ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ghmpreima Unicode version

Theorem ghmpreima 13602
Description: The inverse image of a subgroup under a homomorphism. (Contributed by Stefan O'Rear, 31-Dec-2014.)
Assertion
Ref Expression
ghmpreima  |-  ( ( F  e.  ( S 
GrpHom  T )  /\  V  e.  (SubGrp `  T )
)  ->  ( `' F " V )  e.  (SubGrp `  S )
)

Proof of Theorem ghmpreima
Dummy variables  a  b  j are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cnvimass 5045 . . 3  |-  ( `' F " V ) 
C_  dom  F
2 eqid 2205 . . . . 5  |-  ( Base `  S )  =  (
Base `  S )
3 eqid 2205 . . . . 5  |-  ( Base `  T )  =  (
Base `  T )
42, 3ghmf 13583 . . . 4  |-  ( F  e.  ( S  GrpHom  T )  ->  F :
( Base `  S ) --> ( Base `  T )
)
54adantr 276 . . 3  |-  ( ( F  e.  ( S 
GrpHom  T )  /\  V  e.  (SubGrp `  T )
)  ->  F :
( Base `  S ) --> ( Base `  T )
)
61, 5fssdm 5440 . 2  |-  ( ( F  e.  ( S 
GrpHom  T )  /\  V  e.  (SubGrp `  T )
)  ->  ( `' F " V )  C_  ( Base `  S )
)
7 ghmgrp1 13581 . . . . . 6  |-  ( F  e.  ( S  GrpHom  T )  ->  S  e.  Grp )
87adantr 276 . . . . 5  |-  ( ( F  e.  ( S 
GrpHom  T )  /\  V  e.  (SubGrp `  T )
)  ->  S  e.  Grp )
9 eqid 2205 . . . . . 6  |-  ( 0g
`  S )  =  ( 0g `  S
)
102, 9grpidcl 13361 . . . . 5  |-  ( S  e.  Grp  ->  ( 0g `  S )  e.  ( Base `  S
) )
118, 10syl 14 . . . 4  |-  ( ( F  e.  ( S 
GrpHom  T )  /\  V  e.  (SubGrp `  T )
)  ->  ( 0g `  S )  e.  (
Base `  S )
)
12 eqid 2205 . . . . . . 7  |-  ( 0g
`  T )  =  ( 0g `  T
)
139, 12ghmid 13585 . . . . . 6  |-  ( F  e.  ( S  GrpHom  T )  ->  ( F `  ( 0g `  S
) )  =  ( 0g `  T ) )
1413adantr 276 . . . . 5  |-  ( ( F  e.  ( S 
GrpHom  T )  /\  V  e.  (SubGrp `  T )
)  ->  ( F `  ( 0g `  S
) )  =  ( 0g `  T ) )
1512subg0cl 13518 . . . . . 6  |-  ( V  e.  (SubGrp `  T
)  ->  ( 0g `  T )  e.  V
)
1615adantl 277 . . . . 5  |-  ( ( F  e.  ( S 
GrpHom  T )  /\  V  e.  (SubGrp `  T )
)  ->  ( 0g `  T )  e.  V
)
1714, 16eqeltrd 2282 . . . 4  |-  ( ( F  e.  ( S 
GrpHom  T )  /\  V  e.  (SubGrp `  T )
)  ->  ( F `  ( 0g `  S
) )  e.  V
)
185ffnd 5426 . . . . 5  |-  ( ( F  e.  ( S 
GrpHom  T )  /\  V  e.  (SubGrp `  T )
)  ->  F  Fn  ( Base `  S )
)
19 elpreima 5699 . . . . 5  |-  ( F  Fn  ( Base `  S
)  ->  ( ( 0g `  S )  e.  ( `' F " V )  <->  ( ( 0g `  S )  e.  ( Base `  S
)  /\  ( F `  ( 0g `  S
) )  e.  V
) ) )
2018, 19syl 14 . . . 4  |-  ( ( F  e.  ( S 
GrpHom  T )  /\  V  e.  (SubGrp `  T )
)  ->  ( ( 0g `  S )  e.  ( `' F " V )  <->  ( ( 0g `  S )  e.  ( Base `  S
)  /\  ( F `  ( 0g `  S
) )  e.  V
) ) )
2111, 17, 20mpbir2and 947 . . 3  |-  ( ( F  e.  ( S 
GrpHom  T )  /\  V  e.  (SubGrp `  T )
)  ->  ( 0g `  S )  e.  ( `' F " V ) )
22 elex2 2788 . . 3  |-  ( ( 0g `  S )  e.  ( `' F " V )  ->  E. j 
j  e.  ( `' F " V ) )
2321, 22syl 14 . 2  |-  ( ( F  e.  ( S 
GrpHom  T )  /\  V  e.  (SubGrp `  T )
)  ->  E. j 
j  e.  ( `' F " V ) )
24 elpreima 5699 . . . . 5  |-  ( F  Fn  ( Base `  S
)  ->  ( a  e.  ( `' F " V )  <->  ( a  e.  ( Base `  S
)  /\  ( F `  a )  e.  V
) ) )
2518, 24syl 14 . . . 4  |-  ( ( F  e.  ( S 
GrpHom  T )  /\  V  e.  (SubGrp `  T )
)  ->  ( a  e.  ( `' F " V )  <->  ( a  e.  ( Base `  S
)  /\  ( F `  a )  e.  V
) ) )
26 elpreima 5699 . . . . . . . . . 10  |-  ( F  Fn  ( Base `  S
)  ->  ( b  e.  ( `' F " V )  <->  ( b  e.  ( Base `  S
)  /\  ( F `  b )  e.  V
) ) )
2718, 26syl 14 . . . . . . . . 9  |-  ( ( F  e.  ( S 
GrpHom  T )  /\  V  e.  (SubGrp `  T )
)  ->  ( b  e.  ( `' F " V )  <->  ( b  e.  ( Base `  S
)  /\  ( F `  b )  e.  V
) ) )
2827adantr 276 . . . . . . . 8  |-  ( ( ( F  e.  ( S  GrpHom  T )  /\  V  e.  (SubGrp `  T
) )  /\  (
a  e.  ( Base `  S )  /\  ( F `  a )  e.  V ) )  -> 
( b  e.  ( `' F " V )  <-> 
( b  e.  (
Base `  S )  /\  ( F `  b
)  e.  V ) ) )
29 eqid 2205 . . . . . . . . . . 11  |-  ( +g  `  S )  =  ( +g  `  S )
307ad2antrr 488 . . . . . . . . . . 11  |-  ( ( ( F  e.  ( S  GrpHom  T )  /\  V  e.  (SubGrp `  T
) )  /\  (
( a  e.  (
Base `  S )  /\  ( F `  a
)  e.  V )  /\  ( b  e.  ( Base `  S
)  /\  ( F `  b )  e.  V
) ) )  ->  S  e.  Grp )
31 simprll 537 . . . . . . . . . . 11  |-  ( ( ( F  e.  ( S  GrpHom  T )  /\  V  e.  (SubGrp `  T
) )  /\  (
( a  e.  (
Base `  S )  /\  ( F `  a
)  e.  V )  /\  ( b  e.  ( Base `  S
)  /\  ( F `  b )  e.  V
) ) )  -> 
a  e.  ( Base `  S ) )
32 simprrl 539 . . . . . . . . . . 11  |-  ( ( ( F  e.  ( S  GrpHom  T )  /\  V  e.  (SubGrp `  T
) )  /\  (
( a  e.  (
Base `  S )  /\  ( F `  a
)  e.  V )  /\  ( b  e.  ( Base `  S
)  /\  ( F `  b )  e.  V
) ) )  -> 
b  e.  ( Base `  S ) )
332, 29, 30, 31, 32grpcld 13346 . . . . . . . . . 10  |-  ( ( ( F  e.  ( S  GrpHom  T )  /\  V  e.  (SubGrp `  T
) )  /\  (
( a  e.  (
Base `  S )  /\  ( F `  a
)  e.  V )  /\  ( b  e.  ( Base `  S
)  /\  ( F `  b )  e.  V
) ) )  -> 
( a ( +g  `  S ) b )  e.  ( Base `  S
) )
34 simpll 527 . . . . . . . . . . . 12  |-  ( ( ( F  e.  ( S  GrpHom  T )  /\  V  e.  (SubGrp `  T
) )  /\  (
( a  e.  (
Base `  S )  /\  ( F `  a
)  e.  V )  /\  ( b  e.  ( Base `  S
)  /\  ( F `  b )  e.  V
) ) )  ->  F  e.  ( S  GrpHom  T ) )
35 eqid 2205 . . . . . . . . . . . . 13  |-  ( +g  `  T )  =  ( +g  `  T )
362, 29, 35ghmlin 13584 . . . . . . . . . . . 12  |-  ( ( F  e.  ( S 
GrpHom  T )  /\  a  e.  ( Base `  S
)  /\  b  e.  ( Base `  S )
)  ->  ( F `  ( a ( +g  `  S ) b ) )  =  ( ( F `  a ) ( +g  `  T
) ( F `  b ) ) )
3734, 31, 32, 36syl3anc 1250 . . . . . . . . . . 11  |-  ( ( ( F  e.  ( S  GrpHom  T )  /\  V  e.  (SubGrp `  T
) )  /\  (
( a  e.  (
Base `  S )  /\  ( F `  a
)  e.  V )  /\  ( b  e.  ( Base `  S
)  /\  ( F `  b )  e.  V
) ) )  -> 
( F `  (
a ( +g  `  S
) b ) )  =  ( ( F `
 a ) ( +g  `  T ) ( F `  b
) ) )
38 simplr 528 . . . . . . . . . . . 12  |-  ( ( ( F  e.  ( S  GrpHom  T )  /\  V  e.  (SubGrp `  T
) )  /\  (
( a  e.  (
Base `  S )  /\  ( F `  a
)  e.  V )  /\  ( b  e.  ( Base `  S
)  /\  ( F `  b )  e.  V
) ) )  ->  V  e.  (SubGrp `  T
) )
39 simprlr 538 . . . . . . . . . . . 12  |-  ( ( ( F  e.  ( S  GrpHom  T )  /\  V  e.  (SubGrp `  T
) )  /\  (
( a  e.  (
Base `  S )  /\  ( F `  a
)  e.  V )  /\  ( b  e.  ( Base `  S
)  /\  ( F `  b )  e.  V
) ) )  -> 
( F `  a
)  e.  V )
40 simprrr 540 . . . . . . . . . . . 12  |-  ( ( ( F  e.  ( S  GrpHom  T )  /\  V  e.  (SubGrp `  T
) )  /\  (
( a  e.  (
Base `  S )  /\  ( F `  a
)  e.  V )  /\  ( b  e.  ( Base `  S
)  /\  ( F `  b )  e.  V
) ) )  -> 
( F `  b
)  e.  V )
4135subgcl 13520 . . . . . . . . . . . 12  |-  ( ( V  e.  (SubGrp `  T )  /\  ( F `  a )  e.  V  /\  ( F `  b )  e.  V )  ->  (
( F `  a
) ( +g  `  T
) ( F `  b ) )  e.  V )
4238, 39, 40, 41syl3anc 1250 . . . . . . . . . . 11  |-  ( ( ( F  e.  ( S  GrpHom  T )  /\  V  e.  (SubGrp `  T
) )  /\  (
( a  e.  (
Base `  S )  /\  ( F `  a
)  e.  V )  /\  ( b  e.  ( Base `  S
)  /\  ( F `  b )  e.  V
) ) )  -> 
( ( F `  a ) ( +g  `  T ) ( F `
 b ) )  e.  V )
4337, 42eqeltrd 2282 . . . . . . . . . 10  |-  ( ( ( F  e.  ( S  GrpHom  T )  /\  V  e.  (SubGrp `  T
) )  /\  (
( a  e.  (
Base `  S )  /\  ( F `  a
)  e.  V )  /\  ( b  e.  ( Base `  S
)  /\  ( F `  b )  e.  V
) ) )  -> 
( F `  (
a ( +g  `  S
) b ) )  e.  V )
44 elpreima 5699 . . . . . . . . . . . 12  |-  ( F  Fn  ( Base `  S
)  ->  ( (
a ( +g  `  S
) b )  e.  ( `' F " V )  <->  ( (
a ( +g  `  S
) b )  e.  ( Base `  S
)  /\  ( F `  ( a ( +g  `  S ) b ) )  e.  V ) ) )
4518, 44syl 14 . . . . . . . . . . 11  |-  ( ( F  e.  ( S 
GrpHom  T )  /\  V  e.  (SubGrp `  T )
)  ->  ( (
a ( +g  `  S
) b )  e.  ( `' F " V )  <->  ( (
a ( +g  `  S
) b )  e.  ( Base `  S
)  /\  ( F `  ( a ( +g  `  S ) b ) )  e.  V ) ) )
4645adantr 276 . . . . . . . . . 10  |-  ( ( ( F  e.  ( S  GrpHom  T )  /\  V  e.  (SubGrp `  T
) )  /\  (
( a  e.  (
Base `  S )  /\  ( F `  a
)  e.  V )  /\  ( b  e.  ( Base `  S
)  /\  ( F `  b )  e.  V
) ) )  -> 
( ( a ( +g  `  S ) b )  e.  ( `' F " V )  <-> 
( ( a ( +g  `  S ) b )  e.  (
Base `  S )  /\  ( F `  (
a ( +g  `  S
) b ) )  e.  V ) ) )
4733, 43, 46mpbir2and 947 . . . . . . . . 9  |-  ( ( ( F  e.  ( S  GrpHom  T )  /\  V  e.  (SubGrp `  T
) )  /\  (
( a  e.  (
Base `  S )  /\  ( F `  a
)  e.  V )  /\  ( b  e.  ( Base `  S
)  /\  ( F `  b )  e.  V
) ) )  -> 
( a ( +g  `  S ) b )  e.  ( `' F " V ) )
4847expr 375 . . . . . . . 8  |-  ( ( ( F  e.  ( S  GrpHom  T )  /\  V  e.  (SubGrp `  T
) )  /\  (
a  e.  ( Base `  S )  /\  ( F `  a )  e.  V ) )  -> 
( ( b  e.  ( Base `  S
)  /\  ( F `  b )  e.  V
)  ->  ( a
( +g  `  S ) b )  e.  ( `' F " V ) ) )
4928, 48sylbid 150 . . . . . . 7  |-  ( ( ( F  e.  ( S  GrpHom  T )  /\  V  e.  (SubGrp `  T
) )  /\  (
a  e.  ( Base `  S )  /\  ( F `  a )  e.  V ) )  -> 
( b  e.  ( `' F " V )  ->  ( a ( +g  `  S ) b )  e.  ( `' F " V ) ) )
5049ralrimiv 2578 . . . . . 6  |-  ( ( ( F  e.  ( S  GrpHom  T )  /\  V  e.  (SubGrp `  T
) )  /\  (
a  e.  ( Base `  S )  /\  ( F `  a )  e.  V ) )  ->  A. b  e.  ( `' F " V ) ( a ( +g  `  S ) b )  e.  ( `' F " V ) )
51 simprl 529 . . . . . . . 8  |-  ( ( ( F  e.  ( S  GrpHom  T )  /\  V  e.  (SubGrp `  T
) )  /\  (
a  e.  ( Base `  S )  /\  ( F `  a )  e.  V ) )  -> 
a  e.  ( Base `  S ) )
52 eqid 2205 . . . . . . . . 9  |-  ( invg `  S )  =  ( invg `  S )
532, 52grpinvcl 13380 . . . . . . . 8  |-  ( ( S  e.  Grp  /\  a  e.  ( Base `  S ) )  -> 
( ( invg `  S ) `  a
)  e.  ( Base `  S ) )
548, 51, 53syl2an2r 595 . . . . . . 7  |-  ( ( ( F  e.  ( S  GrpHom  T )  /\  V  e.  (SubGrp `  T
) )  /\  (
a  e.  ( Base `  S )  /\  ( F `  a )  e.  V ) )  -> 
( ( invg `  S ) `  a
)  e.  ( Base `  S ) )
55 eqid 2205 . . . . . . . . . 10  |-  ( invg `  T )  =  ( invg `  T )
562, 52, 55ghminv 13586 . . . . . . . . 9  |-  ( ( F  e.  ( S 
GrpHom  T )  /\  a  e.  ( Base `  S
) )  ->  ( F `  ( ( invg `  S ) `
 a ) )  =  ( ( invg `  T ) `
 ( F `  a ) ) )
5756ad2ant2r 509 . . . . . . . 8  |-  ( ( ( F  e.  ( S  GrpHom  T )  /\  V  e.  (SubGrp `  T
) )  /\  (
a  e.  ( Base `  S )  /\  ( F `  a )  e.  V ) )  -> 
( F `  (
( invg `  S ) `  a
) )  =  ( ( invg `  T ) `  ( F `  a )
) )
5855subginvcl 13519 . . . . . . . . 9  |-  ( ( V  e.  (SubGrp `  T )  /\  ( F `  a )  e.  V )  ->  (
