| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > qusrhm | Unicode version | ||
| Description: If |
| Ref | Expression |
|---|---|
| qusring.u |
|
| qusring.i |
|
| qusrhm.x |
|
| qusrhm.f |
|
| Ref | Expression |
|---|---|
| qusrhm |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | qusrhm.x |
. 2
| |
| 2 | eqid 2229 |
. 2
| |
| 3 | eqid 2229 |
. 2
| |
| 4 | eqid 2229 |
. 2
| |
| 5 | eqid 2229 |
. 2
| |
| 6 | simpl 109 |
. 2
| |
| 7 | qusring.u |
. . 3
| |
| 8 | qusring.i |
. . 3
| |
| 9 | 7, 8 | qusring 14476 |
. 2
|
| 10 | eqid 2229 |
. . . . . . . 8
| |
| 11 | eqid 2229 |
. . . . . . . 8
| |
| 12 | eqid 2229 |
. . . . . . . 8
| |
| 13 | 10, 11, 12, 8 | 2idlelb 14454 |
. . . . . . 7
|
| 14 | 13 | simplbi 274 |
. . . . . 6
|
| 15 | 10 | lidlsubg 14435 |
. . . . . 6
|
| 16 | 14, 15 | sylan2 286 |
. . . . 5
|
| 17 | eqid 2229 |
. . . . . 6
| |
| 18 | 1, 17 | eqger 13747 |
. . . . 5
|
| 19 | 16, 18 | syl 14 |
. . . 4
|
| 20 | basfn 13077 |
. . . . . 6
| |
| 21 | 6 | elexd 2813 |
. . . . . 6
|
| 22 | funfvex 5640 |
. . . . . . 7
| |
| 23 | 22 | funfni 5419 |
. . . . . 6
|
| 24 | 20, 21, 23 | sylancr 414 |
. . . . 5
|
| 25 | 1, 24 | eqeltrid 2316 |
. . . 4
|
| 26 | qusrhm.f |
. . . 4
| |
| 27 | 19, 25, 26 | divsfval 13347 |
. . 3
|
| 28 | 7, 8, 2 | qus1 14475 |
. . . 4
|
| 29 | 28 | simprd 114 |
. . 3
|
| 30 | 27, 29 | eqtrd 2262 |
. 2
|
| 31 | 7 | a1i 9 |
. . . . 5
|
| 32 | 1 | a1i 9 |
. . . . 5
|
| 33 | 1, 17, 8, 4 | 2idlcpbl 14473 |
. . . . 5
|
| 34 | 1, 4 | ringcl 13962 |
. . . . . . . 8
|
| 35 | 34 | 3expb 1228 |
. . . . . . 7
|
| 36 | 35 | adantlr 477 |
. . . . . 6
|
| 37 | 36 | caovclg 6149 |
. . . . 5
|
| 38 | 31, 32, 19, 6, 33, 37, 4, 5 | qusmulval 13356 |
. . . 4
|
| 39 | 38 | 3expb 1228 |
. . 3
|
| 40 | 19 | adantr 276 |
. . . . 5
|
| 41 | 25 | adantr 276 |
. . . . 5
|
| 42 | 40, 41, 26 | divsfval 13347 |
. . . 4
|
| 43 | 40, 41, 26 | divsfval 13347 |
. . . 4
|
| 44 | 42, 43 | oveq12d 6012 |
. . 3
|
| 45 | 40, 41, 26 | divsfval 13347 |
. . 3
|
| 46 | 39, 44, 45 | 3eqtr4rd 2273 |
. 2
|
| 47 | ringabl 13981 |
. . . . . 6
| |
| 48 | 47 | adantr 276 |
. . . . 5
|
| 49 | ablnsg 13857 |
. . . . 5
| |
| 50 | 48, 49 | syl 14 |
. . . 4
|
| 51 | 16, 50 | eleqtrrd 2309 |
. . 3
|
| 52 | 1, 7, 26 | qusghm 13805 |
. . 3
|
| 53 | 51, 52 | syl 14 |
. 2
|
| 54 | 1, 2, 3, 4, 5, 6, 9, 30, 46, 53 | isrhm2d 14114 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-coll 4198 ax-sep 4201 ax-nul 4209 ax-pow 4257 ax-pr 4292 ax-un 4521 ax-setind 4626 ax-cnex 8078 ax-resscn 8079 ax-1cn 8080 ax-1re 8081 ax-icn 8082 ax-addcl 8083 ax-addrcl 8084 ax-mulcl 8085 ax-addcom 8087 ax-addass 8089 ax-i2m1 8092 ax-0lt1 8093 ax-0id 8095 ax-rnegex 8096 ax-pre-ltirr 8099 ax-pre-lttrn 8101 ax-pre-ltadd 8103 |
| This theorem depends on definitions: df-bi 117 df-3or 1003 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-nel 2496 df-ral 2513 df-rex 2514 df-reu 2515 df-rmo 2516 df-rab 2517 df-v 2801 df-sbc 3029 df-csb 3125 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-nul 3492 df-pw 3651 df-sn 3672 df-pr 3673 df-tp 3674 df-op 3675 df-uni 3888 df-int 3923 df-iun 3966 df-br 4083 df-opab 4145 df-mpt 4146 df-id 4381 df-xp 4722 df-rel 4723 df-cnv 4724 df-co 4725 df-dm 4726 df-rn 4727 df-res 4728 df-ima 4729 df-iota 5274 df-fun 5316 df-fn 5317 df-f 5318 df-f1 5319 df-fo 5320 df-f1o 5321 df-fv 5322 df-riota 5947 df-ov 5997 df-oprab 5998 df-mpo 5999 df-1st 6276 df-2nd 6277 df-tpos 6381 df-er 6670 df-ec 6672 df-qs 6676 df-map 6787 df-pnf 8171 df-mnf 8172 df-ltxr 8174 df-inn 9099 df-2 9157 df-3 9158 df-4 9159 df-5 9160 df-6 9161 df-7 9162 df-8 9163 df-ndx 13021 df-slot 13022 df-base 13024 df-sets 13025 df-iress 13026 df-plusg 13109 df-mulr 13110 df-sca 13112 df-vsca 13113 df-ip 13114 df-0g 13277 df-iimas 13321 df-qus 13322 df-mgm 13375 df-sgrp 13421 df-mnd 13436 df-mhm 13478 df-grp 13522 df-minusg 13523 df-sbg 13524 df-subg 13693 df-nsg 13694 df-eqg 13695 df-ghm 13764 df-cmn 13809 df-abl 13810 df-mgp 13870 df-rng 13882 df-ur 13909 df-srg 13913 df-ring 13947 df-oppr 14017 df-rhm 14101 df-subrg 14168 df-lmod 14238 df-lssm 14302 df-sra 14384 df-rgmod 14385 df-lidl 14418 df-2idl 14449 |
| This theorem is referenced by: znzrh2 14595 |
| Copyright terms: Public domain | W3C validator |