ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cnmpt2c GIF version

Theorem cnmpt2c 14143
Description: A constant function is continuous. (Contributed by Mario Carneiro, 5-May-2014.) (Revised by Mario Carneiro, 22-Aug-2015.)
Hypotheses
Ref Expression
cnmpt21.j (𝜑𝐽 ∈ (TopOn‘𝑋))
cnmpt21.k (𝜑𝐾 ∈ (TopOn‘𝑌))
cnmpt2c.l (𝜑𝐿 ∈ (TopOn‘𝑍))
cnmpt2c.p (𝜑𝑃𝑍)
Assertion
Ref Expression
cnmpt2c (𝜑 → (𝑥𝑋, 𝑦𝑌𝑃) ∈ ((𝐽 ×t 𝐾) Cn 𝐿))
Distinct variable groups:   𝑥,𝑦,𝐿   𝜑,𝑥,𝑦   𝑥,𝑋,𝑦   𝑥,𝑃,𝑦   𝑥,𝑌,𝑦   𝑥,𝑍,𝑦
Allowed substitution hints:   𝐽(𝑥,𝑦)   𝐾(𝑥,𝑦)

Proof of Theorem cnmpt2c
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 eqidd 2188 . . 3 (𝑧 = ⟨𝑥, 𝑦⟩ → 𝑃 = 𝑃)
21mpompt 5980 . 2 (𝑧 ∈ (𝑋 × 𝑌) ↦ 𝑃) = (𝑥𝑋, 𝑦𝑌𝑃)
3 cnmpt21.j . . . 4 (𝜑𝐽 ∈ (TopOn‘𝑋))
4 cnmpt21.k . . . 4 (𝜑𝐾 ∈ (TopOn‘𝑌))
5 txtopon 14115 . . . 4 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) → (𝐽 ×t 𝐾) ∈ (TopOn‘(𝑋 × 𝑌)))
63, 4, 5syl2anc 411 . . 3 (𝜑 → (𝐽 ×t 𝐾) ∈ (TopOn‘(𝑋 × 𝑌)))
7 cnmpt2c.l . . 3 (𝜑𝐿 ∈ (TopOn‘𝑍))
8 cnmpt2c.p . . 3 (𝜑𝑃𝑍)
96, 7, 8cnmptc 14135 . 2 (𝜑 → (𝑧 ∈ (𝑋 × 𝑌) ↦ 𝑃) ∈ ((𝐽 ×t 𝐾) Cn 𝐿))
102, 9eqeltrrid 2275 1 (𝜑 → (𝑥𝑋, 𝑦𝑌𝑃) ∈ ((𝐽 ×t 𝐾) Cn 𝐿))
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1363  wcel 2158  cop 3607  cmpt 4076   × cxp 4636  cfv 5228  (class class class)co 5888  cmpo 5890  TopOnctopon 13863   Cn ccn 14038   ×t ctx 14105
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1457  ax-7 1458  ax-gen 1459  ax-ie1 1503  ax-ie2 1504  ax-8 1514  ax-10 1515  ax-11 1516  ax-i12 1517  ax-bndl 1519  ax-4 1520  ax-17 1536  ax-i9 1540  ax-ial 1544  ax-i5r 1545  ax-13 2160  ax-14 2161  ax-ext 2169  ax-coll 4130  ax-sep 4133  ax-pow 4186  ax-pr 4221  ax-un 4445  ax-setind 4548
This theorem depends on definitions:  df-bi 117  df-3an 981  df-tru 1366  df-fal 1369  df-nf 1471  df-sb 1773  df-eu 2039  df-mo 2040  df-clab 2174  df-cleq 2180  df-clel 2183  df-nfc 2318  df-ne 2358  df-ral 2470  df-rex 2471  df-reu 2472  df-rab 2474  df-v 2751  df-sbc 2975  df-csb 3070  df-dif 3143  df-un 3145  df-in 3147  df-ss 3154  df-pw 3589  df-sn 3610  df-pr 3611  df-op 3613  df-uni 3822  df-iun 3900  df-br 4016  df-opab 4077  df-mpt 4078  df-id 4305  df-xp 4644  df-rel 4645  df-cnv 4646  df-co 4647  df-dm 4648  df-rn 4649  df-res 4650  df-ima 4651  df-iota 5190  df-fun 5230  df-fn 5231  df-f 5232  df-f1 5233  df-fo 5234  df-f1o 5235  df-fv 5236  df-ov 5891  df-oprab 5892  df-mpo 5893  df-1st 6155  df-2nd 6156  df-map 6664  df-topgen 12727  df-top 13851  df-topon 13864  df-bases 13896  df-cn 14041  df-cnp 14042  df-tx 14106
This theorem is referenced by:  cnrehmeocntop  14446
  Copyright terms: Public domain W3C validator