ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  qus1 Unicode version

Theorem qus1 14288
Description: The multiplicative identity of the quotient ring. (Contributed by Mario Carneiro, 14-Jun-2015.)
Hypotheses
Ref Expression
qusring.u  |-  U  =  ( R  /.s  ( R ~QG  S
) )
qusring.i  |-  I  =  (2Ideal `  R )
qus1.o  |-  .1.  =  ( 1r `  R )
Assertion
Ref Expression
qus1  |-  ( ( R  e.  Ring  /\  S  e.  I )  ->  ( U  e.  Ring  /\  [  .1.  ] ( R ~QG  S )  =  ( 1r `  U ) ) )

Proof of Theorem qus1
Dummy variables  a  b  c  d are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 qusring.u . . 3  |-  U  =  ( R  /.s  ( R ~QG  S
) )
21a1i 9 . 2  |-  ( ( R  e.  Ring  /\  S  e.  I )  ->  U  =  ( R  /.s  ( R ~QG  S ) ) )
3 eqid 2205 . . 3  |-  ( Base `  R )  =  (
Base `  R )
43a1i 9 . 2  |-  ( ( R  e.  Ring  /\  S  e.  I )  ->  ( Base `  R )  =  ( Base `  R
) )
5 eqid 2205 . 2  |-  ( +g  `  R )  =  ( +g  `  R )
6 eqid 2205 . 2  |-  ( .r
`  R )  =  ( .r `  R
)
7 qus1.o . 2  |-  .1.  =  ( 1r `  R )
8 simpr 110 . . . . . 6  |-  ( ( R  e.  Ring  /\  S  e.  I )  ->  S  e.  I )
9 eqid 2205 . . . . . . . 8  |-  (LIdeal `  R )  =  (LIdeal `  R )
10 eqid 2205 . . . . . . . 8  |-  (oppr `  R
)  =  (oppr `  R
)
11 eqid 2205 . . . . . . . 8  |-  (LIdeal `  (oppr `  R ) )  =  (LIdeal `  (oppr
`  R ) )
12 qusring.i . . . . . . . 8  |-  I  =  (2Ideal `  R )
139, 10, 11, 122idlvalg 14265 . . . . . . 7  |-  ( R  e.  Ring  ->  I  =  ( (LIdeal `  R
)  i^i  (LIdeal `  (oppr `  R
) ) ) )
1413adantr 276 . . . . . 6  |-  ( ( R  e.  Ring  /\  S  e.  I )  ->  I  =  ( (LIdeal `  R )  i^i  (LIdeal `  (oppr
`  R ) ) ) )
158, 14eleqtrd 2284 . . . . 5  |-  ( ( R  e.  Ring  /\  S  e.  I )  ->  S  e.  ( (LIdeal `  R
)  i^i  (LIdeal `  (oppr `  R
) ) ) )
1615elin1d 3362 . . . 4  |-  ( ( R  e.  Ring  /\  S  e.  I )  ->  S  e.  (LIdeal `  R )
)
179lidlsubg 14248 . . . 4  |-  ( ( R  e.  Ring  /\  S  e.  (LIdeal `  R )
)  ->  S  e.  (SubGrp `  R ) )
1816, 17syldan 282 . . 3  |-  ( ( R  e.  Ring  /\  S  e.  I )  ->  S  e.  (SubGrp `  R )
)
19 eqid 2205 . . . 4  |-  ( R ~QG  S )  =  ( R ~QG  S )
203, 19eqger 13560 . . 3  |-  ( S  e.  (SubGrp `  R
)  ->  ( R ~QG  S
)  Er  ( Base `  R ) )
2118, 20syl 14 . 2  |-  ( ( R  e.  Ring  /\  S  e.  I )  ->  ( R ~QG  S )  Er  ( Base `  R ) )
22 ringabl 13794 . . . . . 6  |-  ( R  e.  Ring  ->  R  e. 
