ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cnmpt11f Unicode version

Theorem cnmpt11f 13924
Description: The composition of continuous functions is continuous. (Contributed by Mario Carneiro, 5-May-2014.) (Revised by Mario Carneiro, 22-Aug-2015.)
Hypotheses
Ref Expression
cnmptid.j  |-  ( ph  ->  J  e.  (TopOn `  X ) )
cnmpt11.a  |-  ( ph  ->  ( x  e.  X  |->  A )  e.  ( J  Cn  K ) )
cnmpt11f.f  |-  ( ph  ->  F  e.  ( K  Cn  L ) )
Assertion
Ref Expression
cnmpt11f  |-  ( ph  ->  ( x  e.  X  |->  ( F `  A
) )  e.  ( J  Cn  L ) )
Distinct variable groups:    x, F    ph, x    x, J    x, X    x, K    x, L
Allowed substitution hint:    A( x)

Proof of Theorem cnmpt11f
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 cnmptid.j . 2  |-  ( ph  ->  J  e.  (TopOn `  X ) )
2 cnmpt11.a . 2  |-  ( ph  ->  ( x  e.  X  |->  A )  e.  ( J  Cn  K ) )
3 cntop2 13842 . . . 4  |-  ( ( x  e.  X  |->  A )  e.  ( J  Cn  K )  ->  K  e.  Top )
42, 3syl 14 . . 3  |-  ( ph  ->  K  e.  Top )
5 eqid 2177 . . . 4  |-  U. K  =  U. K
65toptopon 13658 . . 3  |-  ( K  e.  Top  <->  K  e.  (TopOn `  U. K ) )
74, 6sylib 122 . 2  |-  ( ph  ->  K  e.  (TopOn `  U. K ) )
8 cnmpt11f.f . . . . 5  |-  ( ph  ->  F  e.  ( K  Cn  L ) )
9 eqid 2177 . . . . . 6  |-  U. L  =  U. L
105, 9cnf 13844 . . . . 5  |-  ( F  e.  ( K  Cn  L )  ->  F : U. K --> U. L
)
118, 10syl 14 . . . 4  |-  ( ph  ->  F : U. K --> U. L )
1211feqmptd 5572 . . 3  |-  ( ph  ->  F  =  ( y  e.  U. K  |->  ( F `  y ) ) )
1312, 8eqeltrrd 2255 . 2  |-  ( ph  ->  ( y  e.  U. K  |->  ( F `  y ) )  e.  ( K  Cn  L
) )
14 fveq2 5517 . 2  |-  ( y  =  A  ->  ( F `  y )  =  ( F `  A ) )
151, 2, 7, 13, 14cnmpt11 13923 1  |-  ( ph  ->  ( x  e.  X  |->  ( F `  A
) )  e.  ( J  Cn  L ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    e. wcel 2148   U.cuni 3811    |-> cmpt 4066   -->wf 5214   ` cfv 5218  (class class class)co 5878   Topctop 13637  TopOnctopon 13650    Cn ccn 13825
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-sep 4123  ax-pow 4176  ax-pr 4211  ax-un 4435  ax-setind 4538
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-ral 2460  df-rex 2461  df-rab 2464  df-v 2741  df-sbc 2965  df-csb 3060  df-dif 3133  df-un 3135  df-in 3137  df-ss 3144  df-pw 3579  df-sn 3600  df-pr 3601  df-op 3603  df-uni 3812  df-iun 3890  df-br 4006  df-opab 4067  df-mpt 4068  df-id 4295  df-xp 4634  df-rel 4635  df-cnv 4636  df-co 4637  df-dm 4638  df-rn 4639  df-res 4640  df-ima 4641  df-iota 5180  df-fun 5220  df-fn 5221  df-f 5222  df-fv 5226  df-ov 5881  df-oprab 5882  df-mpo 5883  df-1st 6144  df-2nd 6145  df-map 6653  df-top 13638  df-topon 13651  df-cn 13828
This theorem is referenced by:  cnmpt12f  13926
  Copyright terms: Public domain W3C validator