| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ablnsg | GIF version | ||
| Description: Every subgroup of an abelian group is normal. (Contributed by Mario Carneiro, 14-Jun-2015.) |
| Ref | Expression |
|---|---|
| ablnsg | ⊢ (𝐺 ∈ Abel → (NrmSGrp‘𝐺) = (SubGrp‘𝐺)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2206 | . . . . . . 7 ⊢ (Base‘𝐺) = (Base‘𝐺) | |
| 2 | eqid 2206 | . . . . . . 7 ⊢ (+g‘𝐺) = (+g‘𝐺) | |
| 3 | 1, 2 | ablcom 13689 | . . . . . 6 ⊢ ((𝐺 ∈ Abel ∧ 𝑦 ∈ (Base‘𝐺) ∧ 𝑧 ∈ (Base‘𝐺)) → (𝑦(+g‘𝐺)𝑧) = (𝑧(+g‘𝐺)𝑦)) |
| 4 | 3 | 3expb 1207 | . . . . 5 ⊢ ((𝐺 ∈ Abel ∧ (𝑦 ∈ (Base‘𝐺) ∧ 𝑧 ∈ (Base‘𝐺))) → (𝑦(+g‘𝐺)𝑧) = (𝑧(+g‘𝐺)𝑦)) |
| 5 | 4 | eleq1d 2275 | . . . 4 ⊢ ((𝐺 ∈ Abel ∧ (𝑦 ∈ (Base‘𝐺) ∧ 𝑧 ∈ (Base‘𝐺))) → ((𝑦(+g‘𝐺)𝑧) ∈ 𝑥 ↔ (𝑧(+g‘𝐺)𝑦) ∈ 𝑥)) |
| 6 | 5 | ralrimivva 2589 | . . 3 ⊢ (𝐺 ∈ Abel → ∀𝑦 ∈ (Base‘𝐺)∀𝑧 ∈ (Base‘𝐺)((𝑦(+g‘𝐺)𝑧) ∈ 𝑥 ↔ (𝑧(+g‘𝐺)𝑦) ∈ 𝑥)) |
| 7 | 1, 2 | isnsg 13588 | . . . 4 ⊢ (𝑥 ∈ (NrmSGrp‘𝐺) ↔ (𝑥 ∈ (SubGrp‘𝐺) ∧ ∀𝑦 ∈ (Base‘𝐺)∀𝑧 ∈ (Base‘𝐺)((𝑦(+g‘𝐺)𝑧) ∈ 𝑥 ↔ (𝑧(+g‘𝐺)𝑦) ∈ 𝑥))) |
| 8 | 7 | rbaib 923 | . . 3 ⊢ (∀𝑦 ∈ (Base‘𝐺)∀𝑧 ∈ (Base‘𝐺)((𝑦(+g‘𝐺)𝑧) ∈ 𝑥 ↔ (𝑧(+g‘𝐺)𝑦) ∈ 𝑥) → (𝑥 ∈ (NrmSGrp‘𝐺) ↔ 𝑥 ∈ (SubGrp‘𝐺))) |
| 9 | 6, 8 | syl 14 | . 2 ⊢ (𝐺 ∈ Abel → (𝑥 ∈ (NrmSGrp‘𝐺) ↔ 𝑥 ∈ (SubGrp‘𝐺))) |
| 10 | 9 | eqrdv 2204 | 1 ⊢ (𝐺 ∈ Abel → (NrmSGrp‘𝐺) = (SubGrp‘𝐺)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 = wceq 1373 ∈ wcel 2177 ∀wral 2485 ‘cfv 5277 (class class class)co 5954 Basecbs 12882 +gcplusg 12959 SubGrpcsubg 13553 NrmSGrpcnsg 13554 Abelcabl 13671 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2179 ax-14 2180 ax-ext 2188 ax-sep 4167 ax-pow 4223 ax-pr 4258 ax-un 4485 ax-cnex 8029 ax-resscn 8030 ax-1re 8032 ax-addrcl 8035 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ral 2490 df-rex 2491 df-rab 2494 df-v 2775 df-sbc 3001 df-csb 3096 df-un 3172 df-in 3174 df-ss 3181 df-pw 3620 df-sn 3641 df-pr 3642 df-op 3644 df-uni 3854 df-int 3889 df-br 4049 df-opab 4111 df-mpt 4112 df-id 4345 df-xp 4686 df-rel 4687 df-cnv 4688 df-co 4689 df-dm 4690 df-rn 4691 df-res 4692 df-ima 4693 df-iota 5238 df-fun 5279 df-fn 5280 df-fv 5285 df-ov 5957 df-inn 9050 df-2 9108 df-ndx 12885 df-slot 12886 df-base 12888 df-plusg 12972 df-subg 13556 df-nsg 13557 df-cmn 13672 df-abl 13673 |
| This theorem is referenced by: rngansg 13762 qus2idrng 14337 qus1 14338 qusrhm 14340 |
| Copyright terms: Public domain | W3C validator |