![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > ablnsg | GIF version |
Description: Every subgroup of an abelian group is normal. (Contributed by Mario Carneiro, 14-Jun-2015.) |
Ref | Expression |
---|---|
ablnsg | ⊢ (𝐺 ∈ Abel → (NrmSGrp‘𝐺) = (SubGrp‘𝐺)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2187 | . . . . . . 7 ⊢ (Base‘𝐺) = (Base‘𝐺) | |
2 | eqid 2187 | . . . . . . 7 ⊢ (+g‘𝐺) = (+g‘𝐺) | |
3 | 1, 2 | ablcom 13197 | . . . . . 6 ⊢ ((𝐺 ∈ Abel ∧ 𝑦 ∈ (Base‘𝐺) ∧ 𝑧 ∈ (Base‘𝐺)) → (𝑦(+g‘𝐺)𝑧) = (𝑧(+g‘𝐺)𝑦)) |
4 | 3 | 3expb 1205 | . . . . 5 ⊢ ((𝐺 ∈ Abel ∧ (𝑦 ∈ (Base‘𝐺) ∧ 𝑧 ∈ (Base‘𝐺))) → (𝑦(+g‘𝐺)𝑧) = (𝑧(+g‘𝐺)𝑦)) |
5 | 4 | eleq1d 2256 | . . . 4 ⊢ ((𝐺 ∈ Abel ∧ (𝑦 ∈ (Base‘𝐺) ∧ 𝑧 ∈ (Base‘𝐺))) → ((𝑦(+g‘𝐺)𝑧) ∈ 𝑥 ↔ (𝑧(+g‘𝐺)𝑦) ∈ 𝑥)) |
6 | 5 | ralrimivva 2569 | . . 3 ⊢ (𝐺 ∈ Abel → ∀𝑦 ∈ (Base‘𝐺)∀𝑧 ∈ (Base‘𝐺)((𝑦(+g‘𝐺)𝑧) ∈ 𝑥 ↔ (𝑧(+g‘𝐺)𝑦) ∈ 𝑥)) |
7 | 1, 2 | isnsg 13102 | . . . 4 ⊢ (𝑥 ∈ (NrmSGrp‘𝐺) ↔ (𝑥 ∈ (SubGrp‘𝐺) ∧ ∀𝑦 ∈ (Base‘𝐺)∀𝑧 ∈ (Base‘𝐺)((𝑦(+g‘𝐺)𝑧) ∈ 𝑥 ↔ (𝑧(+g‘𝐺)𝑦) ∈ 𝑥))) |
8 | 7 | rbaib 922 | . . 3 ⊢ (∀𝑦 ∈ (Base‘𝐺)∀𝑧 ∈ (Base‘𝐺)((𝑦(+g‘𝐺)𝑧) ∈ 𝑥 ↔ (𝑧(+g‘𝐺)𝑦) ∈ 𝑥) → (𝑥 ∈ (NrmSGrp‘𝐺) ↔ 𝑥 ∈ (SubGrp‘𝐺))) |
9 | 6, 8 | syl 14 | . 2 ⊢ (𝐺 ∈ Abel → (𝑥 ∈ (NrmSGrp‘𝐺) ↔ 𝑥 ∈ (SubGrp‘𝐺))) |
10 | 9 | eqrdv 2185 | 1 ⊢ (𝐺 ∈ Abel → (NrmSGrp‘𝐺) = (SubGrp‘𝐺)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 = wceq 1363 ∈ wcel 2158 ∀wral 2465 ‘cfv 5228 (class class class)co 5888 Basecbs 12476 +gcplusg 12551 SubGrpcsubg 13067 NrmSGrpcnsg 13068 Abelcabl 13179 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1457 ax-7 1458 ax-gen 1459 ax-ie1 1503 ax-ie2 1504 ax-8 1514 ax-10 1515 ax-11 1516 ax-i12 1517 ax-bndl 1519 ax-4 1520 ax-17 1536 ax-i9 1540 ax-ial 1544 ax-i5r 1545 ax-13 2160 ax-14 2161 ax-ext 2169 ax-sep 4133 ax-pow 4186 ax-pr 4221 ax-un 4445 ax-cnex 7916 ax-resscn 7917 ax-1re 7919 ax-addrcl 7922 |
This theorem depends on definitions: df-bi 117 df-3an 981 df-tru 1366 df-nf 1471 df-sb 1773 df-eu 2039 df-mo 2040 df-clab 2174 df-cleq 2180 df-clel 2183 df-nfc 2318 df-ral 2470 df-rex 2471 df-rab 2474 df-v 2751 df-sbc 2975 df-csb 3070 df-un 3145 df-in 3147 df-ss 3154 df-pw 3589 df-sn 3610 df-pr 3611 df-op 3613 df-uni 3822 df-int 3857 df-br 4016 df-opab 4077 df-mpt 4078 df-id 4305 df-xp 4644 df-rel 4645 df-cnv 4646 df-co 4647 df-dm 4648 df-rn 4649 df-res 4650 df-ima 4651 df-iota 5190 df-fun 5230 df-fn 5231 df-fv 5236 df-ov 5891 df-inn 8934 df-2 8992 df-ndx 12479 df-slot 12480 df-base 12482 df-plusg 12564 df-subg 13070 df-nsg 13071 df-cmn 13180 df-abl 13181 |
This theorem is referenced by: rngansg 13259 qus2idrng 13770 qus1 13771 |
Copyright terms: Public domain | W3C validator |