Users' Mathboxes Mathbox for Jim Kingdon < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  exmidsbth Unicode version

Theorem exmidsbth 15755
Description: The Schroeder-Bernstein Theorem is equivalent to excluded middle. This is Metamath 100 proof #25. The forward direction (isbth 7042) is the proof of the Schroeder-Bernstein Theorem from the Metamath Proof Explorer database (in which excluded middle holds), but adapted to use EXMID as an antecedent rather than being unconditionally true, as in the non-intuitionistic proof at https://us.metamath.org/mpeuni/sbth.html 7042.

The reverse direction (exmidsbthr 15754) is the one which establishes that Schroeder-Bernstein implies excluded middle. This resolves the question of whether we will be able to prove Schroeder-Bernstein from our axioms in the negative. (Contributed by Jim Kingdon, 13-Aug-2022.)

Assertion
Ref Expression
exmidsbth  |-  (EXMID  <->  A. x A. y ( ( x  ~<_  y  /\  y  ~<_  x )  ->  x  ~~  y ) )
Distinct variable group:    x, y

Proof of Theorem exmidsbth
StepHypRef Expression
1 isbth 7042 . . . 4  |-  ( (EXMID  /\  ( x  ~<_  y  /\  y  ~<_  x ) )  ->  x  ~~  y
)
21ex 115 . . 3  |-  (EXMID  ->  (
( x  ~<_  y  /\  y  ~<_  x )  ->  x  ~~  y ) )
32alrimivv 1889 . 2  |-  (EXMID  ->  A. x A. y ( ( x  ~<_  y  /\  y  ~<_  x )  ->  x  ~~  y ) )
4 exmidsbthr 15754 . 2  |-  ( A. x A. y ( ( x  ~<_  y  /\  y  ~<_  x )  ->  x  ~~  y )  -> EXMID )
53, 4impbii 126 1  |-  (EXMID  <->  A. x A. y ( ( x  ~<_  y  /\  y  ~<_  x )  ->  x  ~~  y ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105   A.wal 1362   class class class wbr 4034  EXMIDwem 4228    ~~ cen 6806    ~<_ cdom 6807
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4149  ax-sep 4152  ax-nul 4160  ax-pow 4208  ax-pr 4243  ax-un 4469  ax-setind 4574  ax-iinf 4625
This theorem depends on definitions:  df-bi 117  df-stab 832  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-ral 2480  df-rex 2481  df-reu 2482  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3452  df-if 3563  df-pw 3608  df-sn 3629  df-pr 3630  df-op 3632  df-uni 3841  df-int 3876  df-iun 3919  df-br 4035  df-opab 4096  df-mpt 4097  df-tr 4133  df-exmid 4229  df-id 4329  df-iord 4402  df-on 4404  df-suc 4407  df-iom 4628  df-xp 4670  df-rel 4671  df-cnv 4672  df-co 4673  df-dm 4674  df-rn 4675  df-res 4676  df-ima 4677  df-iota 5220  df-fun 5261  df-fn 5262  df-f 5263  df-f1 5264  df-fo 5265  df-f1o 5266  df-fv 5267  df-ov 5928  df-oprab 5929  df-mpo 5930  df-1st 6207  df-2nd 6208  df-1o 6483  df-2o 6484  df-map 6718  df-en 6809  df-dom 6810  df-dju 7113  df-inl 7122  df-inr 7123  df-case 7159  df-nninf 7195  df-omni 7210
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator