ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nn0ob Unicode version

Theorem nn0ob 11856
Description: Alternate characterizations of an odd nonnegative integer. (Contributed by AV, 4-Jun-2020.)
Assertion
Ref Expression
nn0ob  |-  ( N  e.  NN0  ->  ( ( ( N  +  1 )  /  2 )  e.  NN0  <->  ( ( N  -  1 )  / 
2 )  e.  NN0 ) )

Proof of Theorem nn0ob
StepHypRef Expression
1 nn0o 11855 . 2  |-  ( ( N  e.  NN0  /\  ( ( N  + 
1 )  /  2
)  e.  NN0 )  ->  ( ( N  - 
1 )  /  2
)  e.  NN0 )
2 nn0cn 9134 . . . . . 6  |-  ( N  e.  NN0  ->  N  e.  CC )
3 xp1d2m1eqxm1d2 9119 . . . . . . 7  |-  ( N  e.  CC  ->  (
( ( N  + 
1 )  /  2
)  -  1 )  =  ( ( N  -  1 )  / 
2 ) )
43eqcomd 2176 . . . . . 6  |-  ( N  e.  CC  ->  (
( N  -  1 )  /  2 )  =  ( ( ( N  +  1 )  /  2 )  - 
1 ) )
52, 4syl 14 . . . . 5  |-  ( N  e.  NN0  ->  ( ( N  -  1 )  /  2 )  =  ( ( ( N  +  1 )  / 
2 )  -  1 ) )
6 peano2cnm 8174 . . . . . . . 8  |-  ( N  e.  CC  ->  ( N  -  1 )  e.  CC )
72, 6syl 14 . . . . . . 7  |-  ( N  e.  NN0  ->  ( N  -  1 )  e.  CC )
87halfcld 9111 . . . . . 6  |-  ( N  e.  NN0  ->  ( ( N  -  1 )  /  2 )  e.  CC )
9 1cnd 7925 . . . . . 6  |-  ( N  e.  NN0  ->  1  e.  CC )
10 peano2nn0 9164 . . . . . . . 8  |-  ( N  e.  NN0  ->  ( N  +  1 )  e. 
NN0 )
1110nn0cnd 9179 . . . . . . 7  |-  ( N  e.  NN0  ->  ( N  +  1 )  e.  CC )
1211halfcld 9111 . . . . . 6  |-  ( N  e.  NN0  ->  ( ( N  +  1 )  /  2 )  e.  CC )
138, 9, 12addlsub 8278 . . . . 5  |-  ( N  e.  NN0  ->  ( ( ( ( N  - 
1 )  /  2
)  +  1 )  =  ( ( N  +  1 )  / 
2 )  <->  ( ( N  -  1 )  /  2 )  =  ( ( ( N  +  1 )  / 
2 )  -  1 ) ) )
145, 13mpbird 166 . . . 4  |-  ( N  e.  NN0  ->  ( ( ( N  -  1 )  /  2 )  +  1 )  =  ( ( N  + 
1 )  /  2
) )
1514adantr 274 . . 3  |-  ( ( N  e.  NN0  /\  ( ( N  - 
1 )  /  2
)  e.  NN0 )  ->  ( ( ( N  -  1 )  / 
2 )  +  1 )  =  ( ( N  +  1 )  /  2 ) )
16 peano2nn0 9164 . . . 4  |-  ( ( ( N  -  1 )  /  2 )  e.  NN0  ->  ( ( ( N  -  1 )  /  2 )  +  1 )  e. 
NN0 )
1716adantl 275 . . 3  |-  ( ( N  e.  NN0  /\  ( ( N  - 
1 )  /  2
)  e.  NN0 )  ->  ( ( ( N  -  1 )  / 
2 )  +  1 )  e.  NN0 )
1815, 17eqeltrrd 2248 . 2  |-  ( ( N  e.  NN0  /\  ( ( N  - 
1 )  /  2
)  e.  NN0 )  ->  ( ( N  + 
1 )  /  2
)  e.  NN0 )
191, 18impbida 591 1  |-  ( N  e.  NN0  ->  ( ( ( N  +  1 )  /  2 )  e.  NN0  <->  ( ( N  -  1 )  / 
2 )  e.  NN0 ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104    = wceq 1348    e. wcel 2141  (class class class)co 5851   CCcc 7761   1c1 7764    + caddc 7766    - cmin 8079    / cdiv 8578   2c2 8918   NN0cn0 9124
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-13 2143  ax-14 2144  ax-ext 2152  ax-sep 4105  ax-pow 4158  ax-pr 4192  ax-un 4416  ax-setind 4519  ax-cnex 7854  ax-resscn 7855  ax-1cn 7856  ax-1re 7857  ax-icn 7858  ax-addcl 7859  ax-addrcl 7860  ax-mulcl 7861  ax-mulrcl 7862  ax-addcom 7863  ax-mulcom 7864  ax-addass 7865  ax-mulass 7866  ax-distr 7867  ax-i2m1 7868  ax-0lt1 7869  ax-1rid 7870  ax-0id 7871  ax-rnegex 7872  ax-precex 7873  ax-cnre 7874  ax-pre-ltirr 7875  ax-pre-ltwlin 7876  ax-pre-lttrn 7877  ax-pre-apti 7878  ax-pre-ltadd 7879  ax-pre-mulgt0 7880  ax-pre-mulext 7881
This theorem depends on definitions:  df-bi 116  df-3or 974  df-3an 975  df-tru 1351  df-fal 1354  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ne 2341  df-nel 2436  df-ral 2453  df-rex 2454  df-reu 2455  df-rmo 2456  df-rab 2457  df-v 2732  df-sbc 2956  df-dif 3123  df-un 3125  df-in 3127  df-ss 3134  df-pw 3566  df-sn 3587  df-pr 3588  df-op 3590  df-uni 3795  df-int 3830  df-br 3988  df-opab 4049  df-mpt 4050  df-id 4276  df-po 4279  df-iso 4280  df-xp 4615  df-rel 4616  df-cnv 4617  df-co 4618  df-dm 4619  df-rn 4620  df-res 4621  df-ima 4622  df-iota 5158  df-fun 5198  df-fn 5199  df-f 5200  df-fv 5204  df-riota 5807  df-ov 5854  df-oprab 5855  df-mpo 5856  df-pnf 7945  df-mnf 7946  df-xr 7947  df-ltxr 7948  df-le 7949  df-sub 8081  df-neg 8082  df-reap 8483  df-ap 8490  df-div 8579  df-inn 8868  df-2 8926  df-3 8927  df-4 8928  df-n0 9125  df-z 9202  df-uz 9477
This theorem is referenced by:  nn0oddm1d2  11857
  Copyright terms: Public domain W3C validator