Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > cvg1nlemf | Unicode version |
Description: Lemma for cvg1n 10937. The modified sequence is a sequence. (Contributed by Jim Kingdon, 1-Aug-2021.) |
Ref | Expression |
---|---|
cvg1n.f | |
cvg1n.c | |
cvg1n.cau | |
cvg1nlem.g | |
cvg1nlem.z | |
cvg1nlem.start |
Ref | Expression |
---|---|
cvg1nlemf |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cvg1n.f | . . . 4 | |
2 | 1 | adantr 274 | . . 3 |
3 | simpr 109 | . . . 4 | |
4 | cvg1nlem.z | . . . . 5 | |
5 | 4 | adantr 274 | . . . 4 |
6 | 3, 5 | nnmulcld 8914 | . . 3 |
7 | 2, 6 | ffvelrnd 5629 | . 2 |
8 | cvg1nlem.g | . 2 | |
9 | 7, 8 | fmptd 5647 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wceq 1348 wcel 2141 wral 2448 class class class wbr 3987 cmpt 4048 wf 5192 cfv 5196 (class class class)co 5850 cr 7760 caddc 7764 cmul 7766 clt 7941 cdiv 8576 cn 8865 cuz 9474 crp 9597 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-14 2144 ax-ext 2152 ax-sep 4105 ax-pow 4158 ax-pr 4192 ax-cnex 7852 ax-resscn 7853 ax-1cn 7854 ax-1re 7855 ax-icn 7856 ax-addcl 7857 ax-addrcl 7858 ax-mulcl 7859 ax-mulcom 7862 ax-addass 7863 ax-mulass 7864 ax-distr 7865 ax-1rid 7868 ax-cnre 7872 |
This theorem depends on definitions: df-bi 116 df-3an 975 df-tru 1351 df-nf 1454 df-sb 1756 df-eu 2022 df-mo 2023 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ral 2453 df-rex 2454 df-rab 2457 df-v 2732 df-sbc 2956 df-un 3125 df-in 3127 df-ss 3134 df-pw 3566 df-sn 3587 df-pr 3588 df-op 3590 df-uni 3795 df-int 3830 df-br 3988 df-opab 4049 df-mpt 4050 df-id 4276 df-xp 4615 df-rel 4616 df-cnv 4617 df-co 4618 df-dm 4619 df-rn 4620 df-res 4621 df-ima 4622 df-iota 5158 df-fun 5198 df-fn 5199 df-f 5200 df-fv 5204 df-ov 5853 df-inn 8866 |
This theorem is referenced by: cvg1nlemres 10936 |
Copyright terms: Public domain | W3C validator |