( invg `  T ) `  ( F `  a )
)  e.  V )
5958ad2ant2l 508 . . . . . . . 8  |-  ( ( ( F  e.  ( S  GrpHom  T )  /\  V  e.  (SubGrp `  T
) )  /\  (
a  e.  ( Base `  S )  /\  ( F `  a )  e.  V ) )  -> 
( ( invg `  T ) `  ( F `  a )
)  e.  V )
6057, 59eqeltrd 2282 . . . . . . 7  |-  ( ( ( F  e.  ( S  GrpHom  T )  /\  V  e.  (SubGrp `  T
) )  /\  (
a  e.  ( Base `  S )  /\  ( F `  a )  e.  V ) )  -> 
( F `  (
( invg `  S ) `  a
) )  e.  V
)
61 elpreima 5699 . . . . . . . . 9  |-  ( F  Fn  ( Base `  S
)  ->  ( (
( invg `  S ) `  a
)  e.  ( `' F " V )  <-> 
( ( ( invg `  S ) `
 a )  e.  ( Base `  S
)  /\  ( F `  ( ( invg `  S ) `  a
) )  e.  V
) ) )
6218, 61syl 14 . . . . . . . 8  |-  ( ( F  e.  ( S 
GrpHom  T )  /\  V  e.  (SubGrp `  T )
)  ->  ( (
( invg `  S ) `  a
)  e.  ( `' F " V )  <-> 
( ( ( invg `  S ) `
 a )  e.  ( Base `  S
)  /\  ( F `  ( ( invg `  S ) `  a
) )  e.  V
) ) )
6362adantr 276 . . . . . . 7  |-  ( ( ( F  e.  ( S  GrpHom  T )  /\  V  e.  (SubGrp `  T
) )  /\  (
a  e.  ( Base `  S )  /\  ( F `  a )  e.  V ) )  -> 
( ( ( invg `  S ) `
 a )  e.  ( `' F " V )  <->  ( (
( invg `  S ) `  a
)  e.  ( Base `  S )  /\  ( F `  ( ( invg `  S ) `
 a ) )  e.  V ) ) )
6454, 60, 63mpbir2and 947 . . . . . 6  |-  ( ( ( F  e.  ( S  GrpHom  T )  /\  V  e.  (SubGrp `  T
) )  /\  (
a  e.  ( Base `  S )  /\  ( F `  a )  e.  V ) )  -> 
( ( invg `  S ) `  a
)  e.  ( `' F " V ) )
6550, 64jca 306 . . . . 5  |-  ( ( ( F  e.  ( S  GrpHom  T )  /\  V  e.  (SubGrp `  T
) )  /\  (
a  e.  ( Base `  S )  /\  ( F `  a )  e.  V ) )  -> 
( A. b  e.  ( `' F " V ) ( a ( +g  `  S
) b )  e.  ( `' F " V )  /\  (
( invg `  S ) `  a
)  e.  ( `' F " V ) ) )
6665ex 115 . . . 4  |-  ( ( F  e.  ( S 
GrpHom  T )  /\  V  e.  (SubGrp `  T )
)  ->  ( (
a  e.  ( Base `  S )  /\  ( F `  a )  e.  V )  ->  ( A. b  e.  ( `' F " V ) ( a ( +g  `  S ) b )  e.  ( `' F " V )  /\  (
( invg `  S ) `  a
)  e.  ( `' F " V ) ) ) )
6725, 66sylbid 150 . . 3  |-  ( ( F  e.  ( S 
GrpHom  T )  /\  V  e.  (SubGrp `  T )
)  ->  ( a  e.  ( `' F " V )  ->  ( A. b  e.  ( `' F " V ) ( a ( +g  `  S ) b )  e.  ( `' F " V )  /\  (
( invg `  S ) `  a
)  e.  ( `' F " V ) ) ) )
6867ralrimiv 2578 . 2  |-  ( ( F  e.  ( S 
GrpHom  T )  /\  V  e.  (SubGrp `  T )
)  ->  A. a  e.  ( `' F " V ) ( A. b  e.  ( `' F " V ) ( a ( +g  `  S
) b )  e.  ( `' F " V )  /\  (
( invg `  S ) `  a
)  e.  ( `' F " V ) ) )
692, 29, 52issubg2m 13525 . . 3  |-  ( S  e.  Grp  ->  (
( `' F " V )  e.  (SubGrp `  S )  <->  ( ( `' F " V ) 
C_  ( Base `  S
)  /\  E. j 
