ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ghmpreima Unicode version

Theorem ghmpreima 13803
Description: The inverse image of a subgroup under a homomorphism. (Contributed by Stefan O'Rear, 31-Dec-2014.)
Assertion
Ref Expression
ghmpreima  |-  ( ( F  e.  ( S 
GrpHom  T )  /\  V  e.  (SubGrp `  T )
)  ->  ( `' F " V )  e.  (SubGrp `  S )
)

Proof of Theorem ghmpreima
Dummy variables  a  b  j are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cnvimass 5091 . . 3  |-  ( `' F " V ) 
C_  dom  F
2 eqid 2229 . . . . 5  |-  ( Base `  S )  =  (
Base `  S )
3 eqid 2229 . . . . 5  |-  ( Base `  T )  =  (
Base `  T )
42, 3ghmf 13784 . . . 4  |-  ( F  e.  ( S  GrpHom  T )  ->  F :
( Base `  S ) --> ( Base `  T )
)
54adantr 276 . . 3  |-  ( ( F  e.  ( S 
GrpHom  T )  /\  V  e.  (SubGrp `  T )
)  ->  F :
( Base `  S ) --> ( Base `  T )
)
61, 5fssdm 5488 . 2  |-  ( ( F  e.  ( S 
GrpHom  T )  /\  V  e.  (SubGrp `  T )
)  ->  ( `' F " V )  C_  ( Base `  S )
)
7 ghmgrp1 13782 . . . . . 6  |-  ( F  e.  ( S  GrpHom  T )  ->  S  e.  Grp )
87adantr 276 . . . . 5  |-  ( ( F  e.  ( S 
GrpHom  T )  /\  V  e.  (SubGrp `  T )
)  ->  S  e.  Grp )
9 eqid 2229 . . . . . 6  |-  ( 0g
`  S )  =  ( 0g `  S
)
102, 9grpidcl 13562 . . . . 5  |-  ( S  e.  Grp  ->  ( 0g `  S )  e.  ( Base `  S
) )
118, 10syl 14 . . . 4  |-  ( ( F  e.  ( S 
GrpHom  T )  /\  V  e.  (SubGrp `  T )
)  ->  ( 0g `  S )  e.  (
Base `  S )
)
12 eqid 2229 . . . . . . 7  |-  ( 0g
`  T )  =  ( 0g `  T
)
139, 12ghmid 13786 . . . . . 6  |-  ( F  e.  ( S  GrpHom  T )  ->  ( F `  ( 0g `  S
) )  =  ( 0g `  T ) )
1413adantr 276 . . . . 5  |-  ( ( F  e.  ( S 
GrpHom  T )  /\  V  e.  (SubGrp `  T )
)  ->  ( F `  ( 0g `  S
) )  =  ( 0g `  T ) )
1512subg0cl 13719 . . . . . 6  |-  ( V  e.  (SubGrp `  T
)  ->  ( 0g `  T )  e.  V
)
1615adantl 277 . . . . 5  |-  ( ( F  e.  ( S 
GrpHom  T )  /\  V  e.  (SubGrp `  T )
)  ->  ( 0g `  T )  e.  V
)
1714, 16eqeltrd 2306 . . . 4  |-  ( ( F  e.  ( S 
GrpHom  T )  /\  V  e.  (SubGrp `  T )
)  ->  ( F `  ( 0g `  S
) )  e.  V
)
185ffnd 5474 . . . . 5  |-  ( ( F  e.  ( S 
GrpHom  T )  /\  V  e.  (SubGrp `  T )
)  ->  F  Fn  ( Base `  S )
)
19 elpreima 5754 . . . . 5  |-  ( F  Fn  ( Base `  S
)  ->  ( ( 0g `  S )  e.  ( `' F " V )  <->  ( ( 0g `  S )  e.  ( Base `  S
)  /\  ( F `  ( 0g `  S
) )  e.  V
) ) )
2018, 19syl 14 . . . 4  |-  ( ( F  e.  ( S 
GrpHom  T )  /\  V  e.  (SubGrp `  T )
)  ->  ( ( 0g `  S )  e.  ( `' F " V )  <->  ( ( 0g `  S )  e.  ( Base `  S
