ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  qus1 Unicode version

Theorem qus1 14490
Description: The multiplicative identity of the quotient ring. (Contributed by Mario Carneiro, 14-Jun-2015.)
Hypotheses
Ref Expression
qusring.u  |-  U  =  ( R  /.s  ( R ~QG  S
) )
qusring.i  |-  I  =  (2Ideal `  R )
qus1.o  |-  .1.  =  ( 1r `  R )
Assertion
Ref Expression
qus1  |-  ( ( R  e.  Ring  /\  S  e.  I )  ->  ( U  e.  Ring  /\  [  .1.  ] ( R ~QG  S )  =  ( 1r `  U ) ) )

Proof of Theorem qus1
Dummy variables  a  b  c  d are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 qusring.u . . 3  |-  U  =  ( R  /.s  ( R ~QG  S
) )
21a1i 9 . 2  |-  ( ( R  e.  Ring  /\  S  e.  I )  ->  U  =  ( R  /.s  ( R ~QG  S ) ) )
3 eqid 2229 . . 3  |-  ( Base `  R )  =  (
Base `  R )
43a1i 9 . 2  |-  ( ( R  e.  Ring  /\  S  e.  I )  ->  ( Base `  R )  =  ( Base `  R
) )
5 eqid 2229 . 2  |-  ( +g  `  R )  =  ( +g  `  R )
6 eqid 2229 . 2  |-  ( .r
`  R )  =  ( .r `  R
)
7 qus1.o . 2  |-  .1.  =  ( 1r `  R )
8 simpr 110 . . . . . 6  |-  ( ( R  e.  Ring  /\  S  e.  I )  ->  S  e.  I )
9 eqid 2229 . . . . . . . 8  |-  (LIdeal `  R )  =  (LIdeal `  R )
10 eqid 2229 . . . . . . . 8  |-  (oppr `  R
)  =  (oppr `  R
)
11 eqid 2229 . . . . . . . 8  |-  (LIdeal `  (oppr `  R ) )  =  (LIdeal `  (oppr
`  R ) )
12 qusring.i . . . . . . . 8  |-  I  =  (2Ideal `  R )
139, 10, 11, 122idlvalg 14467 . . . . . . 7  |-  ( R  e.  Ring  ->  I  =  ( (LIdeal `  R
)  i^i  (LIdeal `  (oppr `  R
) ) ) )
1413adantr 276 . . . . . 6  |-  ( ( R  e.  Ring  /\  S  e.  I )  ->  I  =  ( (LIdeal `  R )  i^i  (LIdeal `  (oppr
`  R ) ) ) )
158, 14eleqtrd 2308 . . . . 5  |-  ( ( R  e.  Ring  /\  S  e.  I )  ->  S  e.  ( (LIdeal `  R
)  i^i  (LIdeal `  (oppr `  R
) ) ) )
1615elin1d 3393 . . . 4  |-  ( ( R  e.  Ring  /\  S  e.  I )  ->  S  e.  (LIdeal `  R )
)
179lidlsubg 14450 . . . 4  |-  ( ( R  e.  Ring  /\  S  e.  (LIdeal `  R )
)  ->  S  e.  (SubGrp `  R ) )
1816, 17syldan 282 . . 3  |-  ( ( R  e.  Ring  /\  S  e.  I )  ->  S  e.  (SubGrp `  R )
)
19 eqid 2229 . . . 4  |-  ( R ~QG  S )  =  ( R ~QG  S )
203, 19eqger 13761 . . 3  |-  ( S  e.  (SubGrp `  R
)  ->  ( R ~QG  S
)  Er  ( Base `  R ) )
2118, 20syl 14 . 2  |-  ( ( R  e.  Ring  /\  S  e.  I )  ->  ( R ~QG  S )  Er  ( Base `  R ) )
22 ringabl 13995 . . . . . 6  |-  ( R  e.  Ring  ->  R  e. 