j  e.  ( `' F " V )  /\  A. a  e.  ( `' F " V ) ( A. b  e.  ( `' F " V ) ( a ( +g  `  S
) b )  e.  ( `' F " V )  /\  (
( invg `  S ) `  a
)  e.  ( `' F " V ) ) ) ) )
708, 69syl 14 . 2  |-  ( ( F  e.  ( S 
GrpHom  T )  /\  V  e.  (SubGrp `  T )
)  ->  ( ( `' F " V )  e.  (SubGrp `  S
)  <->  ( ( `' F " V ) 
C_  ( Base `  S
)  /\  E. j 
j  e.  ( `' F " V )  /\  A. a  e.  ( `' F " V ) ( A. b  e.  ( `' F " V ) ( a ( +g  `  S
) b )  e.  ( `' F " V )  /\  (
( invg `  S ) `  a
)  e.  ( `' F " V ) ) ) ) )
716, 23, 68, 70mpbir3and 1183 1  |-  ( ( F  e.  ( S 
GrpHom  T )  /\  V  e.  (SubGrp `  T )
)  ->  ( `' F " V )  e.  (SubGrp `  S )
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    /\ w3a 981    = wceq 1373   E.wex 1515    e. wcel 2176   A.wral 2484    C_ wss 3166   `'ccnv 4674   "cima 4678    Fn wfn 5266   -->wf 5267   ` cfv 5271  (class class class)co 5944   Basecbs 12832   +g cplusg 12909   0gc0g 13088   Grpcgrp 13332   invgcminusg 13333  SubGrpcsubg 13503    GrpHom cghm 13576
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-13 2178  ax-14 2179  ax-ext 2187  ax-coll 4159  ax-sep 4162  ax-pow 4218  ax-pr 4253  ax-un 4480  ax-setind 4585  ax-cnex 8016  ax-resscn 8017  ax-1cn 8018  ax-1re 8019  ax-icn 8020  ax-addcl 8021  ax-addrcl 8022  ax-mulcl 8023  ax-addcom 8025  ax-addass 8027  ax-i2m1 8030  ax-0lt1 8031  ax-0id 8033  ax-rnegex 8034  ax-pre-ltirr 8037  ax-pre-ltadd 8041
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1484  df-sb 1786  df-eu 2057  df-mo 2058  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ne 2377  df-nel 2472  df-ral 2489  df-rex 2490  df-reu 2491  df-rmo 2492  df-rab 2493  df-v 2774  df-sbc 2999  df-csb 3094  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-nul 3461  df-pw 3618  df-sn 3639  df-pr 3640  df-op 3642  df-uni 3851  df-int 3886  df-iun 3929  df-br 4045  df-opab 4106  df-mpt 4107  df-id 4340  df-xp 4681  df-rel 4682  df-cnv 4683  df-co 4684  df-dm 4685  df-rn 4686  df-res 4687  df-ima 4688  df-iota 5232  df-fun 5273  df-fn 5274  df-f 5275  df-f1 5276  df-fo 5277  df-f1o 5278  df-fv 5279  df-riota 5899  df-ov 5947  df-oprab 5948  df-mpo 5949  df-pnf 8109  df-mnf 8110  df-ltxr 8112  df-inn 9037  df-2 9095  df-ndx 12835  df-slot 12836  df-base 12838  df-sets 12839  df-iress 12840  df-plusg 12922  df-0g 13090  df-mgm 13188  df-sgrp 13234  df-mnd 13249  df-grp 13335  df-minusg 13336  df-subg 13506  df-ghm 13577
This theorem is referenced by:  ghmnsgpreima  13605
  Copyright terms: Public domain W3C validator