ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cvg1nlemf Unicode version

Theorem cvg1nlemf 11127
Description: Lemma for cvg1n 11130. The modified sequence  G is a sequence. (Contributed by Jim Kingdon, 1-Aug-2021.)
Hypotheses
Ref Expression
cvg1n.f  |-  ( ph  ->  F : NN --> RR )
cvg1n.c  |-  ( ph  ->  C  e.  RR+ )
cvg1n.cau  |-  ( ph  ->  A. n  e.  NN  A. k  e.  ( ZZ>= `  n ) ( ( F `  n )  <  ( ( F `
 k )  +  ( C  /  n
) )  /\  ( F `  k )  <  ( ( F `  n )  +  ( C  /  n ) ) ) )
cvg1nlem.g  |-  G  =  ( j  e.  NN  |->  ( F `  ( j  x.  Z ) ) )
cvg1nlem.z  |-  ( ph  ->  Z  e.  NN )
cvg1nlem.start  |-  ( ph  ->  C  <  Z )
Assertion
Ref Expression
cvg1nlemf  |-  ( ph  ->  G : NN --> RR )
Distinct variable group:    ph, j
Allowed substitution hints:    ph( k, n)    C( j, k, n)    F( j,
k, n)    G( j,
k, n)    Z( j,
k, n)

Proof of Theorem cvg1nlemf
StepHypRef Expression
1 cvg1n.f . . . 4  |-  ( ph  ->  F : NN --> RR )
21adantr 276 . . 3  |-  ( (
ph  /\  j  e.  NN )  ->  F : NN
--> RR )
3 simpr 110 . . . 4  |-  ( (
ph  /\  j  e.  NN )  ->  j  e.  NN )
4 cvg1nlem.z . . . . 5  |-  ( ph  ->  Z  e.  NN )
54adantr 276 . . . 4  |-  ( (
ph  /\  j  e.  NN )  ->  Z  e.  NN )
63, 5nnmulcld 9031 . . 3  |-  ( (
ph  /\  j  e.  NN )  ->  ( j  x.  Z )  e.  NN )
72, 6ffvelcdmd 5694 . 2  |-  ( (
ph  /\  j  e.  NN )  ->  ( F `
 ( j  x.  Z ) )  e.  RR )
8 cvg1nlem.g . 2  |-  G  =  ( j  e.  NN  |->  ( F `  ( j  x.  Z ) ) )
97, 8fmptd 5712 1  |-  ( ph  ->  G : NN --> RR )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1364    e. wcel 2164   A.wral 2472   class class class wbr 4029    |-> cmpt 4090   -->wf 5250   ` cfv 5254  (class class class)co 5918   RRcr 7871    + caddc 7875    x. cmul 7877    < clt 8054    / cdiv 8691   NNcn 8982   ZZ>=cuz 9592   RR+crp 9719
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-14 2167  ax-ext 2175  ax-sep 4147  ax-pow 4203  ax-pr 4238  ax-cnex 7963  ax-resscn 7964  ax-1cn 7965  ax-1re 7966  ax-icn 7967  ax-addcl 7968  ax-addrcl 7969  ax-mulcl 7970  ax-mulcom 7973  ax-addass 7974  ax-mulass 7975  ax-distr 7976  ax-1rid 7979  ax-cnre 7983
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ral 2477  df-rex 2478  df-rab 2481  df-v 2762  df-sbc 2986  df-un 3157  df-in 3159  df-ss 3166  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-int 3871  df-br 4030  df-opab 4091  df-mpt 4092  df-id 4324  df-xp 4665  df-rel 4666  df-cnv 4667  df-co 4668  df-dm 4669  df-rn 4670  df-res 4671  df-ima 4672  df-iota 5215  df-fun 5256  df-fn 5257  df-f 5258  df-fv 5262  df-ov 5921  df-inn 8983
This theorem is referenced by:  cvg1nlemres  11129
  Copyright terms: Public domain W3C validator