ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cnmpt11f GIF version

Theorem cnmpt11f 14698
Description: The composition of continuous functions is continuous. (Contributed by Mario Carneiro, 5-May-2014.) (Revised by Mario Carneiro, 22-Aug-2015.)
Hypotheses
Ref Expression
cnmptid.j (𝜑𝐽 ∈ (TopOn‘𝑋))
cnmpt11.a (𝜑 → (𝑥𝑋𝐴) ∈ (𝐽 Cn 𝐾))
cnmpt11f.f (𝜑𝐹 ∈ (𝐾 Cn 𝐿))
Assertion
Ref Expression
cnmpt11f (𝜑 → (𝑥𝑋 ↦ (𝐹𝐴)) ∈ (𝐽 Cn 𝐿))
Distinct variable groups:   𝑥,𝐹   𝜑,𝑥   𝑥,𝐽   𝑥,𝑋   𝑥,𝐾   𝑥,𝐿
Allowed substitution hint:   𝐴(𝑥)

Proof of Theorem cnmpt11f
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 cnmptid.j . 2 (𝜑𝐽 ∈ (TopOn‘𝑋))
2 cnmpt11.a . 2 (𝜑 → (𝑥𝑋𝐴) ∈ (𝐽 Cn 𝐾))
3 cntop2 14616 . . . 4 ((𝑥𝑋𝐴) ∈ (𝐽 Cn 𝐾) → 𝐾 ∈ Top)
42, 3syl 14 . . 3 (𝜑𝐾 ∈ Top)
5 eqid 2204 . . . 4 𝐾 = 𝐾
65toptopon 14432 . . 3 (𝐾 ∈ Top ↔ 𝐾 ∈ (TopOn‘ 𝐾))
74, 6sylib 122 . 2 (𝜑𝐾 ∈ (TopOn‘ 𝐾))
8 cnmpt11f.f . . . . 5 (𝜑𝐹 ∈ (𝐾 Cn 𝐿))
9 eqid 2204 . . . . . 6 𝐿 = 𝐿
105, 9cnf 14618 . . . . 5 (𝐹 ∈ (𝐾 Cn 𝐿) → 𝐹: 𝐾 𝐿)
118, 10syl 14 . . . 4 (𝜑𝐹: 𝐾 𝐿)
1211feqmptd 5631 . . 3 (𝜑𝐹 = (𝑦 𝐾 ↦ (𝐹𝑦)))
1312, 8eqeltrrd 2282 . 2 (𝜑 → (𝑦 𝐾 ↦ (𝐹𝑦)) ∈ (𝐾 Cn 𝐿))
14 fveq2 5575 . 2 (𝑦 = 𝐴 → (𝐹𝑦) = (𝐹𝐴))
151, 2, 7, 13, 14cnmpt11 14697 1 (𝜑 → (𝑥𝑋 ↦ (𝐹𝐴)) ∈ (𝐽 Cn 𝐿))
Colors of variables: wff set class
Syntax hints:  wi 4  wcel 2175   cuni 3849  cmpt 4104  wf 5266  cfv 5270  (class class class)co 5943  Topctop 14411  TopOnctopon 14424   Cn ccn 14599
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1469  ax-7 1470  ax-gen 1471  ax-ie1 1515  ax-ie2 1516  ax-8 1526  ax-10 1527  ax-11 1528  ax-i12 1529  ax-bndl 1531  ax-4 1532  ax-17 1548  ax-i9 1552  ax-ial 1556  ax-i5r 1557  ax-13 2177  ax-14 2178  ax-ext 2186  ax-sep 4161  ax-pow 4217  ax-pr 4252  ax-un 4479  ax-setind 4584
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1375  df-fal 1378  df-nf 1483  df-sb 1785  df-eu 2056  df-mo 2057  df-clab 2191  df-cleq 2197  df-clel 2200  df-nfc 2336  df-ne 2376  df-ral 2488  df-rex 2489  df-rab 2492  df-v 2773  df-sbc 2998  df-csb 3093  df-dif 3167  df-un 3169  df-in 3171  df-ss 3178  df-pw 3617  df-sn 3638  df-pr 3639  df-op 3641  df-uni 3850  df-iun 3928  df-br 4044  df-opab 4105  df-mpt 4106  df-id 4339  df-xp 4680  df-rel 4681  df-cnv 4682  df-co 4683  df-dm 4684  df-rn 4685  df-res 4686  df-ima 4687  df-iota 5231  df-fun 5272  df-fn 5273  df-f 5274  df-fv 5278  df-ov 5946  df-oprab 5947  df-mpo 5948  df-1st 6225  df-2nd 6226  df-map 6736  df-top 14412  df-topon 14425  df-cn 14602
This theorem is referenced by:  cnmpt12f  14700
  Copyright terms: Public domain W3C validator