Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > cofunexg | GIF version |
Description: Existence of a composition when the first member is a function. (Contributed by NM, 8-Oct-2007.) |
Ref | Expression |
---|---|
cofunexg | ⊢ ((Fun 𝐴 ∧ 𝐵 ∈ 𝐶) → (𝐴 ∘ 𝐵) ∈ V) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | relco 5102 | . . 3 ⊢ Rel (𝐴 ∘ 𝐵) | |
2 | relssdmrn 5124 | . . 3 ⊢ (Rel (𝐴 ∘ 𝐵) → (𝐴 ∘ 𝐵) ⊆ (dom (𝐴 ∘ 𝐵) × ran (𝐴 ∘ 𝐵))) | |
3 | 1, 2 | ax-mp 5 | . 2 ⊢ (𝐴 ∘ 𝐵) ⊆ (dom (𝐴 ∘ 𝐵) × ran (𝐴 ∘ 𝐵)) |
4 | dmcoss 4873 | . . . . 5 ⊢ dom (𝐴 ∘ 𝐵) ⊆ dom 𝐵 | |
5 | dmexg 4868 | . . . . 5 ⊢ (𝐵 ∈ 𝐶 → dom 𝐵 ∈ V) | |
6 | ssexg 4121 | . . . . 5 ⊢ ((dom (𝐴 ∘ 𝐵) ⊆ dom 𝐵 ∧ dom 𝐵 ∈ V) → dom (𝐴 ∘ 𝐵) ∈ V) | |
7 | 4, 5, 6 | sylancr 411 | . . . 4 ⊢ (𝐵 ∈ 𝐶 → dom (𝐴 ∘ 𝐵) ∈ V) |
8 | 7 | adantl 275 | . . 3 ⊢ ((Fun 𝐴 ∧ 𝐵 ∈ 𝐶) → dom (𝐴 ∘ 𝐵) ∈ V) |
9 | rnco 5110 | . . . 4 ⊢ ran (𝐴 ∘ 𝐵) = ran (𝐴 ↾ ran 𝐵) | |
10 | rnexg 4869 | . . . . . 6 ⊢ (𝐵 ∈ 𝐶 → ran 𝐵 ∈ V) | |
11 | resfunexg 5706 | . . . . . 6 ⊢ ((Fun 𝐴 ∧ ran 𝐵 ∈ V) → (𝐴 ↾ ran 𝐵) ∈ V) | |
12 | 10, 11 | sylan2 284 | . . . . 5 ⊢ ((Fun 𝐴 ∧ 𝐵 ∈ 𝐶) → (𝐴 ↾ ran 𝐵) ∈ V) |
13 | rnexg 4869 | . . . . 5 ⊢ ((𝐴 ↾ ran 𝐵) ∈ V → ran (𝐴 ↾ ran 𝐵) ∈ V) | |
14 | 12, 13 | syl 14 | . . . 4 ⊢ ((Fun 𝐴 ∧ 𝐵 ∈ 𝐶) → ran (𝐴 ↾ ran 𝐵) ∈ V) |
15 | 9, 14 | eqeltrid 2253 | . . 3 ⊢ ((Fun 𝐴 ∧ 𝐵 ∈ 𝐶) → ran (𝐴 ∘ 𝐵) ∈ V) |
16 | xpexg 4718 | . . 3 ⊢ ((dom (𝐴 ∘ 𝐵) ∈ V ∧ ran (𝐴 ∘ 𝐵) ∈ V) → (dom (𝐴 ∘ 𝐵) × ran (𝐴 ∘ 𝐵)) ∈ V) | |
17 | 8, 15, 16 | syl2anc 409 | . 2 ⊢ ((Fun 𝐴 ∧ 𝐵 ∈ 𝐶) → (dom (𝐴 ∘ 𝐵) × ran (𝐴 ∘ 𝐵)) ∈ V) |
18 | ssexg 4121 | . 2 ⊢ (((𝐴 ∘ 𝐵) ⊆ (dom (𝐴 ∘ 𝐵) × ran (𝐴 ∘ 𝐵)) ∧ (dom (𝐴 ∘ 𝐵) × ran (𝐴 ∘ 𝐵)) ∈ V) → (𝐴 ∘ 𝐵) ∈ V) | |
19 | 3, 17, 18 | sylancr 411 | 1 ⊢ ((Fun 𝐴 ∧ 𝐵 ∈ 𝐶) → (𝐴 ∘ 𝐵) ∈ V) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 ∈ wcel 2136 Vcvv 2726 ⊆ wss 3116 × cxp 4602 dom cdm 4604 ran crn 4605 ↾ cres 4606 ∘ ccom 4608 Rel wrel 4609 Fun wfun 5182 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-13 2138 ax-14 2139 ax-ext 2147 ax-coll 4097 ax-sep 4100 ax-pow 4153 ax-pr 4187 ax-un 4411 |
This theorem depends on definitions: df-bi 116 df-3an 970 df-tru 1346 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ral 2449 df-rex 2450 df-reu 2451 df-rab 2453 df-v 2728 df-sbc 2952 df-csb 3046 df-un 3120 df-in 3122 df-ss 3129 df-pw 3561 df-sn 3582 df-pr 3583 df-op 3585 df-uni 3790 df-iun 3868 df-br 3983 df-opab 4044 df-mpt 4045 df-id 4271 df-xp 4610 df-rel 4611 df-cnv 4612 df-co 4613 df-dm 4614 df-rn 4615 df-res 4616 df-ima 4617 df-iota 5153 df-fun 5190 df-fn 5191 df-f 5192 df-f1 5193 df-fo 5194 df-f1o 5195 df-fv 5196 |
This theorem is referenced by: cofunex2g 6078 ctm 7074 ctssdclemr 7077 |
Copyright terms: Public domain | W3C validator |