. . . 4
|
| 20 | basfn 12934 |
. . . . . 6
| |
| 21 | 6 | elexd 2786 |
. . . . . 6
|
| 22 | funfvex 5600 |
. . . . . . 7
| |
| 23 | 22 | funfni 5381 |
. . . . . 6
|
| 24 | 20, 21, 23 | sylancr 414 |
. . . . 5
|
| 25 | 1, 24 | eqeltrid 2293 |
. . . 4
|
| 26 | qusrhm.f |
. . . 4
| |
| 27 | 19, 25, 26 | divsfval 13204 |
. . 3
|
| 28 | 7, 8, 2 | qus1 14332 |
. . . 4
|
| 29 | 28 | simprd 114 |
. . 3
|
| 30 | 27, 29 | eqtrd 2239 |
. 2
|
| 31 | 7 | a1i 9 |
. . . . 5
|
| 32 | 1 | a1i 9 |
. . . . 5
|
| 33 | 1, 17, 8, 4 | 2idlcpbl 14330 |
. . . . 5
|
| 34 | 1, 4 | ringcl 13819 |
. . . . . . . 8
|
| 35 | 34 | 3expb 1207 |
. . . . . . 7
|
| 36 | 35 | adantlr 477 |
. . . . . 6
|
| 37 | 36 | caovclg 6106 |
. . . . 5
|
| 38 | 31, 32, 19, 6, 33, 37, 4, 5 | qusmulval 13213 |
. . . 4
|
| 39 | 38 | 3expb 1207 |
. . 3
|
| 40 | 19 | adantr 276 |
. . . . 5
|
| 41 | 25 | adantr 276 |
. . . . 5
|
| 42 | 40, 41, 26 | divsfval 13204 |
. . . 4
|
| 43 | 40, 41, 26 | divsfval 13204 |
. . . 4
|
| 44 | 42, 43 | oveq12d 5969 |
. . 3
|
| 45 | 40, 41, 26 | divsfval 13204 |
. . 3
|
| 46 | 39, 44, 45 | 3eqtr4rd 2250 |
. 2
|
| 47 | ringabl 13838 |
. . . . . 6
| |
| 48 | 47 | adantr 276 |
. . . . 5
|
| 49 | ablnsg 13714 |
. . . . 5
| |
| 50 | 48, 49 | syl 14 |
. . . 4
|
| 51 | 16, 50 | eleqtrrd 2286 |
. . 3
|
| 52 | 1, 7, 26 | qusghm 13662 |
. . 3
|
| 53 | 51, 52 | syl 14 |
. 2
|
| 54 | 1, 2, 3, 4, 5, 6, 9, 30, 46, 53 | isrhm2d 13971 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2179 ax-14 2180 ax-ext 2188 ax-coll 4163 ax-sep 4166 ax-nul 4174 ax-pow 4222 ax-pr 4257 ax-un 4484 ax-setind 4589 ax-cnex 8023 ax-resscn 8024 ax-1cn 8025 ax-1re 8026 ax-icn 8027 ax-addcl 8028 ax-addrcl 8029 ax-mulcl 8030 ax-addcom 8032 ax-addass 8034 ax-i2m1 8037 ax-0lt1 8038 ax-0id 8040 ax-rnegex 8041 ax-pre-ltirr 8044 ax-pre-lttrn 8046 ax-pre-ltadd 8048 |
| This theorem depends on definitions: df-bi 117 df-3or 982 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ne 2378 df-nel 2473 df-ral 2490 df-rex 2491 df-reu 2492 df-rmo 2493 df-rab 2494 df-v 2775 df-sbc 3000 df-csb 3095 df-dif 3169 df-un 3171 df-in 3173 df-ss 3180 df-nul 3462 df-pw 3619 df-sn 3640 df-pr 3641 df-tp 3642 df-op 3643 df-uni 3853 df-int 3888 df-iun 3931 df-br 4048 df-opab 4110 df-mpt 4111 df-id 4344 df-xp 4685 df-rel 4686 df-cnv 4687 df-co 4688 df-dm 4689 df-rn 4690 df-res 4691 df-ima 4692 df-iota 5237 df-fun 5278 df-fn 5279 df-f 5280 df-f1 5281 df-fo 5282 df-f1o 5283 df-fv 5284 df-riota 5906 df-ov 5954 df-oprab 5955 df-mpo 5956 df-1st 6233 df-2nd 6234 df-tpos 6338 df-er 6627 df-ec 6629 df-qs 6633 df-map 6744 df-pnf 8116 df-mnf 8117 df-ltxr 8119 df-inn 9044 df-2 9102 df-3 9103 df-4 9104 df-5 9105 df-6 9106 df-7 9107 df-8 9108 df-ndx 12879 df-slot 12880 df-base 12882 df-sets 12883 df-iress 12884 df-plusg 12966 df-mulr 12967 df-sca 12969 df-vsca 12970 df-ip 12971 df-0g 13134 df-iimas 13178 df-qus 13179 df-mgm 13232 df-sgrp 13278 df-mnd 13293 df-mhm 13335 df-grp 13379 df-minusg 13380 df-sbg 13381 df-subg 13550 df-nsg 13551 df-eqg 13552 df-ghm 13621 df-cmn 13666 df-abl 13667 df-mgp 13727 df-rng 13739 df-ur 13766 df-srg 13770 df-ring 13804 df-oppr 13874 df-rhm 13958 df-subrg 14025 df-lmod 14095 df-lssm 14159 df-sra 14241 df-rgmod 14242 df-lidl 14275 df-2idl 14306 |
| This theorem is referenced by: znzrh2 14452 |
| Copyright terms: Public domain | W3C validator |