)  /\  ( F `  ( 0g `  S
) )  e.  V
) ) )
2111, 17, 20mpbir2and 950 . . 3  |-  ( ( F  e.  ( S 
GrpHom  T )  /\  V  e.  (SubGrp `  T )
)  ->  ( 0g `  S )  e.  ( `' F " V ) )
22 elex2 2816 . . 3  |-  ( ( 0g `  S )  e.  ( `' F " V )  ->  E. j 
j  e.  ( `' F " V ) )
2321, 22syl 14 . 2  |-  ( ( F  e.  ( S 
GrpHom  T )  /\  V  e.  (SubGrp `  T )
)  ->  E. j 
j  e.  ( `' F " V ) )
24 elpreima 5754 . . . . 5  |-  ( F  Fn  ( Base `  S
)  ->  ( a  e.  ( `' F " V )  <->  ( a  e.  ( Base `  S
)  /\  ( F `  a )  e.  V
) ) )
2518, 24syl 14 . . . 4  |-  ( ( F  e.  ( S 
GrpHom  T )  /\  V  e.  (SubGrp `  T )
)  ->  ( a  e.  ( `' F " V )  <->  ( a  e.  ( Base `  S
)  /\  ( F `  a )  e.  V
) ) )
26 elpreima 5754 . . . . . . . . . 10  |-  ( F  Fn  ( Base `  S
)  ->  ( b  e.  ( `' F " V )  <->  ( b  e.  ( Base `  S
)  /\  ( F `  b )  e.  V
) ) )
2718, 26syl 14 . . . . . . . . 9  |-  ( ( F  e.  ( S 
GrpHom  T )  /\  V  e.  (SubGrp `  T )
)  ->  ( b  e.  ( `' F " V )  <->  ( b  e.  ( Base `  S
)  /\  ( F `  b )  e.  V
) ) )
2827adantr 276 . . . . . . . 8  |-  ( ( ( F  e.  ( S  GrpHom  T )  /\  V  e.  (SubGrp `  T
) )  /\  (
a  e.  ( Base `  S )  /\  ( F `  a )  e.  V ) )  -> 
( b  e.  ( `' F " V )  <-> 
( b  e.  (
Base `  S )  /\  ( F `  b
)  e.  V ) ) )
29 eqid 2229 . . . . . . . . . . 11  |-  ( +g  `  S )  =  ( +g  `  S )
307ad2antrr 488 . . . . . . . . . . 11  |-  ( ( ( F  e.  ( S  GrpHom  T )  /\  V  e.  (SubGrp `  T
) )  /\  (
( a  e.  (
Base `  S )  /\  ( F `  a
)  e.  V )  /\  ( b  e.  ( Base `  S
)  /\  ( F `  b )  e.  V
) ) )  ->  S  e.  Grp )
31 simprll 537 . . . . . . . . . . 11  |-  ( ( ( F  e.  ( S  GrpHom  T )  /\  V  e.  (SubGrp `  T
) )  /\  (
( a  e.  (
Base `  S )  /\  ( F `  a
)  e.  V )  /\  ( b  e.  ( Base `  S
)  /\  ( F `  b )  e.  V
) ) )  -> 
a  e.  ( Base `  S ) )
32 simprrl 539 . . . . . . . . . . 11  |-  ( ( ( F  e.  ( S  GrpHom  T )  /\  V  e.  (SubGrp `  T
) )  /\  (
( a  e.  (
Base `  S )  /\  ( F `  a
)  e.  V )  /\  ( b  e.  ( Base `  S
)  /\  ( F `  b )  e.  V
) ) )  -> 
b  e.  ( Base `  S ) )
332, 29, 30, 31, 32grpcld 13547 . . . . . . . . . 10  |-  ( ( ( F  e.  ( S  GrpHom  T )  /\  V  e.  (SubGrp `  T
) )  /\  (
( a  e.  (
Base `  S )  /\  ( F `  a
)  e.  V )  /\  ( b  e.  ( Base `  S
)  /\  ( F `  b )  e.  V
) ) )  -> 
( a ( +g  `  S ) b )  e.  ( Base `  S
) )
34 simpll 527 . . . . . . . . . . . 12  |-  ( ( ( F  e.  ( S  GrpHom  T )  /\  V  e.  (SubGrp `  T
) )  /\  (
( a  e.  (
