ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  npcand Unicode version

Theorem npcand 8275
Description: Cancellation law for subtraction. (Contributed by Mario Carneiro, 27-May-2016.)
Hypotheses
Ref Expression
negidd.1  |-  ( ph  ->  A  e.  CC )
pncand.2  |-  ( ph  ->  B  e.  CC )
Assertion
Ref Expression
npcand  |-  ( ph  ->  ( ( A  -  B )  +  B
)  =  A )

Proof of Theorem npcand
StepHypRef Expression
1 negidd.1 . 2  |-  ( ph  ->  A  e.  CC )
2 pncand.2 . 2  |-  ( ph  ->  B  e.  CC )
3 npcan 8169 . 2  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( A  -  B )  +  B
)  =  A )
41, 2, 3syl2anc 411 1  |-  ( ph  ->  ( ( A  -  B )  +  B
)  =  A )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1353    e. wcel 2148  (class class class)co 5878   CCcc 7812    + caddc 7817    - cmin 8131
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-14 2151  ax-ext 2159  ax-sep 4123  ax-pow 4176  ax-pr 4211  ax-setind 4538  ax-resscn 7906  ax-1cn 7907  ax-icn 7909  ax-addcl 7910  ax-addrcl 7911  ax-mulcl 7912  ax-addcom 7914  ax-addass 7916  ax-distr 7918  ax-i2m1 7919  ax-0id 7922  ax-rnegex 7923  ax-cnre 7925
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-ral 2460  df-rex 2461  df-reu 2462  df-rab 2464  df-v 2741  df-sbc 2965  df-dif 3133  df-un 3135  df-in 3137  df-ss 3144  df-pw 3579  df-sn 3600  df-pr 3601  df-op 3603  df-uni 3812  df-br 4006  df-opab 4067  df-id 4295  df-xp 4634  df-rel 4635  df-cnv 4636  df-co 4637  df-dm 4638  df-iota 5180  df-fun 5220  df-fv 5226  df-riota 5834  df-ov 5881  df-oprab 5882  df-mpo 5883  df-sub 8133
This theorem is referenced by:  addlsub  8330  npcan1  8338  ltsubadd  8392  lesubadd  8394  ltaddsub  8396  leaddsub  8398  lesub1  8416  ltsub1  8418  lincmb01cmp  10006  expaddzaplem  10566  bcpasc  10749  bcn2m1  10752  zfz1isolemsplit  10821  zfz1isolem1  10823  shftuz  10829  seq3shft  10850  arisum2  11510  cvgratnnlemsumlt  11539  ntrivcvgap  11559  fprodm1  11609  sin01bnd  11768  cos12dec  11778  moddvds  11809  dvdsexp  11870  zeo3  11876  divalglemnn  11926  uzwodc  12041  hashdvds  12224  dvcnp2cntop  14351
  Copyright terms: Public domain W3C validator