![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > cofunexg | GIF version |
Description: Existence of a composition when the first member is a function. (Contributed by NM, 8-Oct-2007.) |
Ref | Expression |
---|---|
cofunexg | ⊢ ((Fun 𝐴 ∧ 𝐵 ∈ 𝐶) → (𝐴 ∘ 𝐵) ∈ V) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | relco 5165 | . . 3 ⊢ Rel (𝐴 ∘ 𝐵) | |
2 | relssdmrn 5187 | . . 3 ⊢ (Rel (𝐴 ∘ 𝐵) → (𝐴 ∘ 𝐵) ⊆ (dom (𝐴 ∘ 𝐵) × ran (𝐴 ∘ 𝐵))) | |
3 | 1, 2 | ax-mp 5 | . 2 ⊢ (𝐴 ∘ 𝐵) ⊆ (dom (𝐴 ∘ 𝐵) × ran (𝐴 ∘ 𝐵)) |
4 | dmcoss 4932 | . . . . 5 ⊢ dom (𝐴 ∘ 𝐵) ⊆ dom 𝐵 | |
5 | dmexg 4927 | . . . . 5 ⊢ (𝐵 ∈ 𝐶 → dom 𝐵 ∈ V) | |
6 | ssexg 4169 | . . . . 5 ⊢ ((dom (𝐴 ∘ 𝐵) ⊆ dom 𝐵 ∧ dom 𝐵 ∈ V) → dom (𝐴 ∘ 𝐵) ∈ V) | |
7 | 4, 5, 6 | sylancr 414 | . . . 4 ⊢ (𝐵 ∈ 𝐶 → dom (𝐴 ∘ 𝐵) ∈ V) |
8 | 7 | adantl 277 | . . 3 ⊢ ((Fun 𝐴 ∧ 𝐵 ∈ 𝐶) → dom (𝐴 ∘ 𝐵) ∈ V) |
9 | rnco 5173 | . . . 4 ⊢ ran (𝐴 ∘ 𝐵) = ran (𝐴 ↾ ran 𝐵) | |
10 | rnexg 4928 | . . . . . 6 ⊢ (𝐵 ∈ 𝐶 → ran 𝐵 ∈ V) | |
11 | resfunexg 5780 | . . . . . 6 ⊢ ((Fun 𝐴 ∧ ran 𝐵 ∈ V) → (𝐴 ↾ ran 𝐵) ∈ V) | |
12 | 10, 11 | sylan2 286 | . . . . 5 ⊢ ((Fun 𝐴 ∧ 𝐵 ∈ 𝐶) → (𝐴 ↾ ran 𝐵) ∈ V) |
13 | rnexg 4928 | . . . . 5 ⊢ ((𝐴 ↾ ran 𝐵) ∈ V → ran (𝐴 ↾ ran 𝐵) ∈ V) | |
14 | 12, 13 | syl 14 | . . . 4 ⊢ ((Fun 𝐴 ∧ 𝐵 ∈ 𝐶) → ran (𝐴 ↾ ran 𝐵) ∈ V) |
15 | 9, 14 | eqeltrid 2280 | . . 3 ⊢ ((Fun 𝐴 ∧ 𝐵 ∈ 𝐶) → ran (𝐴 ∘ 𝐵) ∈ V) |
16 | xpexg 4774 | . . 3 ⊢ ((dom (𝐴 ∘ 𝐵) ∈ V ∧ ran (𝐴 ∘ 𝐵) ∈ V) → (dom (𝐴 ∘ 𝐵) × ran (𝐴 ∘ 𝐵)) ∈ V) | |
17 | 8, 15, 16 | syl2anc 411 | . 2 ⊢ ((Fun 𝐴 ∧ 𝐵 ∈ 𝐶) → (dom (𝐴 ∘ 𝐵) × ran (𝐴 ∘ 𝐵)) ∈ V) |
18 | ssexg 4169 | . 2 ⊢ (((𝐴 ∘ 𝐵) ⊆ (dom (𝐴 ∘ 𝐵) × ran (𝐴 ∘ 𝐵)) ∧ (dom (𝐴 ∘ 𝐵) × ran (𝐴 ∘ 𝐵)) ∈ V) → (𝐴 ∘ 𝐵) ∈ V) | |
19 | 3, 17, 18 | sylancr 414 | 1 ⊢ ((Fun 𝐴 ∧ 𝐵 ∈ 𝐶) → (𝐴 ∘ 𝐵) ∈ V) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 ∈ wcel 2164 Vcvv 2760 ⊆ wss 3154 × cxp 4658 dom cdm 4660 ran crn 4661 ↾ cres 4662 ∘ ccom 4664 Rel wrel 4665 Fun wfun 5249 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-13 2166 ax-14 2167 ax-ext 2175 ax-coll 4145 ax-sep 4148 ax-pow 4204 ax-pr 4239 ax-un 4465 |
This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1472 df-sb 1774 df-eu 2045 df-mo 2046 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ral 2477 df-rex 2478 df-reu 2479 df-rab 2481 df-v 2762 df-sbc 2987 df-csb 3082 df-un 3158 df-in 3160 df-ss 3167 df-pw 3604 df-sn 3625 df-pr 3626 df-op 3628 df-uni 3837 df-iun 3915 df-br 4031 df-opab 4092 df-mpt 4093 df-id 4325 df-xp 4666 df-rel 4667 df-cnv 4668 df-co 4669 df-dm 4670 df-rn 4671 df-res 4672 df-ima 4673 df-iota 5216 df-fun 5257 df-fn 5258 df-f 5259 df-f1 5260 df-fo 5261 df-f1o 5262 df-fv 5263 |
This theorem is referenced by: cofunex2g 6164 ctm 7170 ctssdclemr 7173 prdsex 12883 |
Copyright terms: Public domain | W3C validator |