ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cnmpt11f Unicode version

Theorem cnmpt11f 12442
Description: The composition of continuous functions is continuous. (Contributed by Mario Carneiro, 5-May-2014.) (Revised by Mario Carneiro, 22-Aug-2015.)
Hypotheses
Ref Expression
cnmptid.j  |-  ( ph  ->  J  e.  (TopOn `  X ) )
cnmpt11.a  |-  ( ph  ->  ( x  e.  X  |->  A )  e.  ( J  Cn  K ) )
cnmpt11f.f  |-  ( ph  ->  F  e.  ( K  Cn  L ) )
Assertion
Ref Expression
cnmpt11f  |-  ( ph  ->  ( x  e.  X  |->  ( F `  A
) )  e.  ( J  Cn  L ) )
Distinct variable groups:    x, F    ph, x    x, J    x, X    x, K    x, L
Allowed substitution hint:    A( x)

Proof of Theorem cnmpt11f
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 cnmptid.j . 2  |-  ( ph  ->  J  e.  (TopOn `  X ) )
2 cnmpt11.a . 2  |-  ( ph  ->  ( x  e.  X  |->  A )  e.  ( J  Cn  K ) )
3 cntop2 12360 . . . 4  |-  ( ( x  e.  X  |->  A )  e.  ( J  Cn  K )  ->  K  e.  Top )
42, 3syl 14 . . 3  |-  ( ph  ->  K  e.  Top )
5 eqid 2137 . . . 4  |-  U. K  =  U. K
65toptopon 12174 . . 3  |-  ( K  e.  Top  <->  K  e.  (TopOn `  U. K ) )
74, 6sylib 121 . 2  |-  ( ph  ->  K  e.  (TopOn `  U. K ) )
8 cnmpt11f.f . . . . 5  |-  ( ph  ->  F  e.  ( K  Cn  L ) )
9 eqid 2137 . . . . . 6  |-  U. L  =  U. L
105, 9cnf 12362 . . . . 5  |-  ( F  e.  ( K  Cn  L )  ->  F : U. K --> U. L
)
118, 10syl 14 . . . 4  |-  ( ph  ->  F : U. K --> U. L )
1211feqmptd 5467 . . 3  |-  ( ph  ->  F  =  ( y  e.  U. K  |->  ( F `  y ) ) )
1312, 8eqeltrrd 2215 . 2  |-  ( ph  ->  ( y  e.  U. K  |->  ( F `  y ) )  e.  ( K  Cn  L
) )
14 fveq2 5414 . 2  |-  ( y  =  A  ->  ( F `  y )  =  ( F `  A ) )
151, 2, 7, 13, 14cnmpt11 12441 1  |-  ( ph  ->  ( x  e.  X  |->  ( F `  A
) )  e.  ( J  Cn  L ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    e. wcel 1480   U.cuni 3731    |-> cmpt 3984   -->wf 5114   ` cfv 5118  (class class class)co 5767   Topctop 12153  TopOnctopon 12166    Cn ccn 12343
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-13 1491  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2119  ax-sep 4041  ax-pow 4093  ax-pr 4126  ax-un 4350  ax-setind 4447
This theorem depends on definitions:  df-bi 116  df-3an 964  df-tru 1334  df-fal 1337  df-nf 1437  df-sb 1736  df-eu 2000  df-mo 2001  df-clab 2124  df-cleq 2130  df-clel 2133  df-nfc 2268  df-ne 2307  df-ral 2419  df-rex 2420  df-rab 2423  df-v 2683  df-sbc 2905  df-csb 2999  df-dif 3068  df-un 3070  df-in 3072  df-ss 3079  df-pw 3507  df-sn 3528  df-pr 3529  df-op 3531  df-uni 3732  df-iun 3810  df-br 3925  df-opab 3985  df-mpt 3986  df-id 4210  df-xp 4540  df-rel 4541  df-cnv 4542  df-co 4543  df-dm 4544  df-rn 4545  df-res 4546  df-ima 4547  df-iota 5083  df-fun 5120  df-fn 5121  df-f 5122  df-fv 5126  df-ov 5770  df-oprab 5771  df-mpo 5772  df-1st 6031  df-2nd 6032  df-map 6537  df-top 12154  df-topon 12167  df-cn 12346
This theorem is referenced by:  cnmpt12f  12444
  Copyright terms: Public domain W3C validator