ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cnmpt11f Unicode version

Theorem cnmpt11f 14604
Description: The composition of continuous functions is continuous. (Contributed by Mario Carneiro, 5-May-2014.) (Revised by Mario Carneiro, 22-Aug-2015.)
Hypotheses
Ref Expression
cnmptid.j  |-  ( ph  ->  J  e.  (TopOn `  X ) )
cnmpt11.a  |-  ( ph  ->  ( x  e.  X  |->  A )  e.  ( J  Cn  K ) )
cnmpt11f.f  |-  ( ph  ->  F  e.  ( K  Cn  L ) )
Assertion
Ref Expression
cnmpt11f  |-  ( ph  ->  ( x  e.  X  |->  ( F `  A
) )  e.  ( J  Cn  L ) )
Distinct variable groups:    x, F    ph, x    x, J    x, X    x, K    x, L
Allowed substitution hint:    A( x)

Proof of Theorem cnmpt11f
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 cnmptid.j . 2  |-  ( ph  ->  J  e.  (TopOn `  X ) )
2 cnmpt11.a . 2  |-  ( ph  ->  ( x  e.  X  |->  A )  e.  ( J  Cn  K ) )
3 cntop2 14522 . . . 4  |-  ( ( x  e.  X  |->  A )  e.  ( J  Cn  K )  ->  K  e.  Top )
42, 3syl 14 . . 3  |-  ( ph  ->  K  e.  Top )
5 eqid 2196 . . . 4  |-  U. K  =  U. K
65toptopon 14338 . . 3  |-  ( K  e.  Top  <->  K  e.  (TopOn `  U. K ) )
74, 6sylib 122 . 2  |-  ( ph  ->  K  e.  (TopOn `  U. K ) )
8 cnmpt11f.f . . . . 5  |-  ( ph  ->  F  e.  ( K  Cn  L ) )
9 eqid 2196 . . . . . 6  |-  U. L  =  U. L
105, 9cnf 14524 . . . . 5  |-  ( F  e.  ( K  Cn  L )  ->  F : U. K --> U. L
)
118, 10syl 14 . . . 4  |-  ( ph  ->  F : U. K --> U. L )
1211feqmptd 5617 . . 3  |-  ( ph  ->  F  =  ( y  e.  U. K  |->  ( F `  y ) ) )
1312, 8eqeltrrd 2274 . 2  |-  ( ph  ->  ( y  e.  U. K  |->  ( F `  y ) )  e.  ( K  Cn  L
) )
14 fveq2 5561 . 2  |-  ( y  =  A  ->  ( F `  y )  =  ( F `  A ) )
151, 2, 7, 13, 14cnmpt11 14603 1  |-  ( ph  ->  ( x  e.  X  |->  ( F `  A
) )  e.  ( J  Cn  L ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    e. wcel 2167   U.cuni 3840    |-> cmpt 4095   -->wf 5255   ` cfv 5259  (class class class)co 5925   Topctop 14317  TopOnctopon 14330    Cn ccn 14505
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-sep 4152  ax-pow 4208  ax-pr 4243  ax-un 4469  ax-setind 4574
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-ral 2480  df-rex 2481  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-pw 3608  df-sn 3629  df-pr 3630  df-op 3632  df-uni 3841  df-iun 3919  df-br 4035  df-opab 4096  df-mpt 4097  df-id 4329  df-xp 4670  df-rel 4671  df-cnv 4672  df-co 4673  df-dm 4674  df-rn 4675  df-res 4676  df-ima 4677  df-iota 5220  df-fun 5261  df-fn 5262  df-f 5263  df-fv 5267  df-ov 5928  df-oprab 5929  df-mpo 5930  df-1st 6207  df-2nd 6208  df-map 6718  df-top 14318  df-topon 14331  df-cn 14508
This theorem is referenced by:  cnmpt12f  14606
  Copyright terms: Public domain W3C validator