Base `  S )  /\  ( F `  a
)  e.  V )  /\  ( b  e.  ( Base `  S
)  /\  ( F `  b )  e.  V
) ) )  ->  F  e.  ( S  GrpHom  T ) )
35 eqid 2229 . . . . . . . . . . . . 13  |-  ( +g  `  T )  =  ( +g  `  T )
362, 29, 35ghmlin 13785 . . . . . . . . . . . 12  |-  ( ( F  e.  ( S 
GrpHom  T )  /\  a  e.  ( Base `  S
)  /\  b  e.  ( Base `  S )
)  ->  ( F `  ( a ( +g  `  S ) b ) )  =  ( ( F `  a ) ( +g  `  T
) ( F `  b ) ) )
3734, 31, 32, 36syl3anc 1271 . . . . . . . . . . 11  |-  ( ( ( F  e.  ( S  GrpHom  T )  /\  V  e.  (SubGrp `  T
) )  /\  (
( a  e.  (
Base `  S )  /\  ( F `  a
)  e.  V )  /\  ( b  e.  ( Base `  S
)  /\  ( F `  b )  e.  V
) ) )  -> 
( F `  (
a ( +g  `  S
) b ) )  =  ( ( F `
 a ) ( +g  `  T ) ( F `  b
) ) )
38 simplr 528 . . . . . . . . . . . 12  |-  ( ( ( F  e.  ( S  GrpHom  T )  /\  V  e.  (SubGrp `  T
) )  /\  (
( a  e.  (
Base `  S )  /\  ( F `  a
)  e.  V )  /\  ( b  e.  ( Base `  S
)  /\  ( F `  b )  e.  V
) ) )  ->  V  e.  (SubGrp `  T
) )
39 simprlr 538 . . . . . . . . . . . 12  |-  ( ( ( F  e.  ( S  GrpHom  T )  /\  V  e.  (SubGrp `  T
) )  /\  (
( a  e.  (
Base `  S )  /\  ( F `  a
)  e.  V )  /\  ( b  e.  ( Base `  S
)  /\  ( F `  b )  e.  V
) ) )  -> 
( F `  a
)  e.  V )
40 simprrr 540 . . . . . . . . . . . 12  |-  ( ( ( F  e.  ( S  GrpHom  T )  /\  V  e.  (SubGrp `  T
) )  /\  (
( a  e.  (
Base `  S )  /\  ( F `  a
)  e.  V )  /\  ( b  e.  ( Base `  S
)  /\  ( F `  b )  e.  V
) ) )  -> 
( F `  b
)  e.  V )
4135subgcl 13721 . . . . . . . . . . . 12  |-  ( ( V  e.  (SubGrp `  T )  /\  ( F `  a )  e.  V  /\  ( F `  b )  e.  V )  ->  (
( F `  a
) ( +g  `  T
) ( F `  b ) )  e.  V )
4238, 39, 40, 41syl3anc 1271 . . . . . . . . . . 11  |-  ( ( ( F  e.  ( S  GrpHom  T )  /\  V  e.  (SubGrp `  T
) )  /\  (
( a  e.  (
Base `  S )  /\  ( F `  a
)  e.  V )  /\  ( b  e.  ( Base `  S
)  /\  ( F `  b )  e.  V
) ) )  -> 
( ( F `  a ) ( +g  `  T ) ( F `
 b ) )  e.  V )
4337, 42eqeltrd 2306 . . . . . . . . . 10  |-  ( ( ( F  e.  ( S  GrpHom  T )  /\  V  e.  (SubGrp `  T
) )  /\  (
( a  e.  (
Base `  S )  /\  ( F `  a
)  e.  V )  /\  ( b  e.  ( Base `  S
)  /\  ( F `  b )  e.  V
) ) )  -> 
( F `  (
a ( +g  `  S
) b ) )  e.  V )
44 elpreima 5754 . . . . . . . . . . . 12  |-  ( F  Fn  ( Base `  S
)  ->  ( (
a ( +g  `  S
) b )  e.  ( `' F " V )  <->  ( (
a ( +g  `  S
) b )  e.  ( Base `  S
)  /\  ( F `  ( a ( +g  `  S ) b ) )  e.  V ) ) )
4518, 44syl 14 . . . . . . . . . . 11  |-  ( ( F  e.  ( S 
GrpHom  T )  /\  V  e.  (SubGrp `  T )
)  ->  ( (
a ( +g  `  S
) b )  e.  ( `' F " V )  <->  ( (
a ( +g  `  S
) b )  e.  ( Base `  S
)  /\  ( F `  ( a ( +g  `  S ) b ) )  e.  V ) ) )
4645adantr 276 . . . . . . . . . 10  |-  ( ( ( F  e.  ( S  GrpHom  T )  /\  V  e.  (SubGrp `  T
) )  /\  (
( a  e.  (
Base `  S )  /\  ( F `  a
)  e.  V )  /\  ( b  e.  ( Base `  S
)  /\  ( F `  b )  e.  V
) ) )  -> 
( ( a ( +g  `  S ) b )  e.  ( `' F " V )  <-> 
( ( a ( +g  `  S ) b )  e.  (
Base `  S )  /\  ( F `  (
a ( +g  `  S
) b ) )  e.  V ) ) )
4733, 43, 46mpbir2and 950 . . . . . . . . 9  |-  ( ( ( F  e.  ( S  GrpHom  T )  /\  V  e.  (SubGrp `  T
) )  /\  (
( a  e.  (
Base `  S )  /\  ( F `  a
)  e.  V )  /\  ( b  e.  ( Base `  S
)  /\  ( F `  b )  e.  V
) ) )  -> 
( a ( +g  `  S ) b )  e.  ( `' F " V ) )
4847expr 375 . . . . . . . 8  |-  ( ( ( F  e.  ( S  GrpHom  T )  /\  V  e.  (SubGrp `  T
) )  /\  (
a  e.  ( Base `  S )  /\  ( F `  a )  e.  V ) )  -> 
( ( b  e.  ( Base `  S
)  /\  ( F `  b )  e.  V
)  ->  ( a
( +g  `  S ) b )  e.  ( `' F " V ) ) )
4928, 48sylbid 150 . . . . . . 7  |-  ( ( ( F  e.  ( S  GrpHom  T )  /\  V  e.  (SubGrp `  T
) )  /\  (
a  e.  ( Base `  S )  /\  ( F `  a )  e.  V ) )  -> 
( b  e.  ( `' F " V )  ->  ( a ( +g  `  S ) b )  e.  ( `' F " V ) ) )
5049ralrimiv 2602 . . . . . 6  |-  ( ( ( F  e.  ( S  GrpHom  T )  /\  V  e.  (SubGrp `  T
) )  /\  (
a  e.  ( Base `  S )  /\  ( F `  a )  e.  V ) )  ->  A. b  e.  ( `' F " V ) ( a ( +g  `  S ) b )  e.  ( `' F " V ) )
51 simprl 529 . . . . . . . 8  |-  ( ( ( F  e.  ( S  GrpHom  T )  /\  V  e.  (SubGrp `  T
) )  /\  (
a  e.  ( Base `  S )  /\  ( F `  a )  e.  V ) )  -> 
a  e.  ( Base `  S ) )
52 eqid 2229 . . . . . . . . 9  |-  ( invg `  S )  =  ( invg `  S )
532, 52grpinvcl 13581 . . . . . . . 8  |-  ( ( S  e.  Grp  /\  a  e.  ( Base `  S ) )  -> 
( ( invg `  S ) `  a
)  e.  ( Base `  S ) )
548, 51, 53syl2an2r 597 . . . . . . 7  |-  ( ( ( F  e.  ( S  GrpHom  T )  /\  V  e.  (SubGrp `  T
) )  /\  (
a  e.  ( Base `  S )  /\  ( F `  a )  e.  V ) )  -> 
( ( invg `  S ) `  a
)  e.  ( Base `  S ) )
55 eqid 2229 . . . . . . . . . 10  |-  ( invg `  T )  =  ( invg `  T )
562, 52, 55ghminv 13787 . . . . . . . . 9  |-  ( ( F  e.  ( S 
GrpHom  T )  /\  a  e.  ( Base `  S
) )  ->  ( F `  ( ( invg `  S ) `
 a ) )  =  ( ( invg `  T ) `
 ( F `  a ) ) )
5756ad2ant2r 509 . . . . . . . 8  |-  ( ( ( F  e.  ( S  GrpHom  T )  /\  V  e.  (SubGrp `  T
) )  /\  (
a  e.  ( Base `  S )  /\  ( F `  a )  e.  V ) )  -> 
