ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cvg1nlemf Unicode version

Theorem cvg1nlemf 10925
Description: Lemma for cvg1n 10928. The modified sequence  G is a sequence. (Contributed by Jim Kingdon, 1-Aug-2021.)
Hypotheses
Ref Expression
cvg1n.f  |-  ( ph  ->  F : NN --> RR )
cvg1n.c  |-  ( ph  ->  C  e.  RR+ )
cvg1n.cau  |-  ( ph  ->  A. n  e.  NN  A. k  e.  ( ZZ>= `  n ) ( ( F `  n )  <  ( ( F `
 k )  +  ( C  /  n
) )  /\  ( F `  k )  <  ( ( F `  n )  +  ( C  /  n ) ) ) )
cvg1nlem.g  |-  G  =  ( j  e.  NN  |->  ( F `  ( j  x.  Z ) ) )
cvg1nlem.z  |-  ( ph  ->  Z  e.  NN )
cvg1nlem.start  |-  ( ph  ->  C  <  Z )
Assertion
Ref Expression
cvg1nlemf  |-  ( ph  ->  G : NN --> RR )
Distinct variable group:    ph, j
Allowed substitution hints:    ph( k, n)    C( j, k, n)    F( j,
k, n)    G( j,
k, n)    Z( j,
k, n)

Proof of Theorem cvg1nlemf
StepHypRef Expression
1 cvg1n.f . . . 4  |-  ( ph  ->  F : NN --> RR )
21adantr 274 . . 3  |-  ( (
ph  /\  j  e.  NN )  ->  F : NN
--> RR )
3 simpr 109 . . . 4  |-  ( (
ph  /\  j  e.  NN )  ->  j  e.  NN )
4 cvg1nlem.z . . . . 5  |-  ( ph  ->  Z  e.  NN )
54adantr 274 . . . 4  |-  ( (
ph  /\  j  e.  NN )  ->  Z  e.  NN )
63, 5nnmulcld 8906 . . 3  |-  ( (
ph  /\  j  e.  NN )  ->  ( j  x.  Z )  e.  NN )
72, 6ffvelrnd 5621 . 2  |-  ( (
ph  /\  j  e.  NN )  ->  ( F `
 ( j  x.  Z ) )  e.  RR )
8 cvg1nlem.g . 2  |-  G  =  ( j  e.  NN  |->  ( F `  ( j  x.  Z ) ) )
97, 8fmptd 5639 1  |-  ( ph  ->  G : NN --> RR )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    = wceq 1343    e. wcel 2136   A.wral 2444   class class class wbr 3982    |-> cmpt 4043   -->wf 5184   ` cfv 5188  (class class class)co 5842   RRcr 7752    + caddc 7756    x. cmul 7758    < clt 7933    / cdiv 8568   NNcn 8857   ZZ>=cuz 9466   RR+crp 9589
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-14 2139  ax-ext 2147  ax-sep 4100  ax-pow 4153  ax-pr 4187  ax-cnex 7844  ax-resscn 7845  ax-1cn 7846  ax-1re 7847  ax-icn 7848  ax-addcl 7849  ax-addrcl 7850  ax-mulcl 7851  ax-mulcom 7854  ax-addass 7855  ax-mulass 7856  ax-distr 7857  ax-1rid 7860  ax-cnre 7864
This theorem depends on definitions:  df-bi 116  df-3an 970  df-tru 1346  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ral 2449  df-rex 2450  df-rab 2453  df-v 2728  df-sbc 2952  df-un 3120  df-in 3122  df-ss 3129  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-int 3825  df-br 3983  df-opab 4044  df-mpt 4045  df-id 4271  df-xp 4610  df-rel 4611  df-cnv 4612  df-co 4613  df-dm 4614  df-rn 4615  df-res 4616  df-ima 4617  df-iota 5153  df-fun 5190  df-fn 5191  df-f 5192  df-fv 5196  df-ov 5845  df-inn 8858
This theorem is referenced by:  cvg1nlemres  10927
  Copyright terms: Public domain W3C validator