Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > cvg1nlemf | Unicode version |
Description: Lemma for cvg1n 10928. The modified sequence is a sequence. (Contributed by Jim Kingdon, 1-Aug-2021.) |
Ref | Expression |
---|---|
cvg1n.f | |
cvg1n.c | |
cvg1n.cau | |
cvg1nlem.g | |
cvg1nlem.z | |
cvg1nlem.start |
Ref | Expression |
---|---|
cvg1nlemf |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cvg1n.f | . . . 4 | |
2 | 1 | adantr 274 | . . 3 |
3 | simpr 109 | . . . 4 | |
4 | cvg1nlem.z | . . . . 5 | |
5 | 4 | adantr 274 | . . . 4 |
6 | 3, 5 | nnmulcld 8906 | . . 3 |
7 | 2, 6 | ffvelrnd 5621 | . 2 |
8 | cvg1nlem.g | . 2 | |
9 | 7, 8 | fmptd 5639 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wceq 1343 wcel 2136 wral 2444 class class class wbr 3982 cmpt 4043 wf 5184 cfv 5188 (class class class)co 5842 cr 7752 caddc 7756 cmul 7758 clt 7933 cdiv 8568 cn 8857 cuz 9466 crp 9589 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-14 2139 ax-ext 2147 ax-sep 4100 ax-pow 4153 ax-pr 4187 ax-cnex 7844 ax-resscn 7845 ax-1cn 7846 ax-1re 7847 ax-icn 7848 ax-addcl 7849 ax-addrcl 7850 ax-mulcl 7851 ax-mulcom 7854 ax-addass 7855 ax-mulass 7856 ax-distr 7857 ax-1rid 7860 ax-cnre 7864 |
This theorem depends on definitions: df-bi 116 df-3an 970 df-tru 1346 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ral 2449 df-rex 2450 df-rab 2453 df-v 2728 df-sbc 2952 df-un 3120 df-in 3122 df-ss 3129 df-pw 3561 df-sn 3582 df-pr 3583 df-op 3585 df-uni 3790 df-int 3825 df-br 3983 df-opab 4044 df-mpt 4045 df-id 4271 df-xp 4610 df-rel 4611 df-cnv 4612 df-co 4613 df-dm 4614 df-rn 4615 df-res 4616 df-ima 4617 df-iota 5153 df-fun 5190 df-fn 5191 df-f 5192 df-fv 5196 df-ov 5845 df-inn 8858 |
This theorem is referenced by: cvg1nlemres 10927 |
Copyright terms: Public domain | W3C validator |