ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  qus2idrng Unicode version

Theorem qus2idrng 14159
Description: The quotient of a non-unital ring modulo a two-sided ideal, which is a subgroup of the additive group of the non-unital ring, is a non-unital ring (qusring 14161 analog). (Contributed by AV, 23-Feb-2025.)
Hypotheses
Ref Expression
qus2idrng.u  |-  U  =  ( R  /.s  ( R ~QG  S
) )
qus2idrng.i  |-  I  =  (2Ideal `  R )
Assertion
Ref Expression
qus2idrng  |-  ( ( R  e. Rng  /\  S  e.  I  /\  S  e.  (SubGrp `  R )
)  ->  U  e. Rng )

Proof of Theorem qus2idrng
Dummy variables  a  b  c  d are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 qus2idrng.u . . 3  |-  U  =  ( R  /.s  ( R ~QG  S
) )
21a1i 9 . 2  |-  ( ( R  e. Rng  /\  S  e.  I  /\  S  e.  (SubGrp `  R )
)  ->  U  =  ( R  /.s  ( R ~QG  S ) ) )
3 eqidd 2197 . 2  |-  ( ( R  e. Rng  /\  S  e.  I  /\  S  e.  (SubGrp `  R )
)  ->  ( Base `  R )  =  (
Base `  R )
)
4 eqid 2196 . 2  |-  ( +g  `  R )  =  ( +g  `  R )
5 eqid 2196 . 2  |-  ( .r
`  R )  =  ( .r `  R
)
6 simp3 1001 . . 3  |-  ( ( R  e. Rng  /\  S  e.  I  /\  S  e.  (SubGrp `  R )
)  ->  S  e.  (SubGrp `  R ) )
7 eqid 2196 . . . 4  |-  ( Base `  R )  =  (
Base `  R )
8 eqid 2196 . . . 4  |-  ( R ~QG  S )  =  ( R ~QG  S )
97, 8eqger 13432 . . 3  |-  ( S  e.  (SubGrp `  R
)  ->  ( R ~QG  S
)  Er  ( Base `  R ) )
106, 9syl 14 . 2  |-  ( ( R  e. Rng  /\  S  e.  I  /\  S  e.  (SubGrp `  R )
)  ->  ( R ~QG  S
)  Er  ( Base `  R ) )
11 rngabl 13569 . . . . . 6  |-  ( R  e. Rng  ->  R  e.  Abel )
12113ad2ant1 1020 . . . . 5  |-  ( ( R  e. Rng  /\  S  e.  I  /\  S  e.  (SubGrp `  R )
)  ->  R  e.  Abel )
13 ablnsg 13542 . . . . 5  |-  ( R  e.  Abel  ->  (NrmSGrp `  R
)  =  (SubGrp `  R ) )
1412, 13syl 14 . . . 4  |-  ( ( R  e. Rng  /\  S  e.  I  /\  S  e.  (SubGrp `  R )
)  ->  (NrmSGrp `  R
)  =  (SubGrp `  R ) )
156, 14eleqtrrd 2276 . . 3  |-  ( ( R  e. Rng  /\  S  e.  I  /\  S  e.  (SubGrp `  R )
)  ->  S  e.  (NrmSGrp `  R ) )
167, 8, 4eqgcpbl 13436 . . 3  |-  ( S  e.  (NrmSGrp `  R
)  ->  ( (
a ( R ~QG  S ) c  /\  b ( R ~QG  S ) d )  ->  ( a ( +g  `  R ) b ) ( R ~QG  S ) ( c ( +g  `  R ) d ) ) )
1715, 16syl 14 . 2  |-  ( ( R  e. Rng  /\  S  e.  I  /\  S  e.  (SubGrp `  R )
)  ->  ( (
a ( R ~QG  S ) c  /\  b ( R ~QG  S ) d )  ->  ( a ( +g  `  R ) b ) ( R ~QG  S ) ( c ( +g  `  R ) d ) ) )
18 qus2idrng.i . . 3  |-  I  =  (2Ideal `  R )
197, 8, 18, 52idlcpblrng 14157 . 2  |-  ( ( R  e. Rng  /\  S  e.  I  /\  S  e.  (SubGrp `  R )
)  ->  ( (
a ( R ~QG  S ) c  /\  b ( R ~QG  S ) d )  ->  ( a ( .r `  R ) b ) ( R ~QG  S ) ( c ( .r `  R ) d ) ) )
20 simp1 999 . 2  |-  ( ( R  e. Rng  /\  S  e.  I  /\  S  e.  (SubGrp `  R )
)  ->  R  e. Rng )
212, 3, 4, 5, 10, 17, 19, 20qusrng 13592 1  |-  ( ( R  e. Rng  /\  S  e.  I  /\  S  e.  (SubGrp `  R )
)  ->  U  e. Rng )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    /\ w3a 980    = wceq 1364    e. wcel 2167   class class class wbr 4034   ` cfv 5259  (class class class)co 5925    Er wer 6598   Basecbs 12705   +g cplusg 12782   .rcmulr 12783    /.s cqus 13004  SubGrpcsubg 13375  NrmSGrpcnsg 13376   ~QG cqg 13377   Abelcabl 13493  Rngcrng 13566  2Idealc2idl 14133
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4149  ax-sep 4152  ax-nul 4160  ax-pow 4208  ax-pr 4243  ax-un 4469  ax-setind 4574  ax-cnex 7989  ax-resscn 7990  ax-1cn 7991  ax-1re 7992  ax-icn 7993  ax-addcl 7994  ax-addrcl 7995  ax-mulcl 7996  ax-addcom 7998  ax-addass 8000  ax-i2m1 8003  ax-0lt1 8004  ax-0id 8006  ax-rnegex 8007  ax-pre-ltirr 8010  ax-pre-lttrn 8012  ax-pre-ltadd 8014
This theorem depends on definitions:  df-bi 117  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rmo 2483  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3452  df-pw 3608  df-sn 3629  df-pr 3630  df-tp 3631  df-op 3632  df-uni 3841  df-int 3876  df-iun 3919  df-br 4035  df-opab 4096  df-mpt 4097  df-id 4329  df-xp 4670  df-rel 4671  df-cnv 4672  df-co 4673  df-dm 4674  df-rn 4675  df-res 4676  df-ima 4677  df-iota 5220  df-fun 5261  df-fn 5262  df-f 5263  df-f1 5264  df-fo 5265  df-f1o 5266  df-fv 5267  df-riota 5880  df-ov 5928  df-oprab 5929  df-mpo 5930  df-1st 6207  df-2nd 6208  df-tpos 6312  df-er 6601  df-ec 6603  df-qs 6607  df-pnf 8082  df-mnf 8083  df-ltxr 8085  df-inn 9010  df-2 9068  df-3 9069  df-4 9070  df-5 9071  df-6 9072  df-7 9073  df-8 9074  df-ndx 12708  df-slot 12709  df-base 12711  df-sets 12712  df-iress 12713  df-plusg 12795  df-mulr 12796  df-sca 12798  df-vsca 12799  df-ip 12800  df-0g 12962  df-iimas 13006  df-qus 13007  df-mgm 13060  df-sgrp 13106  df-mnd 13121  df-grp 13207  df-minusg 13208  df-sbg 13209  df-subg 13378  df-nsg 13379  df-eqg 13380  df-cmn 13494  df-abl 13495  df-mgp 13555  df-rng 13567  df-oppr 13702  df-lssm 13987  df-sra 14069  df-rgmod 14070  df-lidl 14103  df-2idl 14134
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator