ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cvg1nlemf Unicode version

Theorem cvg1nlemf 11165
Description: Lemma for cvg1n 11168. The modified sequence  G is a sequence. (Contributed by Jim Kingdon, 1-Aug-2021.)
Hypotheses
Ref Expression
cvg1n.f  |-  ( ph  ->  F : NN --> RR )
cvg1n.c  |-  ( ph  ->  C  e.  RR+ )
cvg1n.cau  |-  ( ph  ->  A. n  e.  NN  A. k  e.  ( ZZ>= `  n ) ( ( F `  n )  <  ( ( F `
 k )  +  ( C  /  n
) )  /\  ( F `  k )  <  ( ( F `  n )  +  ( C  /  n ) ) ) )
cvg1nlem.g  |-  G  =  ( j  e.  NN  |->  ( F `  ( j  x.  Z ) ) )
cvg1nlem.z  |-  ( ph  ->  Z  e.  NN )
cvg1nlem.start  |-  ( ph  ->  C  <  Z )
Assertion
Ref Expression
cvg1nlemf  |-  ( ph  ->  G : NN --> RR )
Distinct variable group:    ph, j
Allowed substitution hints:    ph( k, n)    C( j, k, n)    F( j,
k, n)    G( j,
k, n)    Z( j,
k, n)

Proof of Theorem cvg1nlemf
StepHypRef Expression
1 cvg1n.f . . . 4  |-  ( ph  ->  F : NN --> RR )
21adantr 276 . . 3  |-  ( (
ph  /\  j  e.  NN )  ->  F : NN
--> RR )
3 simpr 110 . . . 4  |-  ( (
ph  /\  j  e.  NN )  ->  j  e.  NN )
4 cvg1nlem.z . . . . 5  |-  ( ph  ->  Z  e.  NN )
54adantr 276 . . . 4  |-  ( (
ph  /\  j  e.  NN )  ->  Z  e.  NN )
63, 5nnmulcld 9056 . . 3  |-  ( (
ph  /\  j  e.  NN )  ->  ( j  x.  Z )  e.  NN )
72, 6ffvelcdmd 5701 . 2  |-  ( (
ph  /\  j  e.  NN )  ->  ( F `
 ( j  x.  Z ) )  e.  RR )
8 cvg1nlem.g . 2  |-  G  =  ( j  e.  NN  |->  ( F `  ( j  x.  Z ) ) )
97, 8fmptd 5719 1  |-  ( ph  ->  G : NN --> RR )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1364    e. wcel 2167   A.wral 2475   class class class wbr 4034    |-> cmpt 4095   -->wf 5255   ` cfv 5259  (class class class)co 5925   RRcr 7895    + caddc 7899    x. cmul 7901    < clt 8078    / cdiv 8716   NNcn 9007   ZZ>=cuz 9618   RR+crp 9745
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-14 2170  ax-ext 2178  ax-sep 4152  ax-pow 4208  ax-pr 4243  ax-cnex 7987  ax-resscn 7988  ax-1cn 7989  ax-1re 7990  ax-icn 7991  ax-addcl 7992  ax-addrcl 7993  ax-mulcl 7994  ax-mulcom 7997  ax-addass 7998  ax-mulass 7999  ax-distr 8000  ax-1rid 8003  ax-cnre 8007
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ral 2480  df-rex 2481  df-rab 2484  df-v 2765  df-sbc 2990  df-un 3161  df-in 3163  df-ss 3170  df-pw 3608  df-sn 3629  df-pr 3630  df-op 3632  df-uni 3841  df-int 3876  df-br 4035  df-opab 4096  df-mpt 4097  df-id 4329  df-xp 4670  df-rel 4671  df-cnv 4672  df-co 4673  df-dm 4674  df-rn 4675  df-res 4676  df-ima 4677  df-iota 5220  df-fun 5261  df-fn 5262  df-f 5263  df-fv 5267  df-ov 5928  df-inn 9008
This theorem is referenced by:  cvg1nlemres  11167
  Copyright terms: Public domain W3C validator