| Mathbox for Jim Kingdon |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > Mathboxes > exmidsbth | Unicode version | ||
| Description: The Schroeder-Bernstein
Theorem is equivalent to excluded middle. This
is Metamath 100 proof #25. The forward direction (isbth 7071) is the
proof of the Schroeder-Bernstein Theorem from the Metamath Proof
Explorer database (in which excluded middle holds), but adapted to use
EXMID as an antecedent rather than being unconditionally
true, as in
the non-intuitionistic proof at
https://us.metamath.org/mpeuni/sbth.html 7071.
The reverse direction (exmidsbthr 15999) is the one which establishes that Schroeder-Bernstein implies excluded middle. This resolves the question of whether we will be able to prove Schroeder-Bernstein from our axioms in the negative. (Contributed by Jim Kingdon, 13-Aug-2022.) |
| Ref | Expression |
|---|---|
| exmidsbth |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | isbth 7071 |
. . . 4
| |
| 2 | 1 | ex 115 |
. . 3
|
| 3 | 2 | alrimivv 1898 |
. 2
|
| 4 | exmidsbthr 15999 |
. 2
| |
| 5 | 3, 4 | impbii 126 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-13 2178 ax-14 2179 ax-ext 2187 ax-coll 4160 ax-sep 4163 ax-nul 4171 ax-pow 4219 ax-pr 4254 ax-un 4481 ax-setind 4586 ax-iinf 4637 |
| This theorem depends on definitions: df-bi 117 df-stab 833 df-dc 837 df-3or 982 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1484 df-sb 1786 df-eu 2057 df-mo 2058 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-ne 2377 df-ral 2489 df-rex 2490 df-reu 2491 df-rab 2493 df-v 2774 df-sbc 2999 df-csb 3094 df-dif 3168 df-un 3170 df-in 3172 df-ss 3179 df-nul 3461 df-if 3572 df-pw 3618 df-sn 3639 df-pr 3640 df-op 3642 df-uni 3851 df-int 3886 df-iun 3929 df-br 4046 df-opab 4107 df-mpt 4108 df-tr 4144 df-exmid 4240 df-id 4341 df-iord 4414 df-on 4416 df-suc 4419 df-iom 4640 df-xp 4682 df-rel 4683 df-cnv 4684 df-co 4685 df-dm 4686 df-rn 4687 df-res 4688 df-ima 4689 df-iota 5233 df-fun 5274 df-fn 5275 df-f 5276 df-f1 5277 df-fo 5278 df-f1o 5279 df-fv 5280 df-ov 5949 df-oprab 5950 df-mpo 5951 df-1st 6228 df-2nd 6229 df-1o 6504 df-2o 6505 df-map 6739 df-en 6830 df-dom 6831 df-dju 7142 df-inl 7151 df-inr 7152 df-case 7188 df-nninf 7224 df-omni 7239 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |