ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cofunexg GIF version

Theorem cofunexg 6112
Description: Existence of a composition when the first member is a function. (Contributed by NM, 8-Oct-2007.)
Assertion
Ref Expression
cofunexg ((Fun 𝐴𝐵𝐶) → (𝐴𝐵) ∈ V)

Proof of Theorem cofunexg
StepHypRef Expression
1 relco 5129 . . 3 Rel (𝐴𝐵)
2 relssdmrn 5151 . . 3 (Rel (𝐴𝐵) → (𝐴𝐵) ⊆ (dom (𝐴𝐵) × ran (𝐴𝐵)))
31, 2ax-mp 5 . 2 (𝐴𝐵) ⊆ (dom (𝐴𝐵) × ran (𝐴𝐵))
4 dmcoss 4898 . . . . 5 dom (𝐴𝐵) ⊆ dom 𝐵
5 dmexg 4893 . . . . 5 (𝐵𝐶 → dom 𝐵 ∈ V)
6 ssexg 4144 . . . . 5 ((dom (𝐴𝐵) ⊆ dom 𝐵 ∧ dom 𝐵 ∈ V) → dom (𝐴𝐵) ∈ V)
74, 5, 6sylancr 414 . . . 4 (𝐵𝐶 → dom (𝐴𝐵) ∈ V)
87adantl 277 . . 3 ((Fun 𝐴𝐵𝐶) → dom (𝐴𝐵) ∈ V)
9 rnco 5137 . . . 4 ran (𝐴𝐵) = ran (𝐴 ↾ ran 𝐵)
10 rnexg 4894 . . . . . 6 (𝐵𝐶 → ran 𝐵 ∈ V)
11 resfunexg 5739 . . . . . 6 ((Fun 𝐴 ∧ ran 𝐵 ∈ V) → (𝐴 ↾ ran 𝐵) ∈ V)
1210, 11sylan2 286 . . . . 5 ((Fun 𝐴𝐵𝐶) → (𝐴 ↾ ran 𝐵) ∈ V)
13 rnexg 4894 . . . . 5 ((𝐴 ↾ ran 𝐵) ∈ V → ran (𝐴 ↾ ran 𝐵) ∈ V)
1412, 13syl 14 . . . 4 ((Fun 𝐴𝐵𝐶) → ran (𝐴 ↾ ran 𝐵) ∈ V)
159, 14eqeltrid 2264 . . 3 ((Fun 𝐴𝐵𝐶) → ran (𝐴𝐵) ∈ V)
16 xpexg 4742 . . 3 ((dom (𝐴𝐵) ∈ V ∧ ran (𝐴𝐵) ∈ V) → (dom (𝐴𝐵) × ran (𝐴𝐵)) ∈ V)
178, 15, 16syl2anc 411 . 2 ((Fun 𝐴𝐵𝐶) → (dom (𝐴𝐵) × ran (𝐴𝐵)) ∈ V)
18 ssexg 4144 . 2 (((𝐴𝐵) ⊆ (dom (𝐴𝐵) × ran (𝐴𝐵)) ∧ (dom (𝐴𝐵) × ran (𝐴𝐵)) ∈ V) → (𝐴𝐵) ∈ V)
193, 17, 18sylancr 414 1 ((Fun 𝐴𝐵𝐶) → (𝐴𝐵) ∈ V)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wcel 2148  Vcvv 2739  wss 3131   × cxp 4626  dom cdm 4628  ran crn 4629  cres 4630  ccom 4632  Rel wrel 4633  Fun wfun 5212
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-coll 4120  ax-sep 4123  ax-pow 4176  ax-pr 4211  ax-un 4435
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ral 2460  df-rex 2461  df-reu 2462  df-rab 2464  df-v 2741  df-sbc 2965  df-csb 3060  df-un 3135  df-in 3137  df-ss 3144  df-pw 3579  df-sn 3600  df-pr 3601  df-op 3603  df-uni 3812  df-iun 3890  df-br 4006  df-opab 4067  df-mpt 4068  df-id 4295  df-xp 4634  df-rel 4635  df-cnv 4636  df-co 4637  df-dm 4638  df-rn 4639  df-res 4640  df-ima 4641  df-iota 5180  df-fun 5220  df-fn 5221  df-f 5222  df-f1 5223  df-fo 5224  df-f1o 5225  df-fv 5226
This theorem is referenced by:  cofunex2g  6113  ctm  7110  ctssdclemr  7113  prdsex  12723
  Copyright terms: Public domain W3C validator