![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > cnmpt11f | GIF version |
Description: The composition of continuous functions is continuous. (Contributed by Mario Carneiro, 5-May-2014.) (Revised by Mario Carneiro, 22-Aug-2015.) |
Ref | Expression |
---|---|
cnmptid.j | β’ (π β π½ β (TopOnβπ)) |
cnmpt11.a | β’ (π β (π₯ β π β¦ π΄) β (π½ Cn πΎ)) |
cnmpt11f.f | β’ (π β πΉ β (πΎ Cn πΏ)) |
Ref | Expression |
---|---|
cnmpt11f | β’ (π β (π₯ β π β¦ (πΉβπ΄)) β (π½ Cn πΏ)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cnmptid.j | . 2 β’ (π β π½ β (TopOnβπ)) | |
2 | cnmpt11.a | . 2 β’ (π β (π₯ β π β¦ π΄) β (π½ Cn πΎ)) | |
3 | cntop2 13787 | . . . 4 β’ ((π₯ β π β¦ π΄) β (π½ Cn πΎ) β πΎ β Top) | |
4 | 2, 3 | syl 14 | . . 3 β’ (π β πΎ β Top) |
5 | eqid 2177 | . . . 4 β’ βͺ πΎ = βͺ πΎ | |
6 | 5 | toptopon 13603 | . . 3 β’ (πΎ β Top β πΎ β (TopOnββͺ πΎ)) |
7 | 4, 6 | sylib 122 | . 2 β’ (π β πΎ β (TopOnββͺ πΎ)) |
8 | cnmpt11f.f | . . . . 5 β’ (π β πΉ β (πΎ Cn πΏ)) | |
9 | eqid 2177 | . . . . . 6 β’ βͺ πΏ = βͺ πΏ | |
10 | 5, 9 | cnf 13789 | . . . . 5 β’ (πΉ β (πΎ Cn πΏ) β πΉ:βͺ πΎβΆβͺ πΏ) |
11 | 8, 10 | syl 14 | . . . 4 β’ (π β πΉ:βͺ πΎβΆβͺ πΏ) |
12 | 11 | feqmptd 5571 | . . 3 β’ (π β πΉ = (π¦ β βͺ πΎ β¦ (πΉβπ¦))) |
13 | 12, 8 | eqeltrrd 2255 | . 2 β’ (π β (π¦ β βͺ πΎ β¦ (πΉβπ¦)) β (πΎ Cn πΏ)) |
14 | fveq2 5517 | . 2 β’ (π¦ = π΄ β (πΉβπ¦) = (πΉβπ΄)) | |
15 | 1, 2, 7, 13, 14 | cnmpt11 13868 | 1 β’ (π β (π₯ β π β¦ (πΉβπ΄)) β (π½ Cn πΏ)) |
Colors of variables: wff set class |
Syntax hints: β wi 4 β wcel 2148 βͺ cuni 3811 β¦ cmpt 4066 βΆwf 5214 βcfv 5218 (class class class)co 5877 Topctop 13582 TopOnctopon 13595 Cn ccn 13770 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 614 ax-in2 615 ax-io 709 ax-5 1447 ax-7 1448 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-8 1504 ax-10 1505 ax-11 1506 ax-i12 1507 ax-bndl 1509 ax-4 1510 ax-17 1526 ax-i9 1530 ax-ial 1534 ax-i5r 1535 ax-13 2150 ax-14 2151 ax-ext 2159 ax-sep 4123 ax-pow 4176 ax-pr 4211 ax-un 4435 ax-setind 4538 |
This theorem depends on definitions: df-bi 117 df-3an 980 df-tru 1356 df-fal 1359 df-nf 1461 df-sb 1763 df-eu 2029 df-mo 2030 df-clab 2164 df-cleq 2170 df-clel 2173 df-nfc 2308 df-ne 2348 df-ral 2460 df-rex 2461 df-rab 2464 df-v 2741 df-sbc 2965 df-csb 3060 df-dif 3133 df-un 3135 df-in 3137 df-ss 3144 df-pw 3579 df-sn 3600 df-pr 3601 df-op 3603 df-uni 3812 df-iun 3890 df-br 4006 df-opab 4067 df-mpt 4068 df-id 4295 df-xp 4634 df-rel 4635 df-cnv 4636 df-co 4637 df-dm 4638 df-rn 4639 df-res 4640 df-ima 4641 df-iota 5180 df-fun 5220 df-fn 5221 df-f 5222 df-fv 5226 df-ov 5880 df-oprab 5881 df-mpo 5882 df-1st 6143 df-2nd 6144 df-map 6652 df-top 13583 df-topon 13596 df-cn 13773 |
This theorem is referenced by: cnmpt12f 13871 |
Copyright terms: Public domain | W3C validator |