ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  qus1 Unicode version

Theorem qus1 14321
Description: The multiplicative identity of the quotient ring. (Contributed by Mario Carneiro, 14-Jun-2015.)
Hypotheses
Ref Expression
qusring.u  |-  U  =  ( R  /.s  ( R ~QG  S
) )
qusring.i  |-  I  =  (2Ideal `  R )
qus1.o  |-  .1.  =  ( 1r `  R )
Assertion
Ref Expression
qus1  |-  ( ( R  e.  Ring  /\  S  e.  I )  ->  ( U  e.  Ring  /\  [  .1.  ] ( R ~QG  S )  =  ( 1r `  U ) ) )

Proof of Theorem qus1
Dummy variables  a  b  c  d are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 qusring.u . . 3  |-  U  =  ( R  /.s  ( R ~QG  S
) )
21a1i 9 . 2  |-  ( ( R  e.  Ring  /\  S  e.  I )  ->  U  =  ( R  /.s  ( R ~QG  S ) ) )
3 eqid 2205 . . 3  |-  ( Base `  R )  =  (
Base `  R )
43a1i 9 . 2  |-  ( ( R  e.  Ring  /\  S  e.  I )  ->  ( Base `  R )  =  ( Base `  R
) )
5 eqid 2205 . 2  |-  ( +g  `  R )  =  ( +g  `  R )
6 eqid 2205 . 2  |-  ( .r
`  R )  =  ( .r `  R
)
7 qus1.o . 2  |-  .1.  =  ( 1r `  R )
8 simpr 110 . . . . . 6  |-  ( ( R  e.  Ring  /\  S  e.  I )  ->  S  e.  I )
9 eqid 2205 . . . . . . . 8  |-  (LIdeal `  R )  =  (LIdeal `  R )
10 eqid 2205 . . . . . . . 8  |-  (oppr `  R
)  =  (oppr `  R
)
11 eqid 2205 . . . . . . . 8  |-  (LIdeal `  (oppr `  R ) )  =  (LIdeal `  (oppr
`  R ) )
12 qusring.i . . . . . . . 8  |-  I  =  (2Ideal `  R )
139, 10, 11, 122idlvalg 14298 . . . . . . 7  |-  ( R  e.  Ring  ->  I  =  ( (LIdeal `  R
)  i^i  (LIdeal `  (oppr `  R
) ) ) )
1413adantr 276 . . . . . 6  |-  ( ( R  e.  Ring  /\  S  e.  I )  ->  I  =  ( (LIdeal `  R )  i^i  (LIdeal `  (oppr
`  R ) ) ) )
158, 14eleqtrd 2284 . . . . 5  |-  ( ( R  e.  Ring  /\  S  e.  I )  ->  S  e.  ( (LIdeal `  R
)  i^i  (LIdeal `  (oppr `  R
) ) ) )
1615elin1d 3362 . . . 4  |-  ( ( R  e.  Ring  /\  S  e.  I )  ->  S  e.  (LIdeal `  R )
)
179lidlsubg 14281 . . . 4  |-  ( ( R  e.  Ring  /\  S  e.  (LIdeal `  R )
)  ->  S  e.  (SubGrp `  R ) )
1816, 17syldan 282 . . 3  |-  ( ( R  e.  Ring  /\  S  e.  I )  ->  S  e.  (SubGrp `  R )
)
19 eqid 2205 . . . 4  |-  ( R ~QG  S )  =  ( R ~QG  S )
203, 19eqger 13593 . . 3  |-  ( S  e.  (SubGrp `  R
)  ->  ( R ~QG  S
)  Er  ( Base `  R ) )
2118, 20syl 14 . 2  |-  ( ( R  e.  Ring  /\  S  e.  I )  ->  ( R ~QG  S )  Er  ( Base `  R ) )
22 ringabl 13827 . . . . . 6  |-  ( R  e.  Ring  ->  R  e. 