( F `  (
( invg `  S ) `  a
) )  =  ( ( invg `  T ) `  ( F `  a )
) )
5855subginvcl 13720 . . . . . . . . 9  |-  ( ( V  e.  (SubGrp `  T )  /\  ( F `  a )  e.  V )  ->  (
( invg `  T ) `  ( F `  a )
)  e.  V )
5958ad2ant2l 508 . . . . . . . 8  |-  ( ( ( F  e.  ( S  GrpHom  T )  /\  V  e.  (SubGrp `  T
) )  /\  (
a  e.  ( Base `  S )  /\  ( F `  a )  e.  V ) )  -> 
( ( invg `  T ) `  ( F `  a )
)  e.  V )
6057, 59eqeltrd 2306 . . . . . . 7  |-  ( ( ( F  e.  ( S  GrpHom  T )  /\  V  e.  (SubGrp `  T
) )  /\  (
a  e.  ( Base `  S )  /\  ( F `  a )  e.  V ) )  -> 
( F `  (
( invg `  S ) `  a
) )  e.  V
)
61 elpreima 5754 . . . . . . . . 9  |-  ( F  Fn  ( Base `  S
)  ->  ( (
( invg `  S ) `  a
)  e.  ( `' F " V )  <-> 
( ( ( invg `  S ) `
 a )  e.  ( Base `  S
)  /\  ( F `  ( ( invg `  S ) `  a
) )  e.  V
) ) )
6218, 61syl 14 . . . . . . . 8  |-  ( ( F  e.  ( S 
GrpHom  T )  /\  V  e.  (SubGrp `  T )
)  ->  ( (
( invg `  S ) `  a
)  e.  ( `' F " V )  <-> 
( ( ( invg `  S ) `
 a )  e.  ( Base `  S
)  /\  ( F `  ( ( invg `  S ) `  a
) )  e.  V
) ) )
6362adantr 276 . . . . . . 7  |-  ( ( ( F  e.  ( S  GrpHom  T )  /\  V  e.  (SubGrp `  T
) )  /\  (
a  e.  ( Base `  S )  /\  ( F `  a )  e.  V ) )  -> 
( ( ( invg `  S ) `
 a )  e.  ( `' F " V )  <->  ( (
( invg `  S ) `  a
)  e.  ( Base `  S )  /\  ( F `  ( ( invg `  S ) `
 a ) )  e.  V ) ) )
6454, 60, 63mpbir2and 950 . . . . . 6  |-  ( ( ( F  e.  ( S  GrpHom  T )  /\  V  e.  (SubGrp `  T
) )  /\  (
a  e.  ( Base `  S )  /\  ( F `  a )  e.  V ) )  -> 
( ( invg `  S ) `  a
)  e.  ( `' F " V ) )
6550, 64jca 306 . . . . 5  |-  ( ( ( F  e.  ( S  GrpHom  T )  /\  V  e.  (SubGrp `  T
) )  /\  (
a  e.  ( Base `  S )  /\  ( F `  a )  e.  V ) )  -> 
( A. b  e.  ( `' F " V ) ( a ( +g  `  S
) b )  e.  ( `' F " V )  /\  (
( invg `  S ) `  a
)  e.  ( `' F " V ) ) )
6665ex 115 . . . 4  |-  ( ( F  e.  ( S 
GrpHom  T )  /\  V  e.  (SubGrp `  T )
)  ->  ( (
a  e.  ( Base `  S )  /\  ( F `  a )  e.  V )  ->  ( A. b  e.  ( `' F " V ) ( a ( +g  `  S ) b )  e.  ( `' F " V )  /\  (
( invg `  S ) `  a
)  e.  ( `' F " V ) ) ) )
6725, 66sylbid 150 . . 3  |-  ( ( F  e.  ( S 
GrpHom  T )  /\  V  e.  (SubGrp `  T )
)  ->  ( a  e.  ( `' F " V )  ->  ( A. b  e.  ( `' F " V ) ( a ( +g  `  S ) b )  e.  ( `' F " V )  /\  (
( invg `  S ) `  a
)  e.  ( `' F " V ) ) ) )
6867ralrimiv 2602 . 2  |-  ( ( F  e.  ( S 
GrpHom  T )  /\  V  e.  (SubGrp `  T )
)  ->  A. a  e.  ( `' F " V ) ( A. b  e.  ( `' F " V ) ( a ( +g  `  S
