ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cnmpt2c GIF version

Theorem cnmpt2c 12930
Description: A constant function is continuous. (Contributed by Mario Carneiro, 5-May-2014.) (Revised by Mario Carneiro, 22-Aug-2015.)
Hypotheses
Ref Expression
cnmpt21.j (𝜑𝐽 ∈ (TopOn‘𝑋))
cnmpt21.k (𝜑𝐾 ∈ (TopOn‘𝑌))
cnmpt2c.l (𝜑𝐿 ∈ (TopOn‘𝑍))
cnmpt2c.p (𝜑𝑃𝑍)
Assertion
Ref Expression
cnmpt2c (𝜑 → (𝑥𝑋, 𝑦𝑌𝑃) ∈ ((𝐽 ×t 𝐾) Cn 𝐿))
Distinct variable groups:   𝑥,𝑦,𝐿   𝜑,𝑥,𝑦   𝑥,𝑋,𝑦   𝑥,𝑃,𝑦   𝑥,𝑌,𝑦   𝑥,𝑍,𝑦
Allowed substitution hints:   𝐽(𝑥,𝑦)   𝐾(𝑥,𝑦)

Proof of Theorem cnmpt2c
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 eqidd 2166 . . 3 (𝑧 = ⟨𝑥, 𝑦⟩ → 𝑃 = 𝑃)
21mpompt 5934 . 2 (𝑧 ∈ (𝑋 × 𝑌) ↦ 𝑃) = (𝑥𝑋, 𝑦𝑌𝑃)
3 cnmpt21.j . . . 4 (𝜑𝐽 ∈ (TopOn‘𝑋))
4 cnmpt21.k . . . 4 (𝜑𝐾 ∈ (TopOn‘𝑌))
5 txtopon 12902 . . . 4 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) → (𝐽 ×t 𝐾) ∈ (TopOn‘(𝑋 × 𝑌)))
63, 4, 5syl2anc 409 . . 3 (𝜑 → (𝐽 ×t 𝐾) ∈ (TopOn‘(𝑋 × 𝑌)))
7 cnmpt2c.l . . 3 (𝜑𝐿 ∈ (TopOn‘𝑍))
8 cnmpt2c.p . . 3 (𝜑𝑃𝑍)
96, 7, 8cnmptc 12922 . 2 (𝜑 → (𝑧 ∈ (𝑋 × 𝑌) ↦ 𝑃) ∈ ((𝐽 ×t 𝐾) Cn 𝐿))
102, 9eqeltrrid 2254 1 (𝜑 → (𝑥𝑋, 𝑦𝑌𝑃) ∈ ((𝐽 ×t 𝐾) Cn 𝐿))
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1343  wcel 2136  cop 3579  cmpt 4043   × cxp 4602  cfv 5188  (class class class)co 5842  cmpo 5844  TopOnctopon 12648   Cn ccn 12825   ×t ctx 12892
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-13 2138  ax-14 2139  ax-ext 2147  ax-coll 4097  ax-sep 4100  ax-pow 4153  ax-pr 4187  ax-un 4411  ax-setind 4514
This theorem depends on definitions:  df-bi 116  df-3an 970  df-tru 1346  df-fal 1349  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ne 2337  df-ral 2449  df-rex 2450  df-reu 2451  df-rab 2453  df-v 2728  df-sbc 2952  df-csb 3046  df-dif 3118  df-un 3120  df-in 3122  df-ss 3129  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-iun 3868  df-br 3983  df-opab 4044  df-mpt 4045  df-id 4271  df-xp 4610  df-rel 4611  df-cnv 4612  df-co 4613  df-dm 4614  df-rn 4615  df-res 4616  df-ima 4617  df-iota 5153  df-fun 5190  df-fn 5191  df-f 5192  df-f1 5193  df-fo 5194  df-f1o 5195  df-fv 5196  df-ov 5845  df-oprab 5846  df-mpo 5847  df-1st 6108  df-2nd 6109  df-map 6616  df-topgen 12577  df-top 12636  df-topon 12649  df-bases 12681  df-cn 12828  df-cnp 12829  df-tx 12893
This theorem is referenced by:  cnrehmeocntop  13233
  Copyright terms: Public domain W3C validator