Abel )
2322adantr 276 . . . . 5  |-  ( ( R  e.  Ring  /\  S  e.  I )  ->  R  e.  Abel )
24 ablnsg 13703 . . . . 5  |-  ( R  e.  Abel  ->  (NrmSGrp `  R
)  =  (SubGrp `  R ) )
2523, 24syl 14 . . . 4  |-  ( ( R  e.  Ring  /\  S  e.  I )  ->  (NrmSGrp `  R )  =  (SubGrp `  R ) )
2618, 25eleqtrrd 2285 . . 3  |-  ( ( R  e.  Ring  /\  S  e.  I )  ->  S  e.  (NrmSGrp `  R )
)
273, 19, 5eqgcpbl 13597 . . 3  |-  ( S  e.  (NrmSGrp `  R
)  ->  ( (
a ( R ~QG  S ) c  /\  b ( R ~QG  S ) d )  ->  ( a ( +g  `  R ) b ) ( R ~QG  S ) ( c ( +g  `  R ) d ) ) )
2826, 27syl 14 . 2  |-  ( ( R  e.  Ring  /\  S  e.  I )  ->  (
( a ( R ~QG  S ) c  /\  b
( R ~QG  S ) d )  ->  ( a ( +g  `  R ) b ) ( R ~QG  S ) ( c ( +g  `  R ) d ) ) )
293, 19, 12, 62idlcpbl 14319 . 2  |-  ( ( R  e.  Ring  /\  S  e.  I )  ->  (
( a ( R ~QG  S ) c  /\  b
( R ~QG  S ) d )  ->  ( a ( .r `  R ) b ) ( R ~QG  S ) ( c ( .r `  R ) d ) ) )
30 simpl 109 . 2  |-  ( ( R  e.  Ring  /\  S  e.  I )  ->  R  e.  Ring )
312, 4, 5, 6, 7, 21, 28, 29, 30qusring2 13861 1  |-  ( ( R  e.  Ring  /\  S  e.  I )  ->  ( U  e.  Ring  /\  [  .1.  ] ( R ~QG  S )  =  ( 1r `  U ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1373    e. wcel 2176    i^i cin 3165   class class class wbr 4045   ` cfv 5272  (class class class)co 5946    Er wer 6619   [cec 6620   Basecbs 12865   +g cplusg 12942   .rcmulr 12943    /.s cqus 13165  SubGrpcsubg 13536  NrmSGrpcnsg 13537   ~QG cqg 13538   Abelcabl 13654   1rcur 13754   Ringcrg 13791  opprcoppr 13862  LIdealclidl 14262  2Idealc2idl 14294
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-13 2178  ax-14 2179  ax-ext 2187  ax-coll 4160  ax-sep 4163  ax-nul 4171  ax-pow 4219  ax-pr 4254  ax-un 4481  ax-setind 4586  ax-cnex 8018  ax-resscn 8019  ax-1cn 8020  ax-1re 8021  ax-icn 8022  ax-addcl 8023  ax-addrcl 8024  ax-mulcl 8025  ax-addcom 8027  ax-addass 8029  ax-i2m1 8032  ax-0lt1 8033  ax-0id 8035  ax-rnegex 8036  ax-pre-ltirr 8039  ax-pre-lttrn 8041  ax-pre-ltadd 8043
This theorem depends on definitions:  df-bi 117  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1484  df-sb 1786  df-eu 2057  df-mo 2058  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ne 2377  df-nel 2472  df-ral 2489  df-rex 2490  df-reu 2491  df-rmo 2492  df-rab 2493  df-v 2774  df-sbc 2999  df-csb 3094  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-nul 3461  df-pw 3618  df-sn 3639  df-pr 3640  df-tp 3641  df-op 3642  df-uni 3851  df-int 3886  df-iun 3929  df-br 4046  df-opab 4107  df-mpt 4108  df-id 4341  df-xp 4682  df-rel 4683  df-cnv 4684  df-co 4685  df-dm 4686  df-rn 4687  df-res 4688  df-ima 4689  df-iota 5233  df-fun 5274  df-fn 5275  df-f 5276  df-f1 5277  df-fo 5278  df-f1o 5279  df-fv 5280  df-riota 5901  df-ov 5949  df-oprab 5950  df-mpo 5951  df-1st 6228  df-2nd 6229  df-tpos 6333  df-er 6622  df-ec 6624  df-qs 6628  df-pnf 8111  df-mnf 8112  df-ltxr 8114  df-inn 9039  df-2 9097  df-3 9098  df-4 9099  df-5 9100  df-6 9101  df-7 9102  df-8 9103  df-ndx 12868  df-slot 12869  df-base 12871  df-sets 12872  df-iress 12873  df-plusg 12955  df-mulr 12956  df-sca 12958  df-vsca 12959  df-ip 12960  df-0g 13123  df-iimas 13167  df-qus 13168  df-mgm 13221  df-sgrp 13267  df-mnd 13282  df-grp 13368  df-minusg 13369  df-sbg 13370  df-subg 13539  df-nsg 13540  df-eqg 13541  df-cmn 13655  df-abl 13656  df-mgp 13716  df-rng 13728  df-ur 13755  df-srg 13759  df-ring 13793  df-oppr 13863  df-subrg 14014  df-lmod 14084  df-lssm 14148  df-sra 14230  df-rgmod 14231  df-lidl 14264  df-2idl 14295
This theorem is referenced by:  qusring  14322  qusrhm  14323
  Copyright terms: Public domain W3C validator