ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cnmpt11f GIF version

Theorem cnmpt11f 12924
Description: The composition of continuous functions is continuous. (Contributed by Mario Carneiro, 5-May-2014.) (Revised by Mario Carneiro, 22-Aug-2015.)
Hypotheses
Ref Expression
cnmptid.j (𝜑𝐽 ∈ (TopOn‘𝑋))
cnmpt11.a (𝜑 → (𝑥𝑋𝐴) ∈ (𝐽 Cn 𝐾))
cnmpt11f.f (𝜑𝐹 ∈ (𝐾 Cn 𝐿))
Assertion
Ref Expression
cnmpt11f (𝜑 → (𝑥𝑋 ↦ (𝐹𝐴)) ∈ (𝐽 Cn 𝐿))
Distinct variable groups:   𝑥,𝐹   𝜑,𝑥   𝑥,𝐽   𝑥,𝑋   𝑥,𝐾   𝑥,𝐿
Allowed substitution hint:   𝐴(𝑥)

Proof of Theorem cnmpt11f
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 cnmptid.j . 2 (𝜑𝐽 ∈ (TopOn‘𝑋))
2 cnmpt11.a . 2 (𝜑 → (𝑥𝑋𝐴) ∈ (𝐽 Cn 𝐾))
3 cntop2 12842 . . . 4 ((𝑥𝑋𝐴) ∈ (𝐽 Cn 𝐾) → 𝐾 ∈ Top)
42, 3syl 14 . . 3 (𝜑𝐾 ∈ Top)
5 eqid 2165 . . . 4 𝐾 = 𝐾
65toptopon 12656 . . 3 (𝐾 ∈ Top ↔ 𝐾 ∈ (TopOn‘ 𝐾))
74, 6sylib 121 . 2 (𝜑𝐾 ∈ (TopOn‘ 𝐾))
8 cnmpt11f.f . . . . 5 (𝜑𝐹 ∈ (𝐾 Cn 𝐿))
9 eqid 2165 . . . . . 6 𝐿 = 𝐿
105, 9cnf 12844 . . . . 5 (𝐹 ∈ (𝐾 Cn 𝐿) → 𝐹: 𝐾 𝐿)
118, 10syl 14 . . . 4 (𝜑𝐹: 𝐾 𝐿)
1211feqmptd 5539 . . 3 (𝜑𝐹 = (𝑦 𝐾 ↦ (𝐹𝑦)))
1312, 8eqeltrrd 2244 . 2 (𝜑 → (𝑦 𝐾 ↦ (𝐹𝑦)) ∈ (𝐾 Cn 𝐿))
14 fveq2 5486 . 2 (𝑦 = 𝐴 → (𝐹𝑦) = (𝐹𝐴))
151, 2, 7, 13, 14cnmpt11 12923 1 (𝜑 → (𝑥𝑋 ↦ (𝐹𝐴)) ∈ (𝐽 Cn 𝐿))
Colors of variables: wff set class
Syntax hints:  wi 4  wcel 2136   cuni 3789  cmpt 4043  wf 5184  cfv 5188  (class class class)co 5842  Topctop 12635  TopOnctopon 12648   Cn ccn 12825
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-13 2138  ax-14 2139  ax-ext 2147  ax-sep 4100  ax-pow 4153  ax-pr 4187  ax-un 4411  ax-setind 4514
This theorem depends on definitions:  df-bi 116  df-3an 970  df-tru 1346  df-fal 1349  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ne 2337  df-ral 2449  df-rex 2450  df-rab 2453  df-v 2728  df-sbc 2952  df-csb 3046  df-dif 3118  df-un 3120  df-in 3122  df-ss 3129  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-iun 3868  df-br 3983  df-opab 4044  df-mpt 4045  df-id 4271  df-xp 4610  df-rel 4611  df-cnv 4612  df-co 4613  df-dm 4614  df-rn 4615  df-res 4616  df-ima 4617  df-iota 5153  df-fun 5190  df-fn 5191  df-f 5192  df-fv 5196  df-ov 5845  df-oprab 5846  df-mpo 5847  df-1st 6108  df-2nd 6109  df-map 6616  df-top 12636  df-topon 12649  df-cn 12828
This theorem is referenced by:  cnmpt12f  12926
  Copyright terms: Public domain W3C validator