![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > blrnps | GIF version |
Description: Membership in the range of the ball function. Note that ran (ballβπ·) is the collection of all balls for metric π·. (Contributed by NM, 31-Aug-2006.) (Revised by Mario Carneiro, 12-Nov-2013.) (Revised by Thierry Arnoux, 11-Mar-2018.) |
Ref | Expression |
---|---|
blrnps | β’ (π· β (PsMetβπ) β (π΄ β ran (ballβπ·) β βπ₯ β π βπ β β* π΄ = (π₯(ballβπ·)π))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | blfps 14136 | . 2 β’ (π· β (PsMetβπ) β (ballβπ·):(π Γ β*)βΆπ« π) | |
2 | ffn 5377 | . 2 β’ ((ballβπ·):(π Γ β*)βΆπ« π β (ballβπ·) Fn (π Γ β*)) | |
3 | ovelrn 6036 | . 2 β’ ((ballβπ·) Fn (π Γ β*) β (π΄ β ran (ballβπ·) β βπ₯ β π βπ β β* π΄ = (π₯(ballβπ·)π))) | |
4 | 1, 2, 3 | 3syl 17 | 1 β’ (π· β (PsMetβπ) β (π΄ β ran (ballβπ·) β βπ₯ β π βπ β β* π΄ = (π₯(ballβπ·)π))) |
Colors of variables: wff set class |
Syntax hints: β wi 4 β wb 105 = wceq 1363 β wcel 2158 βwrex 2466 π« cpw 3587 Γ cxp 4636 ran crn 4639 Fn wfn 5223 βΆwf 5224 βcfv 5228 (class class class)co 5888 β*cxr 8004 PsMetcpsmet 13652 ballcbl 13655 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1457 ax-7 1458 ax-gen 1459 ax-ie1 1503 ax-ie2 1504 ax-8 1514 ax-10 1515 ax-11 1516 ax-i12 1517 ax-bndl 1519 ax-4 1520 ax-17 1536 ax-i9 1540 ax-ial 1544 ax-i5r 1545 ax-13 2160 ax-14 2161 ax-ext 2169 ax-sep 4133 ax-pow 4186 ax-pr 4221 ax-un 4445 ax-setind 4548 ax-cnex 7915 ax-resscn 7916 |
This theorem depends on definitions: df-bi 117 df-3an 981 df-tru 1366 df-fal 1369 df-nf 1471 df-sb 1773 df-eu 2039 df-mo 2040 df-clab 2174 df-cleq 2180 df-clel 2183 df-nfc 2318 df-ne 2358 df-ral 2470 df-rex 2471 df-rab 2474 df-v 2751 df-sbc 2975 df-csb 3070 df-dif 3143 df-un 3145 df-in 3147 df-ss 3154 df-pw 3589 df-sn 3610 df-pr 3611 df-op 3613 df-uni 3822 df-iun 3900 df-br 4016 df-opab 4077 df-mpt 4078 df-id 4305 df-xp 4644 df-rel 4645 df-cnv 4646 df-co 4647 df-dm 4648 df-rn 4649 df-res 4650 df-ima 4651 df-iota 5190 df-fun 5230 df-fn 5231 df-f 5232 df-fv 5236 df-ov 5891 df-oprab 5892 df-mpo 5893 df-1st 6154 df-2nd 6155 df-map 6663 df-pnf 8007 df-mnf 8008 df-xr 8009 df-psmet 13660 df-bl 13663 |
This theorem is referenced by: blssps 14154 |
Copyright terms: Public domain | W3C validator |