Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > cvg1nlemf | Unicode version |
Description: Lemma for cvg1n 10950. The modified sequence is a sequence. (Contributed by Jim Kingdon, 1-Aug-2021.) |
Ref | Expression |
---|---|
cvg1n.f | |
cvg1n.c | |
cvg1n.cau | |
cvg1nlem.g | |
cvg1nlem.z | |
cvg1nlem.start |
Ref | Expression |
---|---|
cvg1nlemf |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cvg1n.f | . . . 4 | |
2 | 1 | adantr 274 | . . 3 |
3 | simpr 109 | . . . 4 | |
4 | cvg1nlem.z | . . . . 5 | |
5 | 4 | adantr 274 | . . . 4 |
6 | 3, 5 | nnmulcld 8927 | . . 3 |
7 | 2, 6 | ffvelrnd 5632 | . 2 |
8 | cvg1nlem.g | . 2 | |
9 | 7, 8 | fmptd 5650 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wceq 1348 wcel 2141 wral 2448 class class class wbr 3989 cmpt 4050 wf 5194 cfv 5198 (class class class)co 5853 cr 7773 caddc 7777 cmul 7779 clt 7954 cdiv 8589 cn 8878 cuz 9487 crp 9610 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-14 2144 ax-ext 2152 ax-sep 4107 ax-pow 4160 ax-pr 4194 ax-cnex 7865 ax-resscn 7866 ax-1cn 7867 ax-1re 7868 ax-icn 7869 ax-addcl 7870 ax-addrcl 7871 ax-mulcl 7872 ax-mulcom 7875 ax-addass 7876 ax-mulass 7877 ax-distr 7878 ax-1rid 7881 ax-cnre 7885 |
This theorem depends on definitions: df-bi 116 df-3an 975 df-tru 1351 df-nf 1454 df-sb 1756 df-eu 2022 df-mo 2023 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ral 2453 df-rex 2454 df-rab 2457 df-v 2732 df-sbc 2956 df-un 3125 df-in 3127 df-ss 3134 df-pw 3568 df-sn 3589 df-pr 3590 df-op 3592 df-uni 3797 df-int 3832 df-br 3990 df-opab 4051 df-mpt 4052 df-id 4278 df-xp 4617 df-rel 4618 df-cnv 4619 df-co 4620 df-dm 4621 df-rn 4622 df-res 4623 df-ima 4624 df-iota 5160 df-fun 5200 df-fn 5201 df-f 5202 df-fv 5206 df-ov 5856 df-inn 8879 |
This theorem is referenced by: cvg1nlemres 10949 |
Copyright terms: Public domain | W3C validator |