Abel )
2322adantr 276 . . . . 5  |-  ( ( R  e.  Ring  /\  S  e.  I )  ->  R  e.  Abel )
24 ablnsg 13670 . . . . 5  |-  ( R  e.  Abel  ->  (NrmSGrp `  R
)  =  (SubGrp `  R ) )
2523, 24syl 14 . . . 4  |-  ( ( R  e.  Ring  /\  S  e.  I )  ->  (NrmSGrp `  R )  =  (SubGrp `  R ) )
2618, 25eleqtrrd 2285 . . 3  |-  ( ( R  e.  Ring  /\  S  e.  I )  ->  S  e.  (NrmSGrp `  R )
)
273, 19, 5eqgcpbl 13564 . . 3  |-  ( S  e.  (NrmSGrp `  R
)  ->  ( (
a ( R ~QG  S ) c  /\  b ( R ~QG  S ) d )  ->  ( a ( +g  `  R ) b ) ( R ~QG  S ) ( c ( +g  `  R ) d ) ) )
2826, 27syl 14 . 2  |-  ( ( R  e.  Ring  /\  S  e.  I )  ->  (
( a ( R ~QG  S ) c  /\  b
( R ~QG  S ) d )  ->  ( a ( +g  `  R ) b ) ( R ~QG  S ) ( c ( +g  `  R ) d ) ) )
293, 19, 12, 62idlcpbl 14286 . 2  |-  ( ( R  e.  Ring  /\  S  e.  I )  ->  (
( a ( R ~QG  S ) c  /\  b
( R ~QG  S ) d )  ->  ( a ( .r `  R ) b ) ( R ~QG  S ) ( c ( .r `  R ) d ) ) )
30 simpl 109 . 2  |-  ( ( R  e.  Ring  /\  S  e.  I )  ->  R  e.  Ring )
312, 4, 5, 6, 7, 21, 28, 29, 30qusring2 13828 1  |-  ( ( R  e.  Ring  /\  S  e.  I )  ->  ( U  e.  Ring  /\  [  .1.  ] ( R ~QG  S )  =  ( 1r `  U ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1373    e. wcel 2176    i^i cin 3165   class class class wbr 4044   ` cfv 5271  (class class class)co 5944    Er wer 6617   [cec 6618   Basecbs 12832   +g cplusg 12909   .rcmulr 12910    /.s cqus 13132  SubGrpcsubg 13503  NrmSGrpcnsg 13504   ~QG cqg 13505   Abelcabl 13621   1rcur 13721   Ringcrg 13758  opprcoppr 13829  LIdealclidl 14229  2Idealc2idl 14261
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-13 2178  ax-14 2179  ax-ext 2187  ax-coll 4159  ax-sep 4162  ax-nul 4170  ax-pow 4218  ax-pr 4253  ax-un 4480  ax-setind 4585  ax-cnex 8016  ax-resscn 8017  ax-1cn 8018  ax-1re 8019  ax-icn 8020  ax-addcl 8021  ax-addrcl 8022  ax-mulcl 8023  ax-addcom 8025  ax-addass 8027  ax-i2m1 8030  ax-0lt1 8031  ax-0id 8033  ax-rnegex 8034  ax-pre-ltirr 8037  ax-pre-lttrn 8039  ax-pre-ltadd 8041
This theorem depends on definitions:  df-bi 117  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1484  df-sb 1786  df-eu 2057  df-mo 2058  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ne 2377  df-nel 2472  df-ral 2489  df-rex 2490  df-reu 2491  df-rmo 2492  df-rab 2493  df-v 2774  df-sbc 2999  df-csb 3094  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-nul 3461  df-pw 3618  df-sn 3639  df-pr 3640  df-tp 3641  df-op 3642  df-uni 3851  df-int 3886  df-iun 3929  df-br 4045  df-opab 4106  df-mpt 4107  df-id 4340  df-xp 4681  df-rel 4682  df-cnv 4683  df-co 4684  df-dm 4685  df-rn 4686  df-res 4687  df-ima 4688  df-iota 5232  df-fun 5273  df-fn 5274  df-f 5275  df-f1 5276  df-fo 5277  df-f1o 5278  df-fv 5279  df-riota 5899  df-ov 5947  df-oprab 5948  df-mpo 5949  df-1st 6226  df-2nd 6227  df-tpos 6331  df-er 6620  df-ec 6622  df-qs 6626  df-pnf 8109  df-mnf 8110  df-ltxr 8112  df-inn 9037  df-2 9095  df-3 9096  df-4 9097  df-5 9098  df-6 9099  df-7 9100  df-8 9101  df-ndx 12835  df-slot 12836  df-base 12838  df-sets 12839  df-iress 12840  df-plusg 12922  df-mulr 12923  df-sca 12925  df-vsca 12926  df-ip 12927  df-0g 13090  df-iimas 13134  df-qus 13135  df-mgm 13188  df-sgrp 13234  df-mnd 13249  df-grp 13335  df-minusg 13336  df-sbg 13337  df-subg 13506  df-nsg 13507  df-eqg 13508  df-cmn 13622  df-abl 13623  df-mgp 13683  df-rng 13695  df-ur 13722  df-srg 13726  df-ring 13760  df-oppr 13830  df-subrg 13981  df-lmod 14051  df-lssm 14115  df-sra 14197  df-rgmod 14198  df-lidl 14231  df-2idl 14262
This theorem is referenced by:  qusring  14289  qusrhm  14290
  Copyright terms: Public domain W3C validator