ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cnf Unicode version

Theorem cnf 13197
Description: A continuous function is a mapping. (Contributed by FL, 8-Dec-2006.) (Revised by Mario Carneiro, 21-Aug-2015.)
Hypotheses
Ref Expression
iscnp2.1  |-  X  = 
U. J
iscnp2.2  |-  Y  = 
U. K
Assertion
Ref Expression
cnf  |-  ( F  e.  ( J  Cn  K )  ->  F : X --> Y )

Proof of Theorem cnf
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 iscnp2.1 . . . 4  |-  X  = 
U. J
2 iscnp2.2 . . . 4  |-  Y  = 
U. K
31, 2iscn2 13193 . . 3  |-  ( F  e.  ( J  Cn  K )  <->  ( ( J  e.  Top  /\  K  e.  Top )  /\  ( F : X --> Y  /\  A. x  e.  K  ( `' F " x )  e.  J ) ) )
43simprbi 275 . 2  |-  ( F  e.  ( J  Cn  K )  ->  ( F : X --> Y  /\  A. x  e.  K  ( `' F " x )  e.  J ) )
54simpld 112 1  |-  ( F  e.  ( J  Cn  K )  ->  F : X --> Y )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1353    e. wcel 2146   A.wral 2453   U.cuni 3805   `'ccnv 4619   "cima 4623   -->wf 5204  (class class class)co 5865   Topctop 12988    Cn ccn 13178
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1445  ax-7 1446  ax-gen 1447  ax-ie1 1491  ax-ie2 1492  ax-8 1502  ax-10 1503  ax-11 1504  ax-i12 1505  ax-bndl 1507  ax-4 1508  ax-17 1524  ax-i9 1528  ax-ial 1532  ax-i5r 1533  ax-13 2148  ax-14 2149  ax-ext 2157  ax-sep 4116  ax-pow 4169  ax-pr 4203  ax-un 4427  ax-setind 4530
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1459  df-sb 1761  df-eu 2027  df-mo 2028  df-clab 2162  df-cleq 2168  df-clel 2171  df-nfc 2306  df-ne 2346  df-ral 2458  df-rex 2459  df-rab 2462  df-v 2737  df-sbc 2961  df-csb 3056  df-dif 3129  df-un 3131  df-in 3133  df-ss 3140  df-pw 3574  df-sn 3595  df-pr 3596  df-op 3598  df-uni 3806  df-iun 3884  df-br 3999  df-opab 4060  df-mpt 4061  df-id 4287  df-xp 4626  df-rel 4627  df-cnv 4628  df-co 4629  df-dm 4630  df-rn 4631  df-res 4632  df-ima 4633  df-iota 5170  df-fun 5210  df-fn 5211  df-f 5212  df-fv 5216  df-ov 5868  df-oprab 5869  df-mpo 5870  df-1st 6131  df-2nd 6132  df-map 6640  df-top 12989  df-topon 13002  df-cn 13181
This theorem is referenced by:  cnco  13214  cnclima  13216  cnntri  13217  cnss1  13219  cnss2  13220  cncnpi  13221  cncnp2m  13224  cnrest  13228  cnrest2  13229  txcnmpt  13266  uptx  13267  txcn  13268  cnmpt11f  13277  cnmpt21f  13285  hmeocnv  13300  hmeores  13308  txhmeo  13312
  Copyright terms: Public domain W3C validator