ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cnmpt2c GIF version

Theorem cnmpt2c 12459
Description: A constant function is continuous. (Contributed by Mario Carneiro, 5-May-2014.) (Revised by Mario Carneiro, 22-Aug-2015.)
Hypotheses
Ref Expression
cnmpt21.j (𝜑𝐽 ∈ (TopOn‘𝑋))
cnmpt21.k (𝜑𝐾 ∈ (TopOn‘𝑌))
cnmpt2c.l (𝜑𝐿 ∈ (TopOn‘𝑍))
cnmpt2c.p (𝜑𝑃𝑍)
Assertion
Ref Expression
cnmpt2c (𝜑 → (𝑥𝑋, 𝑦𝑌𝑃) ∈ ((𝐽 ×t 𝐾) Cn 𝐿))
Distinct variable groups:   𝑥,𝑦,𝐿   𝜑,𝑥,𝑦   𝑥,𝑋,𝑦   𝑥,𝑃,𝑦   𝑥,𝑌,𝑦   𝑥,𝑍,𝑦
Allowed substitution hints:   𝐽(𝑥,𝑦)   𝐾(𝑥,𝑦)

Proof of Theorem cnmpt2c
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 eqidd 2140 . . 3 (𝑧 = ⟨𝑥, 𝑦⟩ → 𝑃 = 𝑃)
21mpompt 5863 . 2 (𝑧 ∈ (𝑋 × 𝑌) ↦ 𝑃) = (𝑥𝑋, 𝑦𝑌𝑃)
3 cnmpt21.j . . . 4 (𝜑𝐽 ∈ (TopOn‘𝑋))
4 cnmpt21.k . . . 4 (𝜑𝐾 ∈ (TopOn‘𝑌))
5 txtopon 12431 . . . 4 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) → (𝐽 ×t 𝐾) ∈ (TopOn‘(𝑋 × 𝑌)))
63, 4, 5syl2anc 408 . . 3 (𝜑 → (𝐽 ×t 𝐾) ∈ (TopOn‘(𝑋 × 𝑌)))
7 cnmpt2c.l . . 3 (𝜑𝐿 ∈ (TopOn‘𝑍))
8 cnmpt2c.p . . 3 (𝜑𝑃𝑍)
96, 7, 8cnmptc 12451 . 2 (𝜑 → (𝑧 ∈ (𝑋 × 𝑌) ↦ 𝑃) ∈ ((𝐽 ×t 𝐾) Cn 𝐿))
102, 9eqeltrrid 2227 1 (𝜑 → (𝑥𝑋, 𝑦𝑌𝑃) ∈ ((𝐽 ×t 𝐾) Cn 𝐿))
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1331  wcel 1480  cop 3530  cmpt 3989   × cxp 4537  cfv 5123  (class class class)co 5774  cmpo 5776  TopOnctopon 12177   Cn ccn 12354   ×t ctx 12421
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-13 1491  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121  ax-coll 4043  ax-sep 4046  ax-pow 4098  ax-pr 4131  ax-un 4355  ax-setind 4452
This theorem depends on definitions:  df-bi 116  df-3an 964  df-tru 1334  df-fal 1337  df-nf 1437  df-sb 1736  df-eu 2002  df-mo 2003  df-clab 2126  df-cleq 2132  df-clel 2135  df-nfc 2270  df-ne 2309  df-ral 2421  df-rex 2422  df-reu 2423  df-rab 2425  df-v 2688  df-sbc 2910  df-csb 3004  df-dif 3073  df-un 3075  df-in 3077  df-ss 3084  df-pw 3512  df-sn 3533  df-pr 3534  df-op 3536  df-uni 3737  df-iun 3815  df-br 3930  df-opab 3990  df-mpt 3991  df-id 4215  df-xp 4545  df-rel 4546  df-cnv 4547  df-co 4548  df-dm 4549  df-rn 4550  df-res 4551  df-ima 4552  df-iota 5088  df-fun 5125  df-fn 5126  df-f 5127  df-f1 5128  df-fo 5129  df-f1o 5130  df-fv 5131  df-ov 5777  df-oprab 5778  df-mpo 5779  df-1st 6038  df-2nd 6039  df-map 6544  df-topgen 12141  df-top 12165  df-topon 12178  df-bases 12210  df-cn 12357  df-cnp 12358  df-tx 12422
This theorem is referenced by:  cnrehmeocntop  12762
  Copyright terms: Public domain W3C validator