) b )  e.  ( `' F " V )  /\  (
( invg `  S ) `  a
)  e.  ( `' F " V ) ) )
692, 29, 52issubg2m 13726 . . 3  |-  ( S  e.  Grp  ->  (
( `' F " V )  e.  (SubGrp `  S )  <->  ( ( `' F " V ) 
C_  ( Base `  S
)  /\  E. j 
j  e.  ( `' F " V )  /\  A. a  e.  ( `' F " V ) ( A. b  e.  ( `' F " V ) ( a ( +g  `  S
) b )  e.  ( `' F " V )  /\  (
( invg `  S ) `  a
)  e.  ( `' F " V ) ) ) ) )
708, 69syl 14 . 2  |-  ( ( F  e.  ( S 
GrpHom  T )  /\  V  e.  (SubGrp `  T )
)  ->  ( ( `' F " V )  e.  (SubGrp `  S
)  <->  ( ( `' F " V ) 
C_  ( Base `  S
)  /\  E. j 
j  e.  ( `' F " V )  /\  A. a  e.  ( `' F " V ) ( A. b  e.  ( `' F " V ) ( a ( +g  `  S
) b )  e.  ( `' F " V )  /\  (
( invg `  S ) `  a
)  e.  ( `' F " V ) ) ) ) )
716, 23, 68, 70mpbir3and 1204 1  |-  ( ( F  e.  ( S 
GrpHom  T )  /\  V  e.  (SubGrp `  T )
)  ->  ( `' F " V )  e.  (SubGrp `  S )
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    /\ w3a 1002    = wceq 1395   E.wex 1538    e. wcel 2200   A.wral 2508    C_ wss 3197   `'ccnv 4718   "cima 4722    Fn wfn 5313   -->wf 5314   ` cfv 5318  (class class class)co 6001   Basecbs 13032   +g cplusg 13110   0gc0g 13289   Grpcgrp 13533   invgcminusg 13534  SubGrpcsubg 13704    GrpHom cghm 13777
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-coll 4199  ax-sep 4202  ax-pow 4258  ax-pr 4293  ax-un 4524  ax-setind 4629  ax-cnex 8090  ax-resscn 8091  ax-1cn 8092  ax-1re 8093  ax-icn 8094  ax-addcl 8095  ax-addrcl 8096  ax-mulcl 8097  ax-addcom 8099  ax-addass 8101  ax-i2m1 8104  ax-0lt1 8105  ax-0id 8107  ax-rnegex 8108  ax-pre-ltirr 8111  ax-pre-ltadd 8115
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-nel 2496  df-ral 2513  df-rex 2514  df-reu 2515  df-rmo 2516  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3889  df-int 3924  df-iun 3967  df-br 4084  df-opab 4146  df-mpt 4147  df-id 4384  df-xp 4725  df-rel 4726  df-cnv 4727  df-co 4728  df-dm 4729  df-rn 4730  df-res 4731  df-ima 4732  df-iota 5278  df-fun 5320  df-fn 5321  df-f 5322  df-f1 5323  df-fo 5324  df-f1o 5325  df-fv 5326  df-riota 5954  df-ov 6004  df-oprab 6005  df-mpo 6006  df-pnf 8183  df-mnf 8184  df-ltxr 8186  df-inn 9111  df-2 9169  df-ndx 13035  df-slot 13036  df-base 13038  df-sets 13039  df-iress 13040  df-plusg 13123  df-0g 13291  df-mgm 13389  df-sgrp 13435  df-mnd 13450  df-grp 13536  df-minusg 13537  df-subg 13707  df-ghm 13778
This theorem is referenced by:  ghmnsgpreima  13806
  Copyright terms: Public domain W3C validator