Users' Mathboxes Mathbox for Jim Kingdon < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  exmidsbth Unicode version

Theorem exmidsbth 13536
Description: The Schroeder-Bernstein Theorem is equivalent to excluded middle. This is Metamath 100 proof #25. The forward direction (isbth 6900) is the proof of the Schroeder-Bernstein Theorem from the Metamath Proof Explorer database (in which excluded middle holds), but adapted to use EXMID as an antecedent rather than being unconditionally true, as in the non-intuitionist proof at https://us.metamath.org/mpeuni/sbth.html 6900.

The reverse direction (exmidsbthr 13535) is the one which establishes that Schroeder-Bernstein implies excluded middle. This resolves the question of whether we will be able to prove Schroeder-Bernstein from our axioms in the negative. (Contributed by Jim Kingdon, 13-Aug-2022.)

Assertion
Ref Expression
exmidsbth  |-  (EXMID  <->  A. x A. y ( ( x  ~<_  y  /\  y  ~<_  x )  ->  x  ~~  y ) )
Distinct variable group:    x, y

Proof of Theorem exmidsbth
StepHypRef Expression
1 isbth 6900 . . . 4  |-  ( (EXMID  /\  ( x  ~<_  y  /\  y  ~<_  x ) )  ->  x  ~~  y
)
21ex 114 . . 3  |-  (EXMID  ->  (
( x  ~<_  y  /\  y  ~<_  x )  ->  x  ~~  y ) )
32alrimivv 1852 . 2  |-  (EXMID  ->  A. x A. y ( ( x  ~<_  y  /\  y  ~<_  x )  ->  x  ~~  y ) )
4 exmidsbthr 13535 . 2  |-  ( A. x A. y ( ( x  ~<_  y  /\  y  ~<_  x )  ->  x  ~~  y )  -> EXMID )
53, 4impbii 125 1  |-  (EXMID  <->  A. x A. y ( ( x  ~<_  y  /\  y  ~<_  x )  ->  x  ~~  y ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104   A.wal 1330   class class class wbr 3961  EXMIDwem 4150    ~~ cen 6672    ~<_ cdom 6673
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1424  ax-7 1425  ax-gen 1426  ax-ie1 1470  ax-ie2 1471  ax-8 1481  ax-10 1482  ax-11 1483  ax-i12 1484  ax-bndl 1486  ax-4 1487  ax-17 1503  ax-i9 1507  ax-ial 1511  ax-i5r 1512  ax-13 2127  ax-14 2128  ax-ext 2136  ax-coll 4075  ax-sep 4078  ax-nul 4086  ax-pow 4130  ax-pr 4164  ax-un 4388  ax-setind 4490  ax-iinf 4541
This theorem depends on definitions:  df-bi 116  df-stab 817  df-dc 821  df-3or 964  df-3an 965  df-tru 1335  df-fal 1338  df-nf 1438  df-sb 1740  df-eu 2006  df-mo 2007  df-clab 2141  df-cleq 2147  df-clel 2150  df-nfc 2285  df-ne 2325  df-ral 2437  df-rex 2438  df-reu 2439  df-rab 2441  df-v 2711  df-sbc 2934  df-csb 3028  df-dif 3100  df-un 3102  df-in 3104  df-ss 3111  df-nul 3391  df-if 3502  df-pw 3541  df-sn 3562  df-pr 3563  df-op 3565  df-uni 3769  df-int 3804  df-iun 3847  df-br 3962  df-opab 4022  df-mpt 4023  df-tr 4059  df-exmid 4151  df-id 4248  df-iord 4321  df-on 4323  df-suc 4326  df-iom 4544  df-xp 4585  df-rel 4586  df-cnv 4587  df-co 4588  df-dm 4589  df-rn 4590  df-res 4591  df-ima 4592  df-iota 5128  df-fun 5165  df-fn 5166  df-f 5167  df-f1 5168  df-fo 5169  df-f1o 5170  df-fv 5171  df-ov 5817  df-oprab 5818  df-mpo 5819  df-1st 6078  df-2nd 6079  df-1o 6353  df-2o 6354  df-map 6584  df-en 6675  df-dom 6676  df-dju 6968  df-inl 6977  df-inr 6978  df-case 7014  df-nninf 7050  df-omni 7057
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator