ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ablnsg GIF version

Theorem ablnsg 13464
Description: Every subgroup of an abelian group is normal. (Contributed by Mario Carneiro, 14-Jun-2015.)
Assertion
Ref Expression
ablnsg (𝐺 ∈ Abel → (NrmSGrp‘𝐺) = (SubGrp‘𝐺))

Proof of Theorem ablnsg
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2196 . . . . . . 7 (Base‘𝐺) = (Base‘𝐺)
2 eqid 2196 . . . . . . 7 (+g𝐺) = (+g𝐺)
31, 2ablcom 13433 . . . . . 6 ((𝐺 ∈ Abel ∧ 𝑦 ∈ (Base‘𝐺) ∧ 𝑧 ∈ (Base‘𝐺)) → (𝑦(+g𝐺)𝑧) = (𝑧(+g𝐺)𝑦))
433expb 1206 . . . . 5 ((𝐺 ∈ Abel ∧ (𝑦 ∈ (Base‘𝐺) ∧ 𝑧 ∈ (Base‘𝐺))) → (𝑦(+g𝐺)𝑧) = (𝑧(+g𝐺)𝑦))
54eleq1d 2265 . . . 4 ((𝐺 ∈ Abel ∧ (𝑦 ∈ (Base‘𝐺) ∧ 𝑧 ∈ (Base‘𝐺))) → ((𝑦(+g𝐺)𝑧) ∈ 𝑥 ↔ (𝑧(+g𝐺)𝑦) ∈ 𝑥))
65ralrimivva 2579 . . 3 (𝐺 ∈ Abel → ∀𝑦 ∈ (Base‘𝐺)∀𝑧 ∈ (Base‘𝐺)((𝑦(+g𝐺)𝑧) ∈ 𝑥 ↔ (𝑧(+g𝐺)𝑦) ∈ 𝑥))
71, 2isnsg 13332 . . . 4 (𝑥 ∈ (NrmSGrp‘𝐺) ↔ (𝑥 ∈ (SubGrp‘𝐺) ∧ ∀𝑦 ∈ (Base‘𝐺)∀𝑧 ∈ (Base‘𝐺)((𝑦(+g𝐺)𝑧) ∈ 𝑥 ↔ (𝑧(+g𝐺)𝑦) ∈ 𝑥)))
87rbaib 922 . . 3 (∀𝑦 ∈ (Base‘𝐺)∀𝑧 ∈ (Base‘𝐺)((𝑦(+g𝐺)𝑧) ∈ 𝑥 ↔ (𝑧(+g𝐺)𝑦) ∈ 𝑥) → (𝑥 ∈ (NrmSGrp‘𝐺) ↔ 𝑥 ∈ (SubGrp‘𝐺)))
96, 8syl 14 . 2 (𝐺 ∈ Abel → (𝑥 ∈ (NrmSGrp‘𝐺) ↔ 𝑥 ∈ (SubGrp‘𝐺)))
109eqrdv 2194 1 (𝐺 ∈ Abel → (NrmSGrp‘𝐺) = (SubGrp‘𝐺))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105   = wceq 1364  wcel 2167  wral 2475  cfv 5258  (class class class)co 5922  Basecbs 12678  +gcplusg 12755  SubGrpcsubg 13297  NrmSGrpcnsg 13298  Abelcabl 13415
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-sep 4151  ax-pow 4207  ax-pr 4242  ax-un 4468  ax-cnex 7970  ax-resscn 7971  ax-1re 7973  ax-addrcl 7976
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ral 2480  df-rex 2481  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-un 3161  df-in 3163  df-ss 3170  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-uni 3840  df-int 3875  df-br 4034  df-opab 4095  df-mpt 4096  df-id 4328  df-xp 4669  df-rel 4670  df-cnv 4671  df-co 4672  df-dm 4673  df-rn 4674  df-res 4675  df-ima 4676  df-iota 5219  df-fun 5260  df-fn 5261  df-fv 5266  df-ov 5925  df-inn 8991  df-2 9049  df-ndx 12681  df-slot 12682  df-base 12684  df-plusg 12768  df-subg 13300  df-nsg 13301  df-cmn 13416  df-abl 13417
This theorem is referenced by:  rngansg  13506  qus2idrng  14081  qus1  14082  qusrhm  14084
  Copyright terms: Public domain W3C validator