Abel )
2322adantr 276 . . . . 5  |-  ( ( R  e.  Ring  /\  S  e.  I )  ->  R  e.  Abel )
24 ablnsg 13871 . . . . 5  |-  ( R  e.  Abel  ->  (NrmSGrp `  R
)  =  (SubGrp `  R ) )
2523, 24syl 14 . . . 4  |-  ( ( R  e.  Ring  /\  S  e.  I )  ->  (NrmSGrp `  R )  =  (SubGrp `  R ) )
2618, 25eleqtrrd 2309 . . 3  |-  ( ( R  e.  Ring  /\  S  e.  I )  ->  S  e.  (NrmSGrp `  R )
)
273, 19, 5eqgcpbl 13765 . . 3  |-  ( S  e.  (NrmSGrp `  R
)  ->  ( (
a ( R ~QG  S ) c  /\  b ( R ~QG  S ) d )  ->  ( a ( +g  `  R ) b ) ( R ~QG  S ) ( c ( +g  `  R ) d ) ) )
2826, 27syl 14 . 2  |-  ( ( R  e.  Ring  /\  S  e.  I )  ->  (
( a ( R ~QG  S ) c  /\  b
( R ~QG  S ) d )  ->  ( a ( +g  `  R ) b ) ( R ~QG  S ) ( c ( +g  `  R ) d ) ) )
293, 19, 12, 62idlcpbl 14488 . 2  |-  ( ( R  e.  Ring  /\  S  e.  I )  ->  (
( a ( R ~QG  S ) c  /\  b
( R ~QG  S ) d )  ->  ( a ( .r `  R ) b ) ( R ~QG  S ) ( c ( .r `  R ) d ) ) )
30 simpl 109 . 2  |-  ( ( R  e.  Ring  /\  S  e.  I )  ->  R  e.  Ring )
312, 4, 5, 6, 7, 21, 28, 29, 30qusring2 14029 1  |-  ( ( R  e.  Ring  /\  S  e.  I )  ->  ( U  e.  Ring  /\  [  .1.  ] ( R ~QG  S )  =  ( 1r `  U ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1395    e. wcel 2200    i^i cin 3196   class class class wbr 4083   ` cfv 5318  (class class class)co 6001    Er wer 6677   [cec 6678   Basecbs 13032   +g cplusg 13110   .rcmulr 13111    /.s cqus 13333  SubGrpcsubg 13704  NrmSGrpcnsg 13705   ~QG cqg 13706   Abelcabl 13822   1rcur 13922   Ringcrg 13959  opprcoppr 14030  LIdealclidl 14431  2Idealc2idl 14463
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-coll 4199  ax-sep 4202  ax-nul 4210  ax-pow 4258  ax-pr 4293  ax-un 4524  ax-setind 4629  ax-cnex 8090  ax-resscn 8091  ax-1cn 8092  ax-1re 8093  ax-icn 8094  ax-addcl 8095  ax-addrcl 8096  ax-mulcl 8097  ax-addcom 8099  ax-addass 8101  ax-i2m1 8104  ax-0lt1 8105  ax-0id 8107  ax-rnegex 8108  ax-pre-ltirr 8111  ax-pre-lttrn 8113  ax-pre-ltadd 8115
This theorem depends on definitions:  df-bi 117  df-3or 1003  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-nel 2496  df-ral 2513  df-rex 2514  df-reu 2515  df-rmo 2516  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-pw 3651  df-sn 3672  df-pr 3673  df-tp 3674  df-op 3675  df-uni 3889  df-int 3924  df-iun 3967  df-br 4084  df-opab 4146  df-mpt 4147  df-id 4384  df-xp 4725  df-rel 4726  df-cnv 4727  df-co 4728  df-dm 4729  df-rn 4730  df-res 4731  df-ima 4732  df-iota 5278  df-fun 5320  df-fn 5321  df-f 5322  df-f1 5323  df-fo 5324  df-f1o 5325  df-fv 5326  df-riota 5954  df-ov 6004  df-oprab 6005  df-mpo 6006  df-1st 6286  df-2nd 6287  df-tpos 6391  df-er 6680  df-ec 6682  df-qs 6686  df-pnf 8183  df-mnf 8184  df-ltxr 8186  df-inn 9111  df-2 9169  df-3 9170  df-4 9171  df-5 9172  df-6 9173  df-7 9174  df-8 9175  df-ndx 13035  df-slot 13036  df-base 13038  df-sets 13039  df-iress 13040  df-plusg 13123  df-mulr 13124  df-sca 13126  df-vsca 13127  df-ip 13128  df-0g 13291  df-iimas 13335  df-qus 13336  df-mgm 13389  df-sgrp 13435  df-mnd 13450  df-grp 13536  df-minusg 13537  df-sbg 13538  df-subg 13707  df-nsg 13708  df-eqg 13709  df-cmn 13823  df-abl 13824  df-mgp 13884  df-rng 13896  df-ur 13923  df-srg 13927  df-ring 13961  df-oppr 14031  df-subrg 14183  df-lmod 14253  df-lssm 14317  df-sra 14399  df-rgmod 14400  df-lidl 14433  df-2idl 14464
This theorem is referenced by:  qusring  14491  qusrhm  14492
  Copyright terms: Public